
ENTIRE FUNCTIONS AND COMPLETENESS
PROBLEMS

A. POLTORATSKI

Lecture 9

Short proofs for classical gap theorems.

The proof of the gap theorem presented in the last lecture is too long
and technical to include in this course. To give the reader some taste
of the proofs, in this lecture we discuss classical theorems by Krein,
Levinson and McKean, Beurling and de Branges on the same subject.

We first formulate an auxiliary statement, theorem 1 below, and give
it a short elementary proof. We then show how to deduce the classical
results from theorem 1, thus giving simple proofs to those theorems
as well. Instead of deducing the classical theorems from each other
we prefer to give each a direct closed proof through theorem 1, which
itself could be considered an equivalent reformulation of de Branges’
theorem 5 below.

In our estimates we write a(n) . b(n) if a(n) < Cb(n) for some positive
constant C, not depending on n, and large enough |n|. Similarly, we
write a(n) � b(n) if ca(n) < b(n) < Ca(n) for some C ≥ c > 0. Some
formulas will have other parameters in place of n or no parameters at
all.

Recall that a sequence of disjoint intervals {In} on the real line is long
(in the sense of Beurling and Malliavin) if∑

n

|In|2

1 + dist2(0, In)
=∞ (0.1)

where |In| stands for the length of In. If the sum is finite we call {In}
short.

If I is an interval on R and C > 0 we denote by CI the interval with
the same center as I of length C|I|.
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Theorem 1. Let µ be a finite measure on R whose Fourier transform
vanishes on an interval. Suppose that there exists a sequence of disjoint
intervals {In} such that

∑ |In|
1 + dist2(In, 0)

min

(
|In|, log

1

|µ|(In)

)
=∞. (0.2)

Then µ ≡ 0.

Roughly speaking, the formula in 0.2 and the conclusion of the theorem
say that if µ decays fast along a large sequence of intervals, then it
cannot have a spectral gap (unless it is identically zero). In a sense,
this is a hybrid of a theorem by Beruling, which says that a measure
with a spectral gap may not vanish on a large sequence of intervals,
and a theorem by Levinson, which says that such a measure may not
decay fast along the whole line (see below).

The proof borrows an idea from the proof of Beurling’s gap theorem
by Benedicks in [1].

Proof. Without loss of generality |In| > 1 for all n, because the sum
in (0.2) taken over all intervals of length less than 1 is finite. Suppose
that µ̂ vanishes on [−a, a]. Then, once again, its Cauchy integral Kµ
is divisible by eiaz in C+, in the sense that

Kµ = eiazKν,

where ν is a finite measure, ν = e−iazµ, see for instance lemma 2 in [8]
that was already discussed in previous lectures.

Denote by Jn the interval on R + i:

Jn =

{
z | =z = 1, <z ∈ 1

2
In

}
.

Denote by µn the restriction of µ on In and put ηn = µ − µn. Notice
that Kηn(z) is holomorphic in (C \ R) ∪ In. Hence − log |Kηn(z)| is
superharmonic in {|z − ξ| 6 |In|/4} for any ξ ∈ Jn. Since

− log |Kµ(z)| = − log |Kν(z)| − log |eiaz| & a|In|

in the half-plane

{=z > |In|/8},
we obtain

− log |Kηn(ξ)| > − 1

2π

∫ 2π

0

log

∣∣∣∣Kηn(ξ +
|In|
4
eiφ
)∣∣∣∣ dφ =



ENTIRE FUNCTIONS AND COMPLETENESS PROBLEMS 3

− 1

2π

∫ 2π

0

log

∣∣∣∣Kµ(ξ +
|In|
4
eiφ
)
−Kµn

(
ξ +
|In|
4
eiφ
)∣∣∣∣ dφ &

min

(
a|In|,− log

|µ|(In)

|In|

)
for any ξ ∈ Jn. On the other hand,

|Kµ(ξ)| = |Kηn(ξ) +Kµn(ξ)| 6 |Kηn(ξ)|+ |µ|(In)|
and

− log |Kµ(ξ)| & min(|In|,− log
|µ|(In)

|In|
,− log |µn|(In)) &

min(|In|,− log |µ|(In))

(recall that |In| > 1|).
Now (0.2) implies that log |Kµ| is not Poisson-summable on the line
{=z = 1}. But any Cauchy integral of a non-zero measure must have
a Poisson-summable logarithm on any horizontal line in C+, unless it
is identically zero in C+, see for instance [5]. Similarly, it is zero in C−.
If Kµ is zero in both half-planes, µ ≡ 0.

�

Now assume that the compliment of suppµ is long. Then the compli-
ment can be taken as {In} in (0.2). We obtain

Theorem 2 (Beurling’s Gap Theorem [2]). If µ is a finite measure sup-
ported on a set with long gaps and the Fourier transform of µ vanishes
on an interval, then µ ≡ 0.

If instead of having porous support µ decays too fast at infinity, one
can arrive at the same conclusion:

Theorem 3 (Levinson, [7]). Let µ be a finite measure on R whose
Fourier transform vanishes on an interval. Denote

M(x) = |µ|((x,∞)).

If logM is not Poisson-summable on R+ then µ ≡ 0.

