
ENTIRE FUNCTIONS AND COMPLETENESS
PROBLEMS

A. POLTORATSKI

Lecture 6

In the second part of this lecture we arrive at one of the main points of
the course. We show how spectral problems for differential operators
connect to problems on completeness of complex exponentials and dis-
cuss recently discovered relations between these two important classical
areas of mathematics.

Recall that if Φ is a meromorphic inner function, Φ = eiφ on R for a
smooth real function φ, we say that Λ is a defining set for Φ if for any

other meromorphic inner function Φ̃, Φ̃ = eiφ̃,

φ̃ = φ on Λ ⇒ Φ ≡ Φ̃.

As before, KΦ = K2
Φ is the model space H2	ΦH2 corresponding to Φ.

In general, Kp
Φ is defined as the closure of finite linear combinations of

reproducing kernels in Lp(R), 0 < p ≤ ∞.

Relation to uniqueness sets

Proposition. Λ is not defining for Φ if there is a non-constant func-
tion G ∈ K∞Φ such that

G = Ḡ on Λ. (0.1)

Proof. We can assume ‖G‖∞ < 1. Let F be a bounded analytic function
in C+ such that Φ̄G = F̄ on R, and consider

Φ̃ =
Φ + F

1 +G
.

Then Φ̃ is an inner function because it is in the Smirnov class N+ and

|Φ + F | = |Φ + ΦḠ| = |1 +G| on R.
1
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Also, Φ̃ 6= Φ because otherwise we would have F = GΦ, which together
with F = ΦḠ implies G = Ḡ, so G = const. Finally, we have

Φ̃ = Φ
1 + Φ̄F

1 +G
= Φ

1 + Ḡ

1 +G
= Φ on Λ,

and since
‖ arg Φ̃− arg Φ‖L∞(R) < 2π

by construction, we get arg Φ̃ = arg Φ on Λ. �

Remark. We say that a set is a uniqueness set for a set of functions if
any function that is zero on that set is identically zero. The condition
(0.1) is very close to the condition that Λ is not a uniqueness set for
K∞Φ2 . The precise relation between the two statements is an interesting
question, which we will not discuss here. We only mention that if
p ∈ (1,∞), then

∃G ∈ Kp
Φ, G 6≡ const, G = Ḡ on Λ,

iff
∃F ∈ Kp

Φ2 , F 6≡ 0, F = 0 on Λ.

The above proposition gives a necessary condition for a set Λ to be
defining for Φ. To get sufficient conditions one can use the following
simple observation (prove it).

Lemma. If Φ̃ = Φ on Λ and F = Φ̃− Φ, then

F ∈ K∞
Φ̃Φ
, F = 0 on Λ.

If we also have arg Φ̃ = arg Φ on Λ (as in the definition of defining
sets), then we can estimate the argument of Φ̃Φ in terms of the data
(Φ,Λ), so we can apply our results concerning uniqueness sets.

Defining sets of regular operators

We now consider the defining sets problem in some restricted classes of
inner functions. We will use the spectral theory language. For r ≥ 1
let Schr(Lr, D) denote the class of selfadjoint Schrödinger operators on
[0, 1] with an Lr potential and Dirichlet boundary condition at 0.

We say that Λ ⊂ R is a defining set for the class Schr(Lr, D) if for
any two operators in Schr(Lr, D) with potentials q and q̃, the equality
Θ̃ = Θ on Λ implies q̃ ≡ q, where Θ̃ and Θ are the corresponding Weyl
inner functions.
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We have a similar definition for the classes Schr(Lr, N) of Schrödinger
operators with Neumann boundary condition at 0.

Let ΘD denote the standard inner function, i.e. the Weyl inner function
in the case q ≡ 0, see previous lectures. The following statement follows
immediately from Lemma 3.9 in [2]:

Λ is defining in the class Schr(L1, D) if Λ is a uniqueness set of K∞
Θ2

D
.

This sufficient condition is not optimal because for regular operators,
the function Φ̃ − Φ (see the statement of Lemma 3.9) has some extra
smoothness at infinity as follows from the standard asymptotic formu-
lae (see the end of this section), which are getting more precise if we
require more regularity of the potential, in particular if we consider the
case q ∈ Lr with r > 1.

A theorem of Horváth

In a paper published in Annals in 2005 [1] Horváth gives a descrip-
tion of defining sets for Schrödinger operators in terms of complete-
ness problem for exponential functions. The same result was indepen-
dently found in our joint work with N. Makarov and presented (by N.
Makarov) at a conference in Stockholm in 2003, devoted to the 75th
birthday of L. Carleson (see also our article [2] in the proceedings of
the conference).

Below is a selection of Horváth’ results. We use the following notation:√
Λ = {z : z2 ∈ Λ}, and

√
Λ ∪ {∗, ∗} means

√
Λ plus any two points.

