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Abstract. A separated sequence Λ on the real line is called a Pólya sequence

if any entire function of zero exponential type bounded on Λ is constant. In this

paper we solve the problem by Pólya and Levinson that asks for a description
of Pólya sets. We also show that the Pólya-Levinson problem is equivalent

to a version of the so-called Beurling gap problem on Fourier transforms of
measures. The solution is obtained via a recently developed approach based

on the use of Toeplitz kernels and de Branges spaces of entire functions.

1. Introduction and background

1.1. Introduction. An entire function F is said to have exponential type zero if

lim sup
|z|→∞

log |F (z)|
|z|

= 0.

We call a separated real sequence Λ = {λn}∞n=−∞ (a sequence is separated if it
satisfies |λn − λm| ≥ δ > 0, (n 6= m)) a Pólya sequence if any entire function of
exponential type zero that is bounded on Λ is constant. In this paper we consider
the problem of description of Pólya sequences.

Historically, first results on Pólya sequences were obtained in the work of Val-
iron [22], where it was proved that the set of integers Z is a Pólya sequence. Later
this result was popularized by Pólya, who posted it as a problem in [21]. Sub-
sequently many different proofs and generalizations were given (see for example
section 21.2 of [14] or chapter 10 of [4] and references therein).

In his 1940’ book [15] Levinson showed that if |λn−n| ≤ p(n), where p(t) satisfies∫ p(t)
1+t2 log | t

p(t) |dt < ∞ and some smoothness conditions, then Λ = {λn} is a Pólya
sequence. In the same time for each such p(t) satisfying

∫
p(t)dt/(1 + t2) = ∞ he

was able to construct a sequence Λ = {λn} that is not Pólya sequence. As it often
happens in problems from this area, the construction took a considerable effort (see
[15], pp. 153-185). Closing the gap between Levinson’s sufficient condition and the
counterexample remained an open problem for almost 25 years until de Branges [6]
essentially solved it by showing that Λ is a Pólya sequence if

∫
p(t)dt/(1 + t2) < ∞

(but assuming extra regularity conditions on the sequence).
The results of [15] and [6] remain strongest to date. However, none of them gives

a complete answer, since there are Pólya sequences for which
∫

p(t)dt/(1 + t2) = ∞.
For example, as will be clear from our results below, the sequence

λn := n + n/ log (|n|+ 2), n ∈ Z

The second author is supported by N.S.F. Grant No. 0800300.
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is a Pólya sequence.
In the opposite direction, [6] contains the following necessary condition. A se-

quence of disjoint intervals In on the real line is called long (in the sense of Beurling
and Malliavin) if ∑

n

|In|2

1 + dist2(In, 0)
= ∞,

and it is called short otherwise. Here |In| denotes the length of the interval In.
De Branges [6] proved that if the complement of a closed set X ⊂ R is long then
there exists a non constant zero type entire function that is bounded on X. In
particular, if the complement of a sequence Λ is long then Λ is not a Pólya sequence.
The sequence λn := n2 shows that this condition is not sufficient. Indeed, λn = n2

is the zero set of the zero type function F (z) := cos
√

2πz cos
√
−2πz and thus is

not a Pólya sequence. On the other hand, the real complement of this sequence is
short.

In this paper we give the following answer to the Pólya-Levinson question, see
the corollary of Theorem A below. We show that a separated sequence of real
numbers Λ is not a Pólya sequence if and only if there exists a long sequence of
intervals {In} such that

#(Λ ∩ In)
|In|

→ 0.

Our approach is similar to the one developed by the second author and Makarov
in [16] and [17], where it was used to obtain extensions and applications of the
Beurling-Malliavin theory. One of our main tools is the connection between the
Pólya-Levinson problem, the gap problem and the problem of injectivity of Toeplitz
operators, see Theorems A and C. To promote the Toeplitz approach and to make
the paper more self-contained we often include full proofs rather than referring to
existing results.

