ENTIRE FUNCTIONS AND COMPLETENESS PROBLEMS

A. POLTORATSKI

Lecture 8

Out of the three classical completeness problems formulated in the first lecture it remains to discuss the Type Problem. A solution to the Type Problem was recently found in [21] and we plan to present it in our lectures. As it turns out, to approach the Type Problem one needs first to treat another well-known problem of Fourier Analysis, the so-called Gap Problem, which we will consider in this lecture.

First, let us recall the statement of the Type Problem. We consider the family \mathcal{E}_{Λ} of $\operatorname{exponential~functions~} \exp (2 \pi i \lambda t)$ on \mathbb{R} whose frequencies λ belong to a certain set $\Lambda \subset \mathbb{C}$:

$$
\mathcal{E}_{\Lambda}=\{\exp (2 \pi i \lambda t) \mid \lambda \in \Lambda\} .
$$

In particular, we denote by $\mathcal{E}_{a}=\mathcal{E}_{[0, a]}$ the family of exponential functions whose frequencies belong to the interval from 0 to a. If μ is a finite positive measure on \mathbb{R} we denote by T_{μ} its exponential type that is defined as

$$
\begin{equation*}
T_{\mu}=\inf \left\{a>0 \mid \mathcal{E}_{a} \text { is complete in } L^{2}(\mu)\right\} \tag{0.1}
\end{equation*}
$$

if the set of such a is non-empty and as infinity otherwise. The type problem asks to calculate T_{μ} in terms of μ. Various reformulations of this problem appear in many fields of analysis. We discussed some of such connections in the first lecture. For more information see $[3,21,1]$.

General case $p \neq 2$.
The family \mathcal{E}_{a} is incomplete in $L^{2}(\mu)$ if and only if there exists a function $f \in L^{2}(\mu)$ orthogonal to all elements of \mathcal{E}_{a}. Expanding to other $1 \leqslant$ $p \leqslant \infty$ we define

$$
\begin{equation*}
\mathbf{G}_{\mu}^{p}=\sup \left\{a \mid \exists f \in L^{p}(\mu), \int f(x) e^{2 \pi i \lambda x} d \mu(x)=0, \forall \lambda \in[0, a]\right\} \tag{0.2}
\end{equation*}
$$

We put $\mathbf{G}_{\mu}^{p}=0$ if the set in (0.2) is empty. By duality, for $1<p \leqslant \infty$, G_{μ}^{p} can still be defined as the infimum of a such that \mathcal{E}_{a} is complete in $L^{q}(\mu), \frac{1}{p}+\frac{1}{q}=1$. In particular, $\mathbf{G}_{\mu}^{2}=T_{\mu}$. The cases $p \neq 2$ were considered in several papers, see for instance articles by Koosis [9] or Levin [14] for the case $p=\infty$ or [20] for $p=1$.

Since μ is a finite measure we have

$$
\begin{equation*}
\mathbf{G}_{\mu}^{p} \leqslant \mathbf{G}_{\mu}^{q} \text { for } p \geqslant q . \tag{0.3}
\end{equation*}
$$

Apart from this obvious observation, the problems of finding \mathbf{G}_{μ}^{p} for different p were generally considered non-equivalent until recently! One of the consequences of the main result of [21] is that, in some sense, there are only two significantly different cases, $p=1$ (the gap problem) and $1<p \leqslant \infty$ (the general type problem).

The Gap Problem.

