ENTIRE FUNCTIONS AND COMPLETENESS
PROBLEMS

A. POLTORATSKI

Lecture 8

Out of the three classical completeness problems formulated in the
first lecture it remains to discuss the Type Problem. A solution to
the Type Problem was recently found in [21] and we plan to present
it in our lectures. As it turns out, to approach the Type Problem one
needs first to treat another well-known problem of Fourier Analysis,
the so-called Gap Problem, which we will consider in this lecture.

First, let us recall the statement of the Type Problem. We consider the
family €, of exponential functions exp(2wiAt) on R whose frequencies
A belong to a certain set A C C:

En = {exp(2miAt)| A € A}.

In particular, we denote by &, = £ 4 the family of exponential func-
tions whose frequencies belong to the interval from 0 to a. If u is a
finite positive measure on R we denote by 7}, its exponential type that
is defined as

T, =inf{ a >0 | &, is complete in L*(uz) } (0.1)

if the set of such a is non-empty and as infinity otherwise. The type
problem asks to calculate 7}, in terms of u. Various reformulations of
this problem appear in many fields of analysis. We discussed some of
such connections in the first lecture. For more information see [3, 21, 1].

General case p # 2.

The family &, is incomplete in L?(u) if and only if there exists a function
f € L?(u) orthogonal to all elements of &,. Expanding to other 1 <
p < oo we define

Gl =sup{a|3I fe Lp(u),/f(a:)e%i)‘xdu(x) =0,V A€ 0,a] }.

(0.2)
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We put GE = 0 if the set in (0.2) is empty. By duality, for 1 < p < oo,
GI, can still be defined as the infimum of a such that &, is complete
in L9(u), ]l) + % = 1. In particular, G} = T,. The cases p # 2 were
considered in several papers, see for instance articles by Koosis [9] or
Levin [14] for the case p = oo or [20] for p = 1.

Since p is a finite measure we have
Gl < GY for p > q. (0.3)

Apart from this obvious observation, the problems of finding G, for
different p were generally considered non-equivalent until recently! One
of the consequences of the main result of [21] is that, in some sense,
there are only two significantly different cases, p = 1 (the gap problem)
and 1 < p < oo (the general type problem).

The Gap Problem.

Not only is the case p = 1 important and interesting by itself, but,
as was mentioned before, it seems to be a necessary step towards a
solution for the Type Problem, p = 2. Let us start with the following
reformulation of the Gap Problem.

Let X be a closed subset of the real line. Denote
Gx =sup{a|Ipu#0, supppuC X,i2=0on [0,d }.

Here and in the rest of the paper [i denotes the (inverse) Fourier trans-
form of a finite measure p on R:

i) = [ e aute),

As was shown in [20], for any finite measure p on R, G}H as defined in
the previous section, depends only on its support:

Gi = Gy, X =supppu.
This property separates the gap problem from all the cases p > 1. (See

exercises.)

For a long time both the gap problem and the type problem were
considered by experts to be "transcendental,” i.e. not having a closed
form solution. Following an approach developed in [16] and [17], a
solution to the gap problem was recently suggested in [20], see below.
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Classic examples.

As before, we say that a function f on R is Poisson-summable if it is
summable with respect to the Poisson measure II,

dll = dx /(1 + 2?).

We say that a sequence of real numbers A = {a,} is discrete if it does
not have finite accumulation points. We always assume that a discrete
sequence is enumerated in the natural increasing order: a, > a,_1.
Since the sequences considered here have +o0o as their density points,
the indices run over Z. In most of our statements and definitions, the
sequences do not have multiple points. We call a discrete sequence
{a,} C R separated if |a, — ax| > ¢ for some ¢ > 0 and any n # k.

The following statement combines results by Krein (part I in the state-
ment below, case p = 2) and by Levinson and McKean (part II, p = 2).

Theorem 1 (Krein [10], Levinson-McKean [4]). Let u be a finite mea-
sure on R, p = w(z)dz, where w(x) = 0. Then

I) If logw is Poisson-summable then for any 1 < p < oo, Gl = oo.

II) Iflog w is monotone and Poisson-unsummable on a half-azxis (—oo, x)
or (x,00) for some x € R then for any 1 < p < oo, GE = 0.

(See Exercises.)

A theorem by Duffin and Schaeffer [5] implies that if p is a measure
such that for any z € R

p(lx — L,z + L)) >d
for some L,d > 0 then G2 > 1/L.