The Beurling gap problem that we consider here may be formulated as follows.
Under what conditions on a separated real sequence Λ = {λn}∞n=−∞ does there
exist a nonzero finite measure µ supported on Λ such that the Fourier transform
of µ vanishes on an interval of positive length? Of course, one can ask the same
question for an arbitrary closed set X ⊂ R. It was de Branges who first observed the
connection between this problem and the Pólya-Levinson problem. The sufficient
condition that he gave for the Pólya-Levinson problem was the same as Beurling’s
sufficient condition for the gap problem, see [1] or [13]. Namely, Beurling proved
that if the complement of a closed set X ⊂ R is long then there exists no nonzero
finite measure µ supported on X such that the Fourier transform of µ vanishes on
an interval of positive length. The natural question is whether these two problems
are equivalent. As the reader will see below, for sequences the answer is positive.

Besides giving a solution to the gap problem for separated sequences we also
improve Beurling’s gap theorem for general closed sets, see Theorem B and its
corollaries.

Acknowledgment. We are grateful to N. Makarov who brought the Pólya-
Levinson problem to our attention and to M. Sodin for useful discussions and
references.

1.2. Background. We use the standard notation N+(C+) to denote the Smirnov-
Nevanlinna class in the upper half-plane C+ = {z|=z > 0} consisting of analytic
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functions f(z) that can be represented as a ratio g(z)/h(z) of two bounded analytic
functions with h(z) being outer. Each function in N+(C+) has non-tangential
boundary values almost everywhere on R that completely determine the function. A
mean type of a function f(z) in N+(C+) is defined as τ := lim supy→∞ log |F (iy)|/y.
It is easy to see that every function in N+(C+) has a non-positive mean type which
is exactly the exponent of S(z) := eiz in the inner-outer factorization of f(z) taken
with a negative sign. Here and throughout the paper S(z) denotes the singular
inner function eiz.

A Hardy space H2(C+) consists exactly of those functions in N+(C+) which
are square-integrable on R (for more on Smirnov-Nevanlinna and Hardy spaces see,
e.g., [9]).

A classical theorem of Krein gives a connection between the Smirnov-Nevanlinna
class N+(C+) and the Cartwright class Ca consisting of all entire functions F (z)
of exponential type ≤ a that satisfy log |F (t)| ∈ L1(dt/(1+ t2)). An entire function
F (z) belongs to the Cartwright class Ca if and only if

F (z)
S−a(z)

∈ N+(C+),
F#(z)
S−a(z)

∈ N+(C+),

where F#(z) = F (z̄).
As an immediate consequence one obtains a connection between the Hardy space

H2(C+) and the Paley-Wiener space PWa. Namely, an entire function F (z) belongs
to the Paley-Wiener class PWa if and only if

F (z)
S−a(z)

∈ H2(C+),
F#(z)
S−a(z)

∈ H2(C+).

The definition of the de Branges spaces of entire functions may be viewed as
a generalization of the above definition of the Payley-Wiener spaces with S−a(z)
replaced by a more general entire function. Consider an entire function E(z) satis-
fying the inequality

|E(z)| > |E(z̄)|, z ∈ C+.

Such functions are usually called de Branges functions. The de Branges space BE

associated with E(z) is defined to be the space of entire functions F (z) satisfying

F (z)
E(z)

∈ H2(C+),
F#(z)
E(z)

∈ H2(C+).

It is a Hilbert space equipped with the norm ‖F‖E := ‖F/E‖L2(R). If E(z) is
of exponential type then all the functions in the de Branges space BE will be of
exponential type not greater then the type of E(z) (see, for example, the last part
in the proof of Lemma 3.5 in [10]). A de Branges space is called short (or regular) if
together with every function F (z) it contains (F (z)−F (a))/(z− a) for any a ∈ C.

We will utilize the following well-known result from the theory of de Branges
spaces of entire functions.