Not only is the case $p=1$ important and interesting by itself, but, as was mentioned before, it seems to be a necessary step towards a solution for the Type Problem, $p=2$. Let us start with the following reformulation of the Gap Problem.
Let X be a closed subset of the real line. Denote

$$
\mathbf{G}_{X}=\sup \{a \mid \exists \mu \neq 0, \operatorname{supp} \mu \subset X, \hat{\mu}=0 \text { on }[0, a]\} .
$$

Here and in the rest of the paper $\hat{\mu}$ denotes the (inverse) Fourier transform of a finite measure μ on \mathbb{R} :

$$
\hat{\mu}(z)=\int_{\mathbb{R}} e^{2 \pi i z t} d \mu(t)
$$

As was shown in [20], for any finite measure μ on $\mathbb{R}, \mathbf{G}_{\mu}^{1}$, as defined in the previous section, depends only on its support:

$$
\mathbf{G}_{\mu}^{1}=\mathbf{G}_{X}, X=\operatorname{supp} \mu
$$

This property separates the gap problem from all the cases $p>1$. (See exercises.)

For a long time both the gap problem and the type problem were considered by experts to be "transcendental," i.e. not having a closed form solution. Following an approach developed in [16] and [17], a solution to the gap problem was recently suggested in [20], see below.

Classic examples.

As before, we say that a function f on \mathbb{R} is Poisson-summable if it is summable with respect to the Poisson measure Π,

$$
d \Pi=d x /\left(1+x^{2}\right)
$$

We say that a sequence of real numbers $A=\left\{a_{n}\right\}$ is discrete if it does not have finite accumulation points. We always assume that a discrete sequence is enumerated in the natural increasing order: $a_{n} \geqslant a_{n-1}$. Since the sequences considered here have $\pm \infty$ as their density points, the indices run over \mathbb{Z}. In most of our statements and definitions, the sequences do not have multiple points. We call a discrete sequence $\left\{a_{n}\right\} \subset \mathbb{R}$ separated if $\left|a_{n}-a_{k}\right|>c$ for some $c>0$ and any $n \neq k$.
The following statement combines results by Krein (part I in the statement below, case $p=2$) and by Levinson and McKean (part II, $p=2$).

Theorem 1 (Krein [10], Levinson-McKean [4]). Let μ be a finite measure on $\mathbb{R}, \mu=w(x) d x$, where $w(x) \geqslant 0$. Then
I) If $\log w$ is Poisson-summable then for any $1 \leqslant p \leqslant \infty, \mathbf{G}_{\mu}^{p}=\infty$.
II) If $\log w$ is monotone and Poisson-unsummable on a half-axis $(-\infty, x)$ or (x, ∞) for some $x \in \mathbb{R}$ then for any $1<p \leqslant \infty, \mathbf{G}_{\mu}^{p}=0$.
(See Exercises.)
A theorem by Duffin and Schaeffer [5] implies that if μ is a measure such that for any $x \in \mathbb{R}$

$$
\mu([x-L, x+L])>d
$$

for some $L, d>0$ then $\mathbf{G}_{\mu}^{2} \geqslant 1 / L$.
For discrete measures, in the case supp $\mu=\mathbb{Z}$, a deep result by Koosis shows an analogue of Krein's result: if $\mu=\sum w(n) \delta_{n}$, where

$$
\sum \frac{\log w(n)}{1+n^{2}}>-\infty
$$

then $\mathbf{G}_{\mu}^{p}=1$ for all $p, 1 \leqslant p \leqslant \infty[9]$. Not much was known about supports other than \mathbb{Z} besides a recent result from [18], which implies that if

$$
\mu=\sum \frac{\delta_{a_{n}}}{1+a_{n}^{2}}
$$

for a separated sequence $A=\left\{a_{n}\right\} \subset \mathbb{R}$ then $\mathbf{G}_{\mu}^{p}=D_{*}(A)$, where D_{*} is the interior Beurling-Malliavin density of A, see lecture 2 for the definition.

In addition to these few examples, classical theorems by LevinsonMcKean, Beurling and de Branges show that if a measure has long gaps in its support or decays too fast, then $\mathbf{G}_{\mu}^{p}=0$. We will discuss these theorems in our next lecture. Examples of measures of positive type can be constructed using the results by Benedicks [2]. The most significant recent development, that allows one to modify existing examples, is the result by Borichev and Sodin [1], which says that "exponentially small" changes in weight or support do not change the type of a measure.

