
ENTIRE FUNCTIONS AND COMPLETENESS PROBLEMS

A. POLTORATSKI

Lecture 7

In this lecture we return to the classical problems of Harmonic Analysis
outlined in the first lecture and discuss Bernstein’s problem on weighted
polynomial approximation.

Let us recall the statement of the problem.

In this lecture we allow the weight function W to be semi-continuous from
below instead of continuous as in most classical papers and in our first
lecture. Throughout the rest of the lecture we use the following definition.

We say that a function W > 1 on R is a weight if W is lower semi-continuous
and xn = o(W ) as |x| → ∞ for any n ∈ N.

Our weights are also allowed to take infinite values at finite points on R,
which makes it possible to study approximation on subsets of the line within
the same general formulation of the problem. For instance, the classical
Weierstrass theorem answers the question of density of polynomials in CW
with W equal to 1 on an interval and infinity elsewhere. Another important
case of the problem is approximation on discrete sequences (see, for instance,
[4]), which corresponds to the weights that are infinite outside of a discrete
sequence.

With a semi-continuous and R̂-valued W (R̂ = R∪{∞}), the quantity ||f ||W ,
defined on the set of all continuous f such that f/W → 0 at ±∞ as

||f ||W = sup
R

|f |
W

(0.1)

(see the first lecture), ceases being a norm and becomes a semi-norm: the set
is no-longer complete. Those functions supported on {W =∞} will satisfy
||f ||W = 0.

The semi-norm defined by (0.1) can be made a norm following a standard
procedure. First the space of continuous functions g, such that g/W → 0 at
±∞, needs to be factorized to obtain a space of equivalence classes: f ∼ g if
and only if ||f−g||W = 0. After that the factor-space needs to be completed.
We denote by CW the resulting space.

Note that if W is continuous and takes only finite values, CW coincides with
the space of continuous functions defined in the first lecture. In the general
case, we still have the following property.
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If W is a weight we say that a measure µ on R is W -finite if∫
Wd|µ| <∞.

Proposition 1. The dual space of CW consists of W -finite measures.

Proof. Consider a sequence of continuous weights Wn such that

Wn+1(x) >Wn(x)

and Wn(x)→W (x) for any x ∈ R. Note that any bounded linear functional
µ on CW induces a linear bounded functional on CWn for any n. Because
of monotonicity, CWn ⊂ CWn+1 . Since any linear bounded functional on
CWn can be identified with a Wn-finite measure, again using monotonicity
of Wn, we conclude that µ can be identified with a W -finite measure on the
set ∪CWn . Since the last set is dense in CW (or, more precisely, the set of
equivalence classes, containing the elements from ∪CWn , is dense in CW ), µ
can be identified with a W -finite measure on the whole CW .

�

Note that in the general case of semi-continuous R̂-valued weights, when
we say that polynomials are not dense in CW that statement still means
that there exists a continuous g and ε > 0 such that g/W → 0 at ±∞
and ||g − p||W > ε for every polynomial. The crucial dual statement, that
characterizes non-completeness in the case of continuous weights, still holds
for general W : Polynomials are not dense in CW if and only if there exists
a non-zero W -finite measure that annihilates polynomials.

Here is a well-known fact in the theory. The notation Kµ stands for the
Cauchy integral of µ in C+:

Kµ(z) =

∫
dµ(x)

x− z
.

Recall that a measure µ has finite moments if xn ∈ L1(|µ|) for all n =
0, 1, 2, ... .

Lemma 1. A measure µ with finite moments annihilates polynomials if and
only if

Kµ(iy) = o(y−n)

for any n > 0 as y →∞.

Proof. Suppose that µ annihilates polynomials. Since (tn − zn)/(t− z) is a
polynomial of t for every fixed z,

0 =

∫
tn − zn

t− z
dµ(t) = [Ktnµ](z)− znKµ(z).

Since any Cauchy integral of a finite measure tends to zero along iR+, so
does Ktnµ. Hence Kµ(z) = o(z−n) as z →∞, z ∈ iR+.
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Conversely, suppose that Kµ(iy) = o(y−n) for any n > 0 as y →∞. With-
out loss of generality, µ is real (otherwise consider µ− µ̄ or i(µ+ µ̄)). Then

Kµ(−iy) = Kµ(iy) = o(y−n)

as well. Since µ has finite moments we may consider the function

H(z) =

∫
tn − zn

t− z
dµ(t).