Theorem I. [7] Let µ be a positive measure on R satisfying
∫

dµ(t)/(1 + t2) < ∞.
Then there exists a short de Branges space BE contained isometrically in L2(µ),
with de Branges function E(z) being of Cartwright class and having no real zeros.
Moreover, if there exists such a space BE with E(z) of positive exponential type,
then there also exists such a space BE that is contained properly in L2(µ).
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Remark. The existence part follows from Theorem XII of [7]. The second part
follows from Theorems IV and X in the same paper. Finally, the shortness can
be derived from the proof of Theorem XII [7] or from problem 71 in [5] by taking
S(z) = 1.

General treatment of de Branges’ theory is given in [5].

Every de Branges function gives rise to a meromorphic inner function Θ(z) =
E#(z)/E(z). We say that an inner function Θ(z) in C+ is a meromorphic inner
function if it allows a meromorphic extension to the whole complex plane. The
meromorphic extension to the lower half-plane C− is given by:

Θ(z) =
1

Θ#(z)
.

Conversely, by a classical Theorem of Krein, every meromorphic inner function Θ(z)
can be represented in the form Θ(z) = E#(z)/E(z), for some de Branges function
E(z) (see, for instance, Section 27.2 in [14] or Lemma 2.1 in [12]). Such a function
is unique up to a factor of an entire function that is real on R and has only real
zeros.

Each inner function Θ(z) determines a model subspace

KΘ = H2 	ΘH2

of the Hardy space H2(C+). These subspaces play a prominent role in complex and
harmonic analysis, as well as in operator theory, see [18, 19]. There is an important
relationship between the model subspaces KΘ and the de Branges spaces BE of
entire functions. If E(z) is a de Branges function and Θ(z) = E#(z)/E(z) is
the corresponding meromorphic inner function, then the multiplication operator
f 7→ Ef is an isometric isomorphism KΘ → BE .

Each inner function Θ(z) determines a positive harmonic function < 1+Θ(z)
1−Θ(z) and

by Herglotz representation a positive measure σ such that

<1 + Θ(z)
1−Θ(z)

= py +
1
π

∫
ydσ(t)

(x− t)2 + y2
, z = x + iy, (1.1)

for some p ≥ 0. The number p can be viewed as a point mass at infinity. The
measure σ is singular, supported on {Θ = 1} ⊂ R, and satisfies

∫
dσ(t)/(1 + t2) <

∞. It is usually called a Clark measure for Θ(z). Conversely, for every positive
singular measure σ with

∫
dσ(t)/(1 + t2) < ∞ and a number p ≥ 0, there exists an

inner function Θ(z) determined by the formula (1.1). Below, when we say that an
inner function Θ(z) corresponds to σ we always assume p = 0.

Every function f ∈ KΘ can be represented by the formula

f(z) =
p

2πi
(1−Θ(z))

∫
f(t)(1−Θ(t))dt +

1−Θ(z)
2πi

∫
f(t)
t− z

dσ(t).
(1.2)

If 1−Θ(t) /∈ L2(R) then p = 0 and hence we have a nicer looking formula

f(z) =
1−Θ(z)

2πi

∫
f(t)
t− z

dσ(t).

This gives an isometry of L2(σ) onto KΘ. In the case of meromorphic Θ(z), every
function f ∈ KΘ also has a meromorphic extension in C, and it is given by the
formula (1.2). The corresponding Clark measure is discrete with atoms at the
points of {Θ = 1} given by σ({x}) = 2π

|Θ′(x)| .
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Each meromorphic inner function Θ(z) can be written as Θ(t) = eiφ(t) on R,
where φ(t) is a real analytic and strictly increasing function. The function φ(t) =
arg Θ(t) is the continuous argument of Θ(z). The phase function of E(z) is defined
as − 1

2 arg Θ(t), where Θ(z) is the corresponding meromorphic inner function.
A subset of R is called discrete if it has no finite density points. For every discrete

set Λ ⊂ R, there exists a (far from unique) meromorphic inner function Θ(z) such
that {Θ = 1} = Λ. In the case of a separated sequence Λ, there is a meromorphic
inner function Θ(z) with {Θ = 1} = Λ whose continuous argument arg Θ(t) has a
bounded derivative (see for instance Lemma 16 in [7]).