Proof. Suppose that logM is not Poisson-summable on R+. Without
loss of generality, M(0) = 1. Let 0 = a0 < a1 < a2 < ... be the points
such thatM(an) = 2−n and denote by In = (an, an+1] the corresponding
partition of R+. If ∑ n|In|

1 + dist2(In, 0)
<∞

then logM is Poisson-summable and we have a contradiction.
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If the last sum is infinite, but but the sum in 0.2 is finite, i.e. the
partition In is short, then any long sup-partition of In will satisfy (0.2).
If the last sum is infinite and In is long, then (0.2) is satisfied. �

Levinson’s result above was later improved by Beurling [2] who showed
that an interval can be replaced with a set of positive Lebesgue mea-
sure.

Recall the following definition given in previous lectures. If µ is a finite
positive measure on R we define

Gp
µ = sup{ a | ∃ f ∈ Lp(µ),

∫
f(x)e2πiλxdµ(x) = 0,∀ λ ∈ [0, a] }.

For p = 2, Gp
µ is equal to Tµ, the exponential type of µ, the infimum

of a, such that the family of exponentials with frequencies from [0, a]
is complete in L2(µ).

Our next corollary combines results by Krein (part I, p = 2) and by
Levinson and McKean (part II, p = 2).

Theorem 4 (Krein [6], Levinson-McKean [4]). Let µ be a finite mea-
sure on R, µ = w(x)dx where w(x) > 0. Then

I) If logw is Poisson-summable then for any 1 6 p 6∞, Gp
µ =∞.

II) If logw is monotone and Poisson-unsummable on a half-axis
(−∞, x) or (x,∞) for some x ∈ R then for any 1 < p 6∞, Gp

µ = 0.

Proof. If logw is Poisson-summable, denote by W (z) the outer function
in C+ satisfying |W | = w on R. Then for any a > 0 the measure
eiaxW (x)dx annihilates all exponentials with frequencies from [0, a).

It is left to show that if logw is Poisson-unsummable and monotone on
a half-axis then Gp

µ = 0 for all p > 1. Without loss of generality, the
half-axis is R+. Since for any f ∈ Lp(µ), p > 1, log(fw) is unsummable
as well, we will simply assume that the Fourier transform of µ itself
vanishes on an interval and arrive at a contradiction.

Choose real points a0 = 0 < a1 < ... < an < ... in the following
way. Put a0 = 0. After an, n > 0 is chosen, choose an+1 to be the
number such that an+1 − an = − log µ((an, an+1)). Note that such a
number always exists except in the trivial case when the support of µ
is bounded, see exercises.

Notice that if {In} is long we are done by theorem 1. It is left to show
that since logw is Poisson-unsummable and w is monotone, In cannot
be short. We leave this part to the reader as an elementary exercise.

�
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Several of the statements above are also implied by the following the-
orem of de Branges:

Theorem 5 (de Branges, theorem 63 [3]). Let K(x) be a continuous
function on R such that K(x) > 1, logK is uniformly continuous and
Poisson-unsummable. Then there is no nonzero finite measure µ on R
such that ∫ ∞

−∞
Kd|µ| <∞ (0.3)

and µ̂ vanishes on an interval.

Proof. Without loss of generality K > 2 and K is Poisson-unsummable
on R+. Choose points a0, a1, ... on R+ in the following way. Put a0 = 0.
After an−1 is chosen, choose an to be the smallest point greater than
an−1 such that

logK(an) 6∈
(

logK(an−1)

2
, 2 logK(an−1)

)
.

Note that such an always exists because K is unbounded on any ray
[x,∞). Denote by L the step function, minorating logK defined as

L(x) = Ln = min
In

logK

on each In = (an−1, an]. Notice that by the choice of {In}, logL �
logK. In particular, logL is Poisson-unsummable. By (0.3), µ(In) .
1/Ln. Also, because of uniform continuity of logK, logLn . |In|.
Hence the sum in (0.2) is minorated by∑ |In| logLn

1 + dist2(In, 0)
&
∫

logL(x)
dx

1 + x2
=∞.

�

Theorem 1 has the following partial inverse.

Proposition 1. Let µ = w(x)dx be an absolutely continuous finite
measure with w > 0 and log |w| absolutely continuous. Suppose that the
sequence of intervals In satisfying (0.2) does not exist. Then G∞µ =∞.

Proof. Similarly to the last proof, it is not difficult to show that log |w|
is Poisson-summable. After that for any C > 0 consider the measure
uµ with

u = eiCxF/w,

where F is the outer function in the upper half-plane satisfying |F | =
w. �
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Exercises.

1) Without using any of the theorems of the last two lectures, prove
that if µ has bounded support (from below or from above) and its
Fourier transform vanishes on an interval, then µ ≡ 0. In a sense,
Beurling’s and Levinson’s theorems above generalize this statement.

2) Show that if µ has a spectral gap (a gap in the support of its Fourirer
transform) then it annihilates polynomials. Give an example of a mea-
sure that annihilates polynomials but does not have a spectral gap.

3) Show that the second statement of theorem 4 needs the restriction
that logw is not monotone.

4) Show that the condition that logK is uniformly continuous cannot
be dropped from the statement of theorem 5.

5) Finish the proof of theorem 4.
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