It is easy to show that H is entire of exponential type zero. Noticing again
that

H(z) = [Ktnµ](z)− znKµ(z),

we see that H is bounded on iR. Hence H is a constant by the Phragmen-
Lindellöf principle. Since H(iy) tends to zero, H is zero. Therefore

znKµ(z) = [Ktnµ](z) =

∫
tn

t− z
dµ(t).

Putting z = 0 in the last equation we get that µ annihilates tn−1 for any
n > 0. �

Equivalence between weighted uniform and Lp-approximation

In 1924 when Bernstein published his problem the Lp-spaces did not play
the same dominating role in analysis as they do now. In later years many
approximation problems in weighted situations were replaced with problems
on Lp-approximation. Nonetheless, the original form of Bernstein’s problem
has survived all the major changes in analysis over the last 90 years and is
still used today. One of the reasons for such longevity is that it implies its
more modern Lp-reformulations!

Close connections between Lp- and weighted uniform approximation have
been known to the experts for a long time. Nevertheless, the formal result
that reduces the problem of polynomial approximation in Lp-spaces to Bern-
stein’s problem was found by A. Bakan only recently. This result allows us
to concentrate on the latter problem for the rest of the lecture.

Theorem 1. [2] Let 0 < p <∞ be a constant and let µ be a positive finite
measure on R such that Lp(µ) contains all polynomials. Polynomials are
dense in Lp(µ) if and only if µ can be represented as µ = W−pν for some
finite positive measure ν and a weight W such that polynomials are dense
in CW .

Let us point out that the weights appearing in the theorem are lower semi-
continuous. Hence, to study the Lp- and uniform versions as one problem
one needs the general definition of CW discussed in this lecture, as opposed
to its more traditional version with a continuous W . Here is a short proof
of Bakan’s result.
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Proof. If polynomials are dense in CW for some weight W such that µ =
W−pν then for any bounded continuous function f there exists a sequence
of polynomials {sn} such that sn/W converges to f/W uniformly. Then∫

|f − sn|pdµ =

∫
|f − sn|p

W p
W pdµ =

∫ ∣∣∣∣ fW − sn
W

∣∣∣∣p dν → 0.

Hence polynomials are dense in Lp(µ).

Suppose that polynomials are dense in Lp(µ). Let {fn}n∈N be a set of
bounded continuous functions on R, that is dense in any CW (see exercises).
Let {sn,k}n,k∈N be a family of polynomials such that

||fn − sn,k||Lp(µ) < 4−(n+k).

Define
W = 1 +

∑
n,k∈N

2n+k|fn − sn,k|.

Notice that then W ∈ Lp(µ), W is lower semi-continuous and sn,k/W →
fn/W uniformly as k → ∞. Without loss of generality, Lp(µ) is not finite
dimensional. Then {sn,k} contains polynomials of arbitrarily large degrees
and xn = o(W ) for any n. Thus W is a weight. Since {fn} is dense in CW ,
polynomials are dense in CW . The measure ν can be chosen as W pµ.

�

Most of the results on Bernstein’s problem belong to one of the two fol-
lowing groups. The first group, containing classical theorems by Akhiezer,
Mergelyan and Pollard as well as more recent results by Koosis, provides
conditions on W in terms of the norms of point evaluation functionals. The
second group uses the approach pioneered by de Branges (see [7] or theorem
66 in [6]) and further developed by Borichev, Sodin and Yuditski. These
results are formulated in terms of existence of entire functions belonging to
certain classes (see references given in the first lecture).

Both approaches have produced significant progress towards a full solution,
although the conditions of density remained rather implicit. Besides specific
examples, the only general explicit results in the literature are a classical
theorem by Hall [8] and a theorem on log-convex weights published by Car-
leson [5], see below.

Our goal for the rest of this lecture is to discuss an example of an explicit
result on Bernstein’s problem. We discuss a theorem recently obtained in
[12]. It is closely related to a theorem of de Branges [6] that gives an answer
in terms of zero sets of entire functions. Before we state the result we need
the following definitions.

Characteristic sequences

Recall that a real sequence is discrete if it does not have finite accumulation
points. To simplify the definitions we will always assume that a discrete
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sequence is infinite and does not have multiple points. A discrete sequence
is called one-sided if it is bounded from below or from above and two-sided
otherwise.

If Λ = {λn} is a discrete sequence we will always assume that it is enumerated
in the natural order, i.e. λn < λn+1, non-negative elements are indexed with
non-negative integers and negative elements with negative integers.