Recall that the Toeplitz operator TU with a symbol U ∈ L∞(R) is the map

TU : H2 → H2, F 7→ P+(UF ),

where P+ is the orthogonal projection in L2(R) onto the Hardy space H2 =
H2(C+).

We will use the following notation for kernels of Toeplitz operators (or Toeplitz
kernels in H2):

N [U ] = ker TU .

For example, N [Θ̄] = KΘ if Θ is an inner function. Along with H2-kernels, one
defines Toeplitz kernels in the Smirnov class N+(C+),

N+[U ] = {f ∈ N+ ∩ L1
loc(R) : Ū f̄ ∈ N+}.

1.3. Beurling-Malliavin densities. Before we formulate our results let us discuss
the following notion of density of a discrete sequence and related theorems.

Following [3] we say that a discrete sequence Λ ⊂ R is a-regular if for every ε > 0
any sequence of disjoint intervals {In} that satisfies∣∣∣∣#(Λ ∩ In)

|In|
− a

∣∣∣∣ ≥ ε

for all n, is short.
A slightly different a-regularity can be defined in the following way, that is more

convenient in some settings. For a discrete sequence Λ ⊂ R we denote by nΛ(x)
its continuous counting function, i.e. the function that is continuous on R, grows
linearly by 1 between each pair of neighboring points of Λ and is equal to 0 at 0.
We say that Λ is strongly a-regular if∫

|nΛ(x)− ax|
1 + x2

< ∞.

Conditions like this can be found in many related results, see for instance [5] or [13].
Even though a-regularity is not equivalent to strong a-regularity, in the following
definitions of densities changing ”a-regular” to ”strongly a-regular” will lead to
equivalent definitions.

The interior BM (Beurling-Malliavin) density is defined as

D∗(Λ) := sup{a | ∃ a-regular subsequence Λ′ ⊂ Λ}. (1.3)

Similarly, the exterior BM density is defined as
5



D∗(Λ) := inf{a | ∃ a-regular supsequence Λ′ ⊃ Λ}. (1.4)

If no such sequence exists D∗(Λ) := ∞, see [3]. Exterior density was used in the
Beurling-Malliavin solution of the completeness problem for families of exponential
functions in L2 on an interval, see [3], [11] or [13].

The following simple observation will be useful in the next section: D∗(Λ) = 0
if and only if there exists a long sequence of intervals {In} such that

#(Λ ∩ In) = o(|In|) as |n| → ∞.

A description of D∗(Λ) in terms of Toeplitz kernels is given by the following
formula, see [16, Section 4.6]:

D∗(Λ) =
1
2π

sup{a : N [S̄aΘ] = 0},

where Θ(z) denotes some/any meromorphic inner function with {Θ = 1} = Λ.
Below (see Theorems B and C) we give a similar description of the interior BM
density for separated sequences Λ. Namely,

D∗(Λ) =
1
2π

sup{a : N [Θ̄Sa] = 0},

where Θ(z) denotes some/any meromorphic inner function with {Θ = 1} = Λ.
An equivalent way to define the interior BM density is as follows. Let γ : R → R

be a continuous function such that γ(∓∞) = ±∞. i.e.

lim
x→−∞

γ(x) = +∞, lim
x→+∞

γ(x) = −∞.

The family BM(γ) is defined as the collection of the connected components of the
open set {

x ∈ R : γ(x) 6= max
t∈[x,+∞)

γ(t)
}

.

We say that γ is almost decreasing if γ(∓∞) = ±∞ and the family of the intervals
BM(γ) is short.