The gap problem and d-uniform sequences.

It is not difficult to calculate the gap characteristic of an arithmetic progression $\Lambda=a+d n, a \in \mathbb{R}, d>0: \mathbf{G}_{\Lambda}=1 / d$, see exercises. It follows that if X contains an arithmetic progression Λ then $\mathbf{G}_{X} \geq$ $1 / d$. It would be nice if \mathbf{G}_{X} for a general X could be calculated as a supremum of such numbers $1 / d$ taken over all arithmetic progressions contained in X. Unfortunately, this is not the case. However, as it turns out, this simple idea is the right step towards a solution. We just need to replace arithmetic progressions with a slightly larger class of sequences, the d-uniform sequences defined in this section.
Let $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a finite set of distinct points on \mathbb{R}. Define

$$
\begin{equation*}
E(\Lambda)=\sum_{\lambda_{k}, \lambda_{j} \in \Lambda, k \neq j} \log \left|\lambda_{k}-\lambda_{j}\right| \tag{0.4}
\end{equation*}
$$

According to the 2D Coulomb law, the quantity $E(\Lambda)$ can be interpreted as potential energy of the system of "flat electrons" placed at Λ, see [20]. That observation motivates the term we use for the condition (0.7) below.

The following example is included to illustrate our next definition.

Key example:

Let $I \subset \mathbb{R}$ be an interval and let $\Lambda=d^{-1} \mathbb{Z} \cap I$ for some $d>0$. Then

$$
\Delta=\# \Lambda=d|I|+O(1)
$$

and
$E=E(\Lambda)=\sum_{1 \leqslant m \leqslant \Delta} \log \left[d^{-\Delta+1}(m-1)!(\Delta-m)!\right]=\Delta^{2} \log |I|+O\left(|I|^{2}\right)$
as follows from Stirling's formula. Here the notation $O(\cdot)$ corresponds to the direction $|I| \rightarrow \infty$.

Remark 1. The uniform distribution of points on the interval does not maximize the energy $E(\Lambda)$ but comes within $O\left(|I|^{2}\right)$ from the maximum, which is negligible for our purposes, see the main definition and its discussion below. It is interesting to observe that the maximal energy for k points is achieved when the points are placed at the endpoints of I and the zeros of the Jacobi (1,1)-polynomial of degree $k-2$, see for example [12].

Let

$$
\ldots<a_{-2}<a_{-1}<a_{0}=0<a_{1}<a_{2}<\ldots
$$

be a discrete sequence of real points. We say that the intervals $I_{n}=$ $\left(a_{n}, a_{n+1}\right]$ form a short partition of \mathbb{R} if $\left|I_{n}\right| \rightarrow \infty$ as $n \rightarrow \pm \infty$ and the sequence $\left\{I_{n}\right\}$ is short (in the sense of Beurling and Malliavin, as was defined in lecture 2).

Main Definition:

Let $\Lambda=\left\{\lambda_{n}\right\}$ be a discrete sequence of real points. We say that Λ is d-uniform if there exists a short partition $\left\{I_{n}\right\}$ such that

$$
\begin{equation*}
\Delta_{n}=d\left|I_{n}\right|+o\left(\left|I_{n}\right|\right) \text { for all } n \text { (density condition) } \tag{0.6}
\end{equation*}
$$

as $n \rightarrow \pm \infty$ and

$$
\begin{equation*}
\sum_{n} \frac{\Delta_{n}^{2} \log \left|I_{n}\right|-E_{n}}{1+\operatorname{dist}^{2}\left(0, I_{n}\right)}<\infty \quad \text { (energy condition) } \tag{0.7}
\end{equation*}
$$

where Δ_{n} and E_{n} are defined as

$$
\Delta_{n}=\#\left(\Lambda \cap I_{n}\right) \quad \text { and } \quad E_{n}=E\left(\Lambda \cap I_{n}\right)=\sum_{\lambda_{k}, \lambda_{l} \in I_{n}, \lambda_{k} \neq \lambda_{l}} \log \left|\lambda_{k}-\lambda_{l}\right|
$$

