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Dual Spaces

The question of duality is a natural one: what are the linear functionals
acting on a space. For a topological vector space, one can ask a related
question that takes advantage of the further structure given by a topology:
This is, what are the continuous linear functionals?

Problem

Characterize the continuous dual space of H1(D2)

The answer was given by Chang and Fefferman in 1980. We present their
results below.
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Motivation: the 1-dimensional case

Theorem

The space BMO is the dual space of the Hardy space H1(R). The pairing

is what you expect: 〈f , g〉 =
∞∫
−∞

f (x)g(x)dx , defined for g ∈ BMO and

f ∈ C∞, a dense subset of H1.

Obvious questions:

1: What do we mean by H1, and what is the proper analogy on the
bidisc?

2: What is BMO, and what its higher-dimensional analog?

3: Does this theorem lift to the bidisc?
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The Hardy Space H1

Definition

The Hardy space H1(R) is defined to be the boundary values of H1(R2
+).

This latter space is defined as functions f ∈ Hol(R2
+) that satisfy

supy>0

∫
f (x + iy)dx <∞.

One useful property of H1(R) is that it has an atomic decomposition, as
follows:

Zachary J. Smith (UTK) Continuous H1-BMO Duality June 11, 2012 4 / 24



Atomic Decomposition of H1(R)

Definition

An H1 atom is a function a(x) that satisfies:

The support of a lies in a bounded interval I∫
I a(x)dx = 0

||a||∞ ≤ 1
|I |

Characterization of H1

Given this definition, the useful fact is that for f ∈ H1 we have
f =

∑
λkak(x). Moreover

∑
|λk | ≤ C ||f ||H1 .
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Definition of H1(R2)

Analogy in Higher dimensions

The space H1(R2
+ × R2

+) will be defined to be biharmonic functions
u ∈ H1 having their non-tangential maximal functions N(u) in L1(R2).
We say a function is biharmonic if it satisfies Laplace’s equation

We note that this is one of several equivalent definitions of this space.

With the right definition of an atom, we shall also have an atomic
decomposition.
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An Auxiliary Function

To work in higher dimensions we will first need a few preliminaries. Let
ψ ∈ C 1(R) be an even function supported on [−1, 1] with mean 0. Then
for x = (x1, x2) in R2 and y = (y1, y2) in (R+)2, define

ψy (x) =
1

y1y2
ψ

(
x1

y1

)
ψ

(
x2

y2

)

The function ψ will be fixed, and normalized so that

∞∫
0

∣∣∣ψ̂(ξ)
∣∣∣2 dξ

ξ
= 1.
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Extensions from Boundary Values

We define the extension of a function f defined on the boundary to be
f (x , y) = f ∗ ψy . We hence have for f ∈ H1

f (x , y) =

∫∫
(t,y)∈R2

+×R2
+

f (t, y)ψy (x − t)
dtdy

y1y2
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The double-S function

In one dimension the sweep (or balayage) of a measure is useful: the
sweep of a the absolute value of a measure is in BMO if the measure itself
in Carleson. In higher dimensions we will have the following important
analogue, which Chang and Fefferman call the ”double-S” function.

S2(f )(x1, x2) =

∫∫
(t,y)∈Γ(x1)×Γ(x2)

|f (t, y)|2 dtdy

y2
1 y

2
2

Here Γ(xi ) is the usual nontangential approach region. This function will
play a vital role in our computations.
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The ”Rectangle” Function

The last preliminary we shall need is the ’rectangle’ function. For f ∈ H1

and R a rectangle , define

fR(x , y) =

∫∫
(t,y)∈R+

f (t, y)ψy (x − t)
dtdy

y1y2

Here R+ =
{

(t, y) ∈ R2
+ × R2

+ : t ∈ R, |I |2 ≤ y1 ≤ |I |, |J|2 ≤ y2 ≤ |J|
}

.

The region R+ is part of a Carleson box. This function will be key in
writing down an atomic decomposition.
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Some remarks on ψ

An explanatory formula

For f ∈ H1

f (x , y) =

∫∫
(t,y)∈R2

+×R2
+

f (t, y)ψy (x − t)
dtdy

y1y2
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Atomic Decomposition of H1(R2)

Of course, finding the ”right” atom takes some work:

Definition

An atom on R2 is a function a(x1, x2) satisfying:

The support of a is contained in an open set Ω∫
I a(x1, x2)dx1 = 0 where I is any component interval of any x1

cross-section of Ω.∫
J a(x1, x2)dx1 = 0 where J is any component interval of any x2

cross-section of Ω.

Further geometric requirements:
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More on atoms

Further requirements

a=
∑

R aR , where each aR is supported on a rectangle R ⊂ Ω. Say
R = I × J.