Now we can state an equivalent definition for interior BM density:

D∗(Λ) := sup{a | ax− nΛ(x) is almost decreasing}. (1.5)

Equivalence of this definition and (1.3) can be easily verified.
We will use the following formulations of the Beurling-Malliavin theorems [2, 3]:

Theorem II ([16, Section 4.2]). Suppose that Θ(z) is a meromorphic inner function
with the derivative of arg Θ(t) bounded on R. Then for any meromorphic inner
function J(z), we have

N+[Θ̄J ] 6= 0 ⇒ ∀ε > 0, N [S̄εΘ̄J ] 6= 0.

Theorem III ([16, Section 4.3]). Suppose γ′(t) > −const.
(i) If γ is not almost decreasing, then for every ε > 0, N+[Sεeiγ ] = 0.
(ii) If γ is almost decreasing, then for every ε > 0, N+[S̄εeiγ ] 6= 0.

Remark. As noted in [16, Section 4.3], the part (i) of Theorem III holds without
the assumption γ′(t) > −const.
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2. Results and proofs

2.1. Main results. As was mentioned in the introduction, a sequence of real num-
bers is called separated if |λn − λm| ≥ δ > 0, (n 6= m). It is natural to introduce
a separation condition in the Pólya-Levinson problem because of the following ob-
vious reasons. If one takes a zero set of a zero-type entire function and adds a
large number of points close enough to each zero, the entire function will still be
bounded on the new sequence. At the same time, this way one can obtain non-
Pólya sequences of arbitrarily large density, in any reasonable definition of density.
Hence, if one hopes to obtain a description of Pólya sequences based on densities
or similar terms, it is necessary to include a separation condition, as it was done in
the classical results cited above.

Recall that a separated sequence {λn}∞n=−∞ is called a Pólya sequence if every
zero-type entire function bounded on {λn} is constant.

Theorem A. Let Λ = {λn}∞n=−∞ ⊂ R be a separated sequence of real numbers.
The following are equivalent:

(i) Λ = {λn} is a Pólya sequence.
(ii) There exists a non-zero measure µ of finite total variation, supported on

Λ, such that the Fourier transform of µ vanishes on an interval of positive
length.

(iii) The interior Beurling-Malliavin density of Λ, D∗(Λ), is positive.
(iv) There exists a meromorphic inner function Θ(z) with {Θ = 1} = {λn} such

that N [Θ̄S2c] 6= 0, for some c > 0.

As an immediate consequence we obtain that the sequence of integers Z is a
Pólya sequence, as known from Valiron’s original statement. This follows from
(iii) and also from (iv) by taking Θ(z) = S2π(z). Another consequence is that a
separated real sequence with density zero cannot be a Pólya sequence. However,
there are sequences with positive density (and hence positive exterior Beurling-
Malliavin density) which are not Pólya. As was mentioned in the introduction, the
first example of such a sequence was given by Levinson [15]. New examples in both
directions can now be constructed using the following description.

Corollary. Let Λ = {λn}∞n=−∞ be a separated sequence of real numbers. Then
Λ is a Pólya sequence if and only if for every long sequence of intervals {In} the
sequence #(Λ∩In)

|In| is not a null sequence, i.e., #(Λ∩In)
|In| 9 0.

In regard to the gap problem we will prove the following result. Let M denote
the set of all complex measures of finite total variation on R. For µ ∈ M its Fourier
transform µ̂(x) is defined as

µ̂(x) =
∫

eixtdµ(t).

If X is a closed subset of the real line denote by G(X) the gap characteristic of X:

G(X) := sup{a | ∃ µ ∈ M, µ 6≡ 0, supp µ ⊂ X, such that µ̂ = 0 on [0, a]}.
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Theorem B. The following are true:
(i) For any separated sequence Λ ⊂ R, G(Λ) ≥ 2πD∗(Λ).
(ii) For any closed set X ⊂ R, G(X) ≤ 2πD∗(X).

Corollary. For separated sequences Λ ⊂ R, G(Λ) = 2πD∗(Λ).