Remark 2. Note that the series in the energy condition is positive: every term in the sum defining E_{n} is at most $\log \left|I_{n}\right|$ and there are less than Δ_{n}^{2} terms.
As follows from the example above, the first term in the numerator of (0.7) is approximately equal to the energy of Δ_{n} electrons spread uniformly over I_{n}. The second term is the energy of electrons placed at $\Lambda \cap I_{n}$. Thus the energy condition is a requirement that the placement of the points of Λ is close to uniform, in the sense that the work needed to spread the points of Λ uniformly on each interval is summable with respect to the Poisson weight. For a more detailed discussion of this definition see [20]

In [20], d-uniform sequences were used to solve the gap problem mentioned in the introduction. Recall that with any closed $X \subset \mathbb{R}$ one can associate its (spectral) gap characteristic \mathbf{G}_{X} defined as the supremum of the size of the spectral gap taken over all finite non-zero measures supported on X. The main result of [20] is the following statement:

Theorem 2. [20] Let X be a closed set on \mathbb{R}. Then

$$
\mathbf{G}_{X}=\sup \{d \mid X \text { contains a } d-\text { uniform sequence }\} .
$$

Recall that, as was proved in [20], $\mathbf{G}_{X}=\mathbf{G}_{\mu}^{1}$ for any μ such that supp $\mu=X$.

Remark 3.

- If Λ is a d-uniform sequence then $D_{*}(\Lambda)=d$, as follows easily from the density condition (0.6).
- Among other things, the energy condition ensures that the points of Λ are not too close to each other. In particular, if Λ is d uniform for some $d>0$ and $\Lambda^{\prime}=\left\{\lambda_{n_{k}}\right\}$ is a subsequence such that for all k,

$$
\lambda_{n_{k}+1}-\lambda_{n_{k}} \leqslant e^{-c\left|\lambda_{n_{k}}\right|}
$$

for some $c>0$, then $D_{*}\left(\Lambda^{\prime}\right)=0$.

- An exponentially small perturbation of a d-uniform sequence contains a d-uniform subsequence. More precisely, if $c>0$ and Λ is a d-uniform sequence then any sequence $A=\left\{\alpha_{n}\right\}$ such that $\left|\lambda_{n}-\alpha_{n}\right| \leqslant e^{-c\left|\lambda_{n}\right|}$ contains a d-uniform subsequence A^{\prime} consisting of all $\alpha_{n_{k}}$ such that

$$
\lambda_{n_{k}+1}-\lambda_{n_{k}} \geqslant e^{-(c-\varepsilon)\left|\lambda_{n_{k}}\right|}
$$

- As discussed in [20], the energy condition always holds for separated sequences. If Λ is separated then it is d-uniform if and only if $D_{*}(\Lambda)=d$.

Exercises.

1) Show that

$$
\mathbf{G}_{\mu}^{1}=\mathbf{G}_{X}, \quad X=\operatorname{supp} \mu
$$

(This is proposition 1 in [20].)
2) Prove the statements in the last remark.
3) The following statement connects the size of the spectral gap of a measure with the asymptotic behavior of its Cauchy integral. It is
similar to the lemma in the last lecture on the measures that annihilate polynomials:

Lemma 1. Let μ be a measure with finite total variation. Then the Fourier transform of μ vanishes on $[-a, a]$ if and only if