For instance, if Λ = {λn}n∈Z is a two sided sequence then

...λ−n−1 < λ−n < ... < λ−1 < 0 6 λ0 < λ1 < ...λn < λn+1 < ...

Thus a one-sided sequence bounded from below (above) will be enumerated
with n ∈ Z, n > −N (n ∈ Z, n < N), where N is the number of negative
(non-negative) elements in the sequence.

As before, we say that a sequence Λ = {λn} has upper density d if

lim sup
A→∞

#[Λ ∩ (−A,A)]

2A
= d.

If d = 0 we say that the sequence has zero density.

A discrete sequence Λ = {λn} is called balanced if the limit

lim
N→∞

∑
|n|<N

λn
1 + λ2

n

(0.2)

exists.

Observe that any even sequence (any sequence Λ satisfying −Λ = Λ) is
balanced. So is any two-sided sequence sufficiently close to even. At the
same time, a one-sided sequence has to tend to infinity fast enough to be
balanced (the series

∑
λ−1
n must converge).

Let Λ = {λn} be a balanced sequence of finite upper density. For each
n, λn ∈ Λ, put

pn =
1

2

log(1 + λ2
n) +

∑
n6=k, λk∈Λ

log
1 + λ2

k

(λk − λn)2

 ,
where the sum is understood in the sense of principle value, i.e. as

lim
N→∞

∑
0<|n−k|<N

log
1 + λ2

k

(λk − λn)2
.

We will call the sequence of such numbers P = {pn} the characteristic
sequence of Λ.

Note that for a sequence of finite upper density the last limit exists for every
n if and only if it exists for some n if and only if the sequence is balanced.

The paper [12] contains the following result on Bernstein’s problem. Recall
that per our agreement all sequences are assumed to be infinite.
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Theorem 2. Polynomials are not dense in CW if and only if there exists a
balanced sequence Λ = {λn} of zero density such that Λ and its characteristic
sequence P = {pn} satisfy∑

W (λn) exp(pn) <∞. (0.3)

The proof is not difficult but is still too long to include in this short course.
We send interested readers to [12]. In the rest of this lecture let us discuss
some implications and relations of the above result.

Examples and corollaries

This section contains further discussion of theorem 2 including its relations
with some of the known results.

A classical theorem by Hall [8] says that if∫ ∞
−∞

logW

1 + x2
dx <∞

for a weight W then polynomials are not dense in CW . Indeed, if F is an
outer function in C+ satisfying

|F | = 1

(1 + x2)W
,

then the measure eixF (x)dx is a W -finite measure that annihilates polyno-
mials by lemma 1.

A direct inverse to this statement is false. Even if one requires that logW is
poisson unsummable and W is monotone on R±, the polynomials may still
not be dense in CW , as follows from an example given in [10].

We say that f : E ⊂ R+ → R is log-convex if it is convex as a function of
log x, i.e. if the function g(t) = f(et) is convex on S = logE = {log x| x ∈
E}. In particular, a twice differentiable function f is log-convex on an
interval (a, b) ⊂ R+ if f ′(x) + xf ′′(x) > 0 for all x ∈ (a, b).

The following classical result, published by L. Carleson in [5], but seemingly
known earlier to several other mathematicians (see for instance [9]), is a
partial inverse to Hall’s theorem.

Theorem 3. Let W be an even weight that is log-convex on R+. Then
polynomials are not dense in CW if and only if logW ∈ L1(Π).

Proof. If S = {sn} is an even discrete sequence of finite density denote by
vS the function

vS(x) =
1

2

∑
log

∣∣∣∣(sn − x)2

1 + s2
n

∣∣∣∣ ,
where the sum is understood in terms of normal convergence of partial sums∑
|n|<N in C\Λ. Simple computations show that −vS is log-convex on every

interval (sn, sn+1), λn > 0.
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To prove the theorem, notice that in one direction it follows from Hall’s
result. In the opposite direction, suppose that polynomials are not dense in
CW . Then there exists a sequence Λ like in the statement of theorem 2. It
is not difficult to prove that Λ can be chosen to be even.

Fix n > 0 and denote Γn = Λ \ {λn, λ−n, λn+1, λ−n−1}. Then (0.3) implies

logW (λk) 6 vΓn(λk) +
1

2
log−

(λn − λn+1)2

1 + λ2
n+1

+ const, for k = n, n+ 1.

Since both W and −vΓn are log-convex on (λn, λn+1) the inequality can be
extended to the whole interval (λn, λn+1) for every n. Since vΛ ∈ L1(Π),
the quantity ∑

n

∫ λn+1

λn

|vΛ − vΓn |dΠ

is finite and logW > 0, this implies that logW ∈ L1(Π).
�

A direct proof of the log-convex theorem can be found in [10].