The formula for G(X) for a general closed set X is more involved, see [20]. An-
other immediate consequence of Theorem B is the following extension of Beurling’s
gap theorem:

Corollary. Let X be a closed subset of the real line. If there exists a long sequence
of intervals {In} such that

#(X ∩ In)
|In|

→ 0

then any measure µ of finite total variation supported on X, whose Fourier trans-
form vanishes on an interval of positive length, is trivial.

Finally, our next result connects the gap problem to the problem on injectivity
of Toeplitz operators. It provides one of the main tools for our proofs.

If X ⊂ R is closed, define

T(X) =
sup{a | ∃ meromorphic inner Θ(z) with {Θ = 1} ⊂ X and N [Θ̄Sa] 6= 0}.

Theorem C. For any closed X ⊂ R,

T(X) = G(X).

Theorems A, B and C will be proved in the last section.

2.2. Technical lemmas. For the main proofs we will need the following lemmas.

Lemma 1. Let Θ(z) be a meromorphic inner function with 1−Θ(t) /∈ L2(R) and
let σ be the corresponding Clark measure. If N [Θ̄S2a] 6= 0 for some a > 0, then for
any ε > 0 there exists h ∈ L2(σ) such that

lim
y→±∞

exy

∫
h(t)

t− iy
dσ(t) = 0

for every x ∈ (−a + ε, a− ε) and the measure hdσ has finite total variation.

Proof: The idea of the proof is truly simple: If the Toeplitz kernel from the state-
ment is non-trivial then KΘ contains a function divisible by S2a. The desired
measure hdσ is then obtained from the Clark representation of that function. The
details are as follows.

Let
b(z) :=

z − i

z + i
.

Since N [Θ̄S2a] 6= 0, N [Θ̄S2a−2εb] 6= 0 for any ε > 0. Hence there exists a non-zero

f ∈ N [Θ̄S2a−2εb] ⊂ H2(C+).
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Then S2a−2εbf ∈ KΘ. Define h := Sa−εbf/(z − i). Clearly h belongs to KΘ, and
therefore

h(z) =
1−Θ(z)

2πi

∫
h(t)
t− z

dσ(t)

where σ is the Clark measure of Θ. In particular, for x < a− ε,

lim
y→∞

exy

∫
h(t)

t− iy
dσ(t) = 0

because f(iy) → 0, since f ∈ H2(C+), and because the outer function 1 − Θ(iy)
cannot go to zero exponentially fast.

Denote g = Θ̄h ∈ H̄2 = H2(C−). Then h = Θg in the lower half-plane. Note
that g = S−a+εk where

k = Θ̄S2a−2εbf/(z − i) ∈ H̄2 = H2(C−).

Hence for x > −a + ε,

lim
y→−∞

exy

∫
h(t)

t− iy
dσ(t) = lim

y→−∞
2πi

k(iy)Θ(iy)
e(a−ε+x)y(1−Θ(iy))

= 0.

The last equality follows from the facts that k(z) ∈ H2(C−) and that
1−Θ(iy)

Θ(iy)
= Θ(−iy)− 1.

It is left to notice that h(z) = l(z)/(z − i) where both l(t) = S2a−2εbf and
(z − i)−1 belong to L2(σ). Thus h ∈ L1(σ) and hdσ has finite total variation. 2

The following Lemma is a well known fact whose proof we include here for
completeness.

Lemma 2. Let µ be a measure with finite total variation. Then the Fourier trans-
form of µ vanishes on [−a, a] if and only if

lim
y→±∞

exy

∫
dµ(t)
t− iy

= 0,

for every x ∈ [−a, a].