$$
\lim _{y \rightarrow \pm \infty} e^{x y} \int \frac{d \mu(t)}{t-i y}=0
$$

for every $x \in[-a, a]$.
Try to prove this statement. (This is lemma 2 in [18].)
4) Show that $\mathbf{G}_{\mathbb{Z}}=1$. (Hint: show that $\csc (\pi z)$ is a Schwarz integral of a Poisson-finite measure. Make an adjustment to obtain a Cauchy integral and use the last exercise.) Obtain the formula for \mathbf{G}_{Λ}, where Λ is an arithmetic progression.
5) Prove the classical result by Krein [10] which says that if $d \mu=$ $w(x) d x$ and $\log w$ is Poisson-summable then $\mathbf{G}_{\mu}^{p}=\infty$ for all $p, 1 \leqslant$ $p \leqslant \infty$. (Hint: consider the outer function $W=e^{\mathcal{S} w}$, where $\mathcal{S} w$ denotes the Schwarz integral defined in lecture 3. Then for any $a>0$ the measure $e^{2 \pi a i z} W d x$ annihilates the family of exponentials \mathcal{E}_{a}.)

References

[1] Borichev, A., Sodin, M. Weighted exponential approximation and nonclassical orthogonal spectral measures, to appear in Adv. of Math, arXiv:1004.1795v1
[2] Benedicks, M. The support of functions and distributions with a spectral gap, Math. Scand., 55 (1984), 285-309
[3] Dym, H. On the span of trigonometric sums in weighted L^{2} spaces, Linear and Complex Analysis Problem Book 3, Part II, Lecture Notes in Math., Springer, 1994, 87 - 88
[4] Dym H, McKean H.P. Gaussian processes, function theory and the inverse spectral problem
[5] Duffin, R., Schaeffer, A. Power series with bounded coefficients, American Journal of Mathematics, 67 (1945), 141-154. Academic Press, New York, 1976
[6] Garnett, J. Bounded analytic functions. Academic Press, New York, 1981
[7] Koosis, P. The logarithmic integral, Vol. I \& II. Cambridge Univ. Press, Cambridge, 1988
[8] Koosis, P. Introduction to H^{p} spaces. Cambridge Univ. Press, Cambridge, 1980
[9] Koosis, P. A local estimate, involving the least superharmonic majorant, for entire functions of exponential type, Algebra i Analiz 10 (1998), 45-64; English translation in St. Petersburg Math. J. 10 (1999), no. 3, 441-455.
[10] Krein, M. G. On an extrapolation problem of A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 46 (1945), 306-309 (Russian).
[11] Krein, M. G. On a basic approximation problem of the theory of extrapolation and filtration of stationary random processes, Doklady Akad. Nauk SSSR (N.S.) 94, (1954), 13-16 (Russian).
[12] Kerov, S. V. Equilibrium and orthogonal polynomials, Algebra i Analiz, 12:6 (2000), 224237
[13] Levin, B. Lectures on entire functions AMS, Providence, RI, 1996
[14] Levin, B. Completeness of systems of functions, quasi-analyticity and subharmonic majorants (Russian), Issled. Linein. Oper. Teorii Funktsii, 17, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 170 (1989), 102156; English translation in J. Soviet Math., 63 (1993), no. 2, 171-201.
[15] Levinson, N. Gap and density theorems, AMS Colloquium Publications, 26 (1940)
[16] Makarov, N., Poltoratski, A. Meromorphic inner functions, Toeplitz kernels, and the uncertainty principle, in Perspectives in Analysis, Springer Verlag, Berlin, 2005, 185-252
[17] Makarov, N., Poltoratski, A. Beurling-Malliavin theory for Toeplitz kernels, Invent. Math., Vol. 180, Issue 3 (2010), 443-480
[18] Mitkovski, M. and Poltoratski, A. Polya sequences, Toeplitz kernels and gap theorems, Advances in Math., 224 (2010), pp. 1057-1070
[19] Nienhuis, B. Coulomb gas formulation of two-dimensional phase transitions, Phase transitions and critical phenomena, vol. 11, C. Domb and J.L. Lebowitz, eds. (Academic, 1987.)
[20] Poltoratski, A. Spectral gaps for sets and measures, Acta Math., 2012, Volume 208, Number 1, pp. 151-209.
[21] Poltoratski, A. A problem on completeness of exponentials, to appear in Annals of Math., arXiv:1006.1840