Asymptotics of characteristic sequences and applications

Let u be a monotone increasing function on R. Suppose that the harmonic
conjugate function ũ is Poisson-summable, i.e. ũ ∈ L1(Π). (Recall that
dΠ = dx/(1 + x2).) Let Λ = {λn} be a sequence such that u(λn) = nπ.

It is not difficult to show that then Λ is a zero density balanced sequence.
(This condition is actually equivalent to ũ ∈ L1(Π).) Let P = {pn} be the
characteristic sequence of Λ.

Elementary estimates yield:

Proposition 2. Suppose that u′(x) exists and is bounded for large enough
|x|. Then

pn = ũ(λn) +O(log |λn|)
as |n| → ∞.

Theorem 2 gives the following

Corollary 1.

I) If W is a regular weight such that logW (λn) 6 ũ(λn) + O(log |λn|) then
polynomials are not dense in CW .

II) If µ =
∑
αnδλn is a finite positive measure such that∑

α1−q
n exp qpn <∞

for some 1 < q <∞ then polynomials are not dense in Lp(µ), 1
p + 1

q = 1.
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III) If

αn = O(exp pn)

then polynomials are not dense in L1(µ).

For many examples of discrete sequences Λ one can easily find a suit-
able function u and the values of its conjugate at Λ. If, for instance,
Λ = {n1/α}n>0, 0 < α < 1/2 then one may consider u defined as

u(x) =

{
πxα if x ∈ R+

0 if x ∈ R−

and find that

ũ(n1/α) = −πn tan
(
απ − π

2

)
.

In the two-sided case Λ = {±n1/α}n>0, 0 < α < 1, one may use u defined
as

u(x) =

{
πxα if x ∈ R+

−π|x|α if x ∈ R−
.

Then

ũ(±n1/α) = −πn tan
(
α
π

2
− π

2

)
.

Such simple calculations and estimates, together with statements from this
section, yield majority of the examples of discrete measures, whose Lp spaces
are not spanned by polynomials, existing in the literature. See [4] for more
examples.

Exercises

1) Let µ be a finite positive measure concentrated on Z, µ =
∑

n∈Z e
−
√
|n|δn.

Show that polynomials are not dense in Lp(µ) for any 0 < p ≤ ∞. How
much smaller can we make the point masses for this statement to still hold?
(Hint: switch to Bernstein’s form and find a way to use Hall’s or log-convex
theorem. No complete answer to the last question is expected.)

2) In the definition of CW one requires that all functions from that set
satisfied f/W → 0 at ±∞. Why? Similarly, why can’t we drop the condition
that W is lower semi-continuous?

3) Produce a countable set of bounded continuous functions on R that is
dense in CW for any weight W (we needed such a set in the proof of Bakan’s
theorem).

4) Consider Λ = {n3}n>0. Let the weight W be defined as nγ at n3 and as
∞ outside of Λ. Using the results from this lecture, discuss for what real γ
the polynomials will be dense (not dense) in CW . Using Bakan’s theorem,
reformulate your statements in terms of Lp approximation.



ENTIRE FUNCTIONS AND COMPLETENESS PROBLEMS 9

References

[1] N. I. Akhiezer, On the weighted approximation of continuous functions by polyno-
mials on the real axis, Uspekhi Mat. Nauk 11(56), 3-43, AMS Transl. (ser 2), 22
(1962), 95-137.

[2] A. G. Bakan, Representation of measures with polynomial denseness in Lp(R, µ), 0 <
p <∞, and its application to determinate moment problems, Proc. Amer. Math. Soc.,
136 (2008), no. 10, 35793589.

[3] S. N. Bernstein, Le probleme de lapproximation des fonctions continues sur tout
laxe reel et lune de ses applications, Bull. Math. Soc. France, 52(1924), 399410.

[4] A. Borichev, M. Sodin, The Hamburger moment problem and weighted polynomial
approxi- mation on discrete subsets of the real line, J. Anal. Math., 76(1998), 219264.

[5] L. Carleson, Bernsteins approximation problem, Proc. Amer. Math. Soc., 2(1951),
953961.

[6] De Branges, L. Hilbert spaces of entire functions. Prentice-Hall, Englewood Cliffs,
NJ, 1968

[7] De Branges, L. The Bernstein problem, Proc. Amer. Math. Soc., 10(1959), 825832.
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