Proof: Suppose that
∫

eixtdµ(t) = 0 for all x ∈ [−a, a]. Then

e−ixz

∫ +∞

−∞

eixt − eixz

i(t− z)
=

∫ +∞

−∞

∫ x

0

eiu(t−z)dudµ(t) =

=
∫ x

0

∫ +∞

−∞
eiutdµ(t)e−iuzdu = 0,

for every x ∈ [−a, a] and z ∈ C. Therefore,∫
eixt − eixz

t− z
dµ(t) = 0

for every x ∈ [−a, a]. Obviously,

lim
y→±∞

∫
eixt

t− iy
dµ(t) = 0 (2.1)

and therefore

lim
y→±∞

exy

∫
dµ(t)
t− iy

= 0
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for every x ∈ [−a, a].
Conversely, for x ∈ [−a, a], define

H(z) :=
∫

eixt − eixz

t− z
dµ(t).

Then H(z) is an entire function of Cartwright class. To show that H(z) is identically
zero it suffices to check that limy→±∞H(iy) = 0. Recall that for x ∈ [−a, a],

lim
y→±∞

∫
eix(iy)

t− iy
dµ(t) = 0.

Together with (2.1) this implies H ≡ 0.
Thus ∫

eixtdµ(t) = lim
y→∞

−iy

∫
eixtdµ(t)

t− iy
= lim

y→∞
−iye−xy

∫
dµ(t)
t− iy

= 0

for all −a ≤ x ≤ a. 2

2.3. Main proofs. Now we are ready to prove our main theorems. We will do it
in the reverse order.

Proof of Theorem C: The inequality T(X) ≤ G(X) follows from Lemma 1 and
Lemma 2. To prove the opposite inequality, let G(X) = a. Then for any ε > 0 there
exists a non-zero complex measure of total variation no greater than 1 supported
on X whose Fourier transform vanishes on [0, a − ε]. Consider the set of all such
measures. Since this set is closed, convex and contains non-zero elements, by the
Krein-Milman theorem it has an extreme point, a non-zero measure ν. Similarly
to the proof of Theorem 66 in [5], we can show that the extremality of ν implies
that it is supported on a discrete subset of X. Let Θ(z) be the meromorphic inner
function whose Clark measure is |ν|. Then {Θ = 1} ⊂ X. It is left to notice that
the function

f(z) =
1−Θ(z)

2πi

∫
dν(t)
t− z

belongs to KΘ and is divisible by Sa−ε (as follows, for instance, from the proof of
Lemma 2). Hence f/Sa−ε ∈ N [Θ̄Sa−ε] 6= 0. 2

Proof of Theorem B: (i) By Theorem C it is enough to prove that T(Λ) ≥
2πD∗(Λ). Suppose that D∗(Λ) = a/2π. By the second definition (1.5) of D∗ the
function

φ(x) = −2πnΛ(x) + (a− ε)x
is almost decreasing for any ε > 0. Consider a meromorphic inner function Θ with
{Θ = 1} = Λ and bounded derivative on R. Then arg Θ̄Sa−ε differs from φ by
a bounded function. Hence arg Θ̄Sa−2ε is almost decreasing. By Theorem II and
Theorem III

N [Θ̄Sa−3ε] 6= 0.

(ii) Again we will prove that T(X) ≤ 2πD∗(X). If T(X) = a then for any ε > 0
there exists a meromorphic inner Θ(z) such that Γ := {Θ = 1} ⊂ X and

N [Θ̄Sa−ε] 6= 0.
10



By Theorem II (and remark after it) this means that arg Θ̄Sa−2ε is almost decreas-
ing. Hence

−2πnΓ(x) + (a− 3ε)x
is almost decreasing. Since ε is arbitrary, D∗(X) ≥ a/2π. 2

Remark. It was pointed out by the referee that a different proof of Theorem B
can be obtained combining Beurling and Malliavin Theorem [3, Theorem I], Theo-
rems 66 and 67 in [5] and a Theorem of Krein [14, Theorem 3 in Section 16].

Proof of Theorem A: (ii) ⇔ (iii) follows from Theorem B and (ii) ⇔ (iv) from
Theorem C.