For discrete measures, in the case supp u = Z, a deep result by Koosis
shows an analogue of Krein’s result: if y = > w(n)d,, where

logw(n)
Z 1_|_n2 > —090,

then GE =1 for all p, 1 < p < oo [9]. Not much was known about
supports other than Z besides a recent result from [18], which implies

that if 5
"= Z 1+a2
for a separated sequence A = {a,} C R then G = D.(A), where D,

is the interior Beurling-Malliavin density of A, see lecture 2 for the
definition.
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In addition to these few examples, classical theorems by Levinson-
McKean, Beurling and de Branges show that if a measure has long gaps
in its support or decays too fast, then G = 0. We will discuss these
theorems in our next lecture. Examples of measures of positive type can
be constructed using the results by Benedicks [2]. The most significant
recent development, that allows one to modify existing examples, is the
result by Borichev and Sodin [1], which says that ”exponentially small”
changes in weight or support do not change the type of a measure.

The gap problem and d-uniform sequences.

It is not difficult to calculate the gap characteristic of an arithmetic
progression A = a+dn, a € R, d > 0: G = 1/d, see exercises.
It follows that if X contains an arithmetic progression A then Gy >
1/d. It would be nice if Gx for a general X could be calculated as a
supremum of such numbers 1/d taken over all arithmetic progressions
contained in X. Unfortunately, this is not the case. However, as it
turns out, this simple idea is the right step towards a solution. We just
need to replace arithmetic progressions with a slightly larger class of
sequences, the d-uniform sequences defined in this section.

Let A = {A1,..., A\, } be a finite set of distinct points on R. Define

E(A) = > log|h— Al (0.4)
AeAjEN, ki
According to the 2D Coulomb law, the quantity E(A) can be inter-
preted as potential energy of the system of "flat electrons” placed at
A, see [20]. That observation motivates the term we use for the condi-
tion (0.7) below.

The following example is included to illustrate our next definition.

Key example:
Let I C R be an interval and let A = d*Z NI for some d > 0. Then
A=#A=d|I|+0(1)
and
E=EM) = Y log[d*"(m—1)A-m)!| = Alog|I|+O(|I])
1<m<A

(0.5)
as follows from Stirling’s formula. Here the notation O(-) corresponds
to the direction |I| — oc.
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Remark 1. The uniform distribution of points on the interval does not
mazximize the energy E(N) but comes within O(|I)?) from the mazimum,
which is negligible for our purposes, see the main definition and its
discussion below. It is interesting to observe that the mazximal energy
for k points is achieved when the points are placed at the endpoints of
I and the zeros of the Jacobi (1,1)-polynomial of degree k — 2, see for
example [12].

Let
<asgs<a1<ag=0<a; <ay < ..

be a discrete sequence of real points. We say that the intervals I,, =
(@p, any1] form a short partition of R if |I,| — oo as n — +oo and the
sequence {I,} is short (in the sense of Beurling and Malliavin, as was
defined in lecture 2).

Main Definition:

Let A = {\,} be a discrete sequence of real points. We say that A is
d-uniform if there exists a short partition {I,} such that

A, =d|I,|+ o(|I,]) forall n (density condition) (0.6)

as n — +oo and

3 Allogl|l,| — E,

< oo (energy condition 0.7
1+ dist2(0, 1, (energy ) (0.7)

n

where A,, and F,, are defined as

Ap=#(ANI) and E,=EANL)= >  logh— A\l

Ay M E€In, A#EN

Remark 2. Note that the series in the energy condition is positive:
every term in the sum defining E, is at most log|I,| and there are less
than A? terms.

As follows from the example above, the first term in the numerator
of (0.7) is approximately equal to the energy of A, electrons spread
uniformly over I,,. The second term is the energy of electrons placed at
ANT,. Thus the energy condition is a requirement that the placement
of the points of A is close to uniform, in the sense that the work needed
to spread the points of A uniformly on each interval is summable with
respect to the Poisson weight. For a more detailed discussion of this
definition see [20]
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In [20], d-uniform sequences were used to solve the gap problem men-
tioned in the introduction. Recall that with any closed X C R one can
associate its (spectral) gap characteristic G x defined as the supremum
of the size of the spectral gap taken over all finite non-zero measures
supported on X. The main result of [20] is the following statement:

Theorem 2. [20] Let X be a closed set on R. Then

Gx =sup{ d | X contains a d — uniform sequence }.

Recall that, as was proved in [20], Gx = G}L for any p such that
supp pu = X.

Remark 3.

o If A is a d-uniform sequence then D,(A) = d, as follows easily
from the density condition (0.6).

e Among other things, the energy condition ensures that the points
of A are not too close to each other. In particular, if A is d-
uniform for some d > 0 and A" = {\,, } is a subsequence such
that for all k,

)\nk+1 - )\nk < e_c‘)\nkl

for some ¢ > 0, then D.(A") = 0.

e An exponentially small perturbation of a d-uniform sequence
contains a d-uniform subsequence. More precisely, if ¢ > 0 and
A is a d-uniform sequence then any sequence A = {a,} such
that |\, — ay| < el contains a d-uniform subsequence A’
consisting of all o, such that

Anpi1 — Any = e~ (e Ang |

e As discussed in [20], the energy condition always holds for sep-
arated sequences. If A is separated then it is d-uniform if and

only if D«(A) =d.