The rectangles R form a collection of maximal dyadic rectangles.∫
I
a(x1, x2)dx1 = 0 for each x2 ∈ J∫

J
a(x1, x2)dx1 = 0 for each x1 ∈ I

aR is C 1 with ||aR ||∞ ≤ |R|1/2∣∣∣∣∣∣∣∣∂aR∂x1

∣∣∣∣∣∣∣∣ ≤ CR

|I ||R|1/2
and

∣∣∣∣∣∣∣∣∂aR∂x2

∣∣∣∣∣∣∣∣ ≤ CR

|J||R|1/2∣∣∣∣∣∣∣∣ ∂2aR
∂x1∂x2

∣∣∣∣∣∣∣∣ ≤ CR

|R|3/2∑
R C 2

R ≤ A
|Ω|
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Characterization of H1(R2
+ × R2

+)

With all that in place, we get the following:

Theorem (Chang-Fefferman)

Let f ∈ H1. Then f can be written as f =
∑
λkak where the ak are

atoms and λk ≥ 0 satisfy
∑
λk ≤ C ||f ||H1

Ingredients of Proof: The proof of this theorem contains much of the
geometric content used in the larger duality theorem. The key ingredient is
finding a collection of maximal dyadic rectangles, and using the ’rectangle’
function as defined above to be the atom.
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Bounded Mean Oscillation

Definition

For a function φ ∈ L1
loc(R), we say φ is of bounded mean oscillation

(BMO) if

sup
I

1

|I |

∫
I

|φ− φI |2dx = ||φ||2∗ <∞.

Here the supremum is taken over all finite intervals I , and φI is the
average value of φ over such an interval.

By replacing intervals with rectangles, one would hope to get an analogy
for BMO. Unfortunately such functions may not act continuously on H1 of
the bidisc. (This follows from work by Carleson).
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The ’right’ BMO: preliminaries

We now define the space BMO that will be the correct continuous dual
space. Note now though the name now only holds through the duality
analogy.
We first recall the definition of BMO:

Definition

The space BMO is the space of locally integrable functions φ such that
supI

1
|I |
∫
I

|φ− φI |dx
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A candidate for the continuous dual space

Our first candidate is motivated by the 1-d definition:

Definition

The space BMO(a) is the space of locally integrable functions φ such that

sup
Ω

1

|Ω|

∣∣∣∣∣
∣∣∣∣∣∑
R⊂Ω

φR

∣∣∣∣∣
∣∣∣∣∣
2

2

= ||φ||2∗ <∞

Here the supremum ranges over all open sets of finite measure, and we
sum over the rectangle as described above.
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A second candidate for the continuous dual space

Motivated by the atomic decomposition, we have:

Definition

The space BMO(b) is the space of locally integrable functions φ such that

given any open set Ω ⊂ R2 there exists a function φ̃Ω satisfying the
following:

1

|Ω|

∫
Ω
|φ(t)− φ̃Ω(t)|2dt ≤ M

for some constant M independent of Ω
This definition is motivated by the atomic decomposition, so there are also
conditions we ask about φ̃R
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Requirements on φ̃R

φ̃R =
∑
φ̃i , where each φ̃i is supported on the triple R̃i of distinct

dyadic rectangles Ri with |R̃i ∩ Ω| < 1
2 |R̃i |

Each φ̃i has mean value zero over each horizontal and vertical slice of
R̃i

||φ̃i ||∞ ≤
CRi

|Ri |1/2

Similar smoothness conditions as for atoms, but different requirement
on the constants CRi
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The Main Result

Theorem (Chang, Fefferman ’80)

Let φ ∈ L2(R2) satisfy∫
φ(y1, x2)dy1 =

∫
φ(x1, y2)dx2 = 0 for all (x1, x2) ∈ R2.

Then the following are equivalent:

(i) φ ∈ BMO(a)

(ii) φ ∈ BMO(b)

(iii)
1

|Ω|
∑
R⊂Ω

S2
R(φ) <∞, where the supremum ranges over all the finite

open sets Ω, and for each dyadic rectangle R

S2
R(φ) =

∫∫
R+

|φ(t, y)|2 dtdy
y1y2

(iv) φ is in the (continuous) dual of H1
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Ideas in the proof

Sketch of proof

(i)⇔ (iii) is proven by a careful study decomposition of Ω into
rectangles.

(ii)⇒ (iv) can be established easily by checking on atoms.

The other implications shown in the paper are (iii)⇒ (ii) and
(iv)⇒ (iii).

Zachary J. Smith (UTK) Continuous H1-BMO Duality June 11, 2012 21 / 24



Product BMO

A final comment

The theorem proves the equivalence of BMO(a) with BMO(b); in the
literature this space is sometimes referred to as product BMO.
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