(i) ⇒ (iii) Assume (iii) is not true, i.e. for every meromorphic inner function
Θ(z) with {Θ = 1} = Λ, N [Θ̄S2c] = 0 for every c > 0. In this case we will construct
a non-constant zero type entire function bounded on Λ, which will mean that Λ
is not a Pólya set. Define a measure µ to be the counting measure of Λ. Then
clearly

∫
dµ(t)/(1 + t2) < ∞. By Theorem I there exists a short de Branges space

BE contained isometrically in L2(µ). First, let us show that BE cannot contain a
function of positive exponential type. If E(z) has type zero then all functions in
BE have type zero (see the background part). If the type of E(z) is positive, then
by Theorem I we can assume that BE is contained properly in L2(µ).

Suppose that F (z) ∈ BE has positive type. We can assume that F (iy) grows
exponentially in y as y → ∞. Since BE 6= L2(µ), there exists g ∈ L2(µ) with
ḡ ⊥ BE . Then

0 =
∫

F (t)− F (w)
t− w

g(t)dµ(t) =
∫

F (t)
t− w

g(t)dµ(t)− F (w)
∫

1
t− w

g(t)dµ(t)

for any w ∈ C and therefore

F (w) =

∫ F (t)
t−w g(t)dµ(t)∫

1
t−wg(t)dµ(t)

.

Since F (w) grows exponentially along iR+, the integral in the denominator must
decay exponentially in w along iR+. Thus the function

G(z) :=
1−Θ(z)

2πi

∫
1

t− z
g(t)dµ(t)

can be represented as G(z) = Sc(z)h(z) for some nonzero h(z) ∈ H2(C+) and
c > 0, and belongs to KΘ, where Θ(z) is the inner function corresponding to the
measure µ. Hence h ∈ N [Θ̄Sc] and we have a contradiction.

Therefore any F (z) ∈ BE has zero type. It is left to notice that

|F (λn)| ≤
√∑

m

|F (λm)|2 = ‖F‖L2(µ) < ∞,

which means that F (z) is bounded on Λ.
(ii) ⇒ (i) This is Theorem XI in [6]. For reader’s convenience, we include

de Branges’ proof. Let F (z) be a zero type entire function bounded on Λ by some
constant M > 0. For any integer n ∈ N, Fn(z) is also a zero type function.
Let µ be a nonzero measure with finite total variation whose Fourier transform

11



vanishes identically on [−a, a] for some a > 0. Then, by the proof of Lemma 2,∫
(eixt − eixz)/(t− z)dµ(t) = 0 for every x ∈ (−a, a). Define

H(z) :=
∫

Fn(t)− Fn(z)
t− z

dµ(t)

for all z ∈ C. It is clear that H(z) is an entire function of zero type. To show that
H(z) ≡ 0 it is enough to check that H(iy) → 0 as y → ±∞. This follows from

lim
y→±∞

H(iy) = lim
y→±∞

[∫
Fn(t)
t− iy

dµ(t)− Fn(iy)exy

∫
eixt

t− iy
dµ(t)

]
= 0.

Therefore, ∫
Fn(t)− Fn(z)

t− z
dµ(t) ≡ 0.

Now, ∣∣∣∣∣F (z)
(∫

dµ(t)
t− z

)1/n
∣∣∣∣∣ ≤ M

(
‖µ‖
|=z|

)1/n

,

for every non real z. Since this is true for all n ∈ N, we have that |F (z)| ≤ M for
all non real z ∈ C for which

∫
dµ(t)/(t− z) 6= 0. Since µ is a non-zero measure, by

continuity, F (z) is bounded in the whole plane. 2
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[21] Pólya, G. Jahresbericht der Deutchen Mathematiker-Vereinigung, Vol. 40 (1931), Problem

105

[22] Valiron, G. Sur la formule d’interpolation de Lagrange, Bull. Sci. Math. 49 (1925), 181-192,
203-224

Texas A&M University, Department of Mathematics, College Station, TX 77843,

USA
E-mail address: mmitkov@math.tamu.edu

Texas A&M University, Department of Mathematics, College Station, TX 77843,

USA
E-mail address: alexeip@math.tamu.edu

13