Exercises.

1) Show that

Gli = Gy, X =supppu.
(This is proposition 1 in [20].)
2) Prove the statements in the last remark.

3) The following statement connects the size of the spectral gap of
a measure with the asymptotic behavior of its Cauchy integral. It is
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similar to the lemma in the last lecture on the measures that annihilate
polynomials:

Lemma 1. Let y be a measure with finite total variation. Then the
Fourier transform of u vanishes on [—a,a] if and only if

lim emy/ dult) =0,

y—r+oo t—ay -

for every x € [—a,al.

Try to prove this statement. (This is lemma 2 in [18].)

4) Show that Gz = 1. (Hint: show that csc(nz) is a Schwarz integral
of a Poisson-finite measure. Make an adjustment to obtain a Cauchy
integral and use the last exercise.) Obtain the formula for G,, where
A is an arithmetic progression.

5) Prove the classical result by Krein [10] which says that if du =
w(z)dx and logw is Poisson-summable then GE = oo for all p, 1 <
p < oo. (Hint: consider the outer function W = 5% where Sw
denotes the Schwarz integral defined in lecture 3. Then for any a > 0
the measure e*™#¥ dz annihilates the family of exponentials &,.)

REFERENCES

[1] BOrICHEV, A., SODIN, M.Weighted exponential approximation and non-
classical orthogonal spectral measures, to appear in Adv. of Math,
arXiv:1004.1795v1

[2] BENEDICKS, M. The support of functions and distributions with a spectral gap,
Math. Scand., 55 (1984), 285-309

[3] Dym, H. On the span of trigonometric sums in weighted L? spaces, Linear and
Complex Analysis Problem Book 3, Part II, Lecture Notes in Math., Springer,
1994, 87 — 88

[4] Dym H, McKEAN H.P. Gaussian processes, function theory and the inverse
spectral problem

[5] DUFFIN, R., SCHAEFFER, A. Power series with bounded coefficients, American
Journal of Mathematics, 67 (1945), 141-154. Academic Press, New York, 1976

[6] GARNETT, J. Bounded analytic functions. Academic Press, New York, 1981

[7] Koosis, P. The logarithmic integral, Vol. I & II. Cambridge Univ. Press,
Cambridge, 1988

[8] Koosis, P. Introduction to HP spaces. Cambridge Univ. Press, Cambridge,
1980

[9] Koosis, P. A local estimate, involving the least superharmonic majorant, for
entire functions of exponential type, Algebra i Analiz 10 (1998), 45-64; English
translation in St. Petersburg Math. J. 10 (1999), no. 3, 441-455.

[10] KREIN, M. G. On an extrapolation problem of A. N. Kolmogorov, Dokl. Akad.
Nauk SSSR 46 (1945), 306-309 (Russian).



8

[11]

A. POLTORATSKI

KREIN, M. G. On a basic approrimation problem of the theory of extrapola-
tion and filtration of stationary random processes, Doklady Akad. Nauk SSSR
(N.S.) 94, (1954), 13-16 (Russian).

KEROV, S. V. Fquilibrium and orthogonal polynomials, Algebra i Analiz, 12:6
(2000), 224237

LEVIN, B. Lectures on entire functions AMS, Providence, RI, 1996

LevIN, B. Completeness of systems of functions, quasi-analyticity and sub-
harmonic majorants (Russian), Issled. Linein. Oper. Teorii Funktsii, 17, Zap.
Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 170 (1989), 102—
156; English translation in J. Soviet Math., 63 (1993), no. 2, 171-201.
LEVINSON, N. Gap and density theorems, AMS Colloquium Publications, 26
(1940)

MAKAROV, N., POLTORATSKI, A. Meromorphic inner functions, Toeplitz ker-
nels, and the uncertainty principle, in Perspectives in Analysis, Springer Ver-
lag, Berlin, 2005, 185-252

MAKAROV, N., POLTORATSKI, A. Beurling-Malliavin theory for Toeplitz ker-
nels, Invent. Math., Vol. 180, Issue 3 (2010), 443-480

MITKOVSKI, M. AND POLTORATSKI, A. Polya sequences, Toeplitz kernels and
gap theorems, Advances in Math., 224 (2010), pp. 1057-1070

NieNHUIS, B. Coulomb gas formulation of two-dimensional phase transitions,
Phase transitions and critical phenomena, vol. 11, C. Domb and J.L. Lebowitz,
eds. (Academic, 1987.)

PoLTORATSKI, A. Spectral gaps for sets and measures, Acta Math., 2012,
Volume 208, Number 1, pp. 151-209.

POLTORATSKI, A. A problem on completeness of exrponentials, to appear in
Annals of Math., arXiv:1006.1840