Recall that by EΛ we denote the system of exponentials

{e2πiλ| λ ∈ Λ}.

Theorem.

(i) Λ is defining in the class Schr(Lr, D) iff E√Λ∪{∗,∗} is complete in

Lr(−2, 2);

(ii) Λ is defining in Schr(Lr, N) if E√Λ is complete in Lr(−2, 2).

(In the second case, the ”only if” part of Horváth’ theorem comes with
some additional condition.)

Let us explain how to prove the ”if” parts of these statements using our
methods, see [2]. For example, (ii) in the case r = 2 can be equivalently
reformulated as
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Proposition. Λ is defining in the class Schr(L2, D) if
√

Λ ∪ {∗, ∗} is
a uniqueness set of PW2.

Proof. Let q, q̃ ∈ L2(0, 1). Without loss of generality we will assume
that the corresponding Schrödinger operators with boundary condi-
tions (D) at 0 and (N) at 1 are positive. Otherwise, we simply add a
large positive constant a to both potentials, and using the transforma-
tion

F (z) 7→ F (
√
z2 + a2)

for even entire functions we observe that
√

Λ is a uniqueness set iff√
Λ + a is.

It is well-known that if m is a Herglotz function such that

0 < m < +∞ on R−,
then m∗(λ) = λm(λ2) is again a Herglotz function. If

Θ = (m− i)/(m+ i),

then the inner function corresponding to m∗ is

Θ∗(z) =
(z + 1)Θ(z2) + (z − 1)

(z − 1)Θ(z2) + (z + 1)

We call Θ∗ the square root transform of Θ.

Let Θ∗ and Θ̃∗(z) be the square root transforms of Θ and Θ̃, the Weyl
functions taken with sign minus, see Section 1.8 in [2]. From the stan-
dard asymptotic formula for solutions of a regular Schrödinger equation
we obtain

Θ∗

S2
=
H̄

H
on R, H±1 ∈ H∞, (0.2)

and
x[Θ∗(x)− Θ̃∗(x)] ∈ L2(R). (0.3)

(For convenience we reproduce the standard argument at the end of

the proof .)

If Θ̃ = Θ on Λ, then since Θ̃∗(0) = Θ∗(0), we have

Θ∗ = Θ̃∗ on {0} ∪
√

Λ,

where we regard Θ∗ and Θ̃∗ as meromorphic functions in the whole
plane. By (0.3),

(z − 1)(Θ∗ − Θ̃∗) ∈ KΘ∗Θ̃∗ ,

so
√

Λ ∪ {0, 1} is a zero set of some KΘ∗Θ̃∗-function, and therefore by
(0.2) a zero set of some function in KS4 or PW2 . (For zeros in C− we
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can use the argument with dual reproducing kernels as in Section 3.1.
of [2].) �

Proof of (0.2)–(0.3). If s > 0, then the solution us(t) of the IVP

−ü+ qu = s2u, u(0) = 0, u̇(0) = 1,

satisfies the integral equation

us(x) = sin sx+
1

s

∫ x

0

cos s(x− t) q(t) us(t) dt.

Iterating, we have

us(1) = sin s+
F (s)

s
+
R(s)

s2
,

where

F (s) =

∫ 1

0

cos s(1− t) sin st q(t) dt,

and

R(s) =

∫ 1

0

cos s(1− x) q(x) dx

∫ x

0

cos s(x− t) q(t) us(t) dt.

We have an elementary a priori bound

|us(t)| ≤ C, (s > 0, t ∈ [0, 1]),

so
∀s, |R(s)| ≤ const.

On the other hand, F is basically the Fourier transform of a function
on (−1, 1), and

q ∈ L2 ⇒ F ∈ L2(R).

We also get the corresponding estimates of u̇s(1). The resulting esti-
mates of Θ imply both statements. �

Exercises

1) Prove the lemma at the end of the first subsection.

2) Formulate an equivalent version of Horváth’ theorem for r = 2
replacing conditions of completeness of exponentials with conditions
that the sequence is a uniqueness set in a space of entire functions.

3) Using the Beurling-Malliavin theorem and Horváth’ theorem, for-
mulate an if and only if condition for a sequence of real points to be a
defining set of a Schrödinger operator on an interval [0, 1 − ε] for any



6 A. POLTORATSKI

0 < ε < 1, with an L2 potential and Dirichlet (Neumann) boundary
condition at 0.

4) Horváth’s paper [1] contains a list of classical theorems by Ambarzu-
mian, Borg, Levinson, Hoschtad-Liberman, as well as more recent re-
sults by Gesztesy-Simon and by del Rio-Gesztesy-Simon that follow
from the last theorem. It is a good exercise to try to deduce those
statements from Horváth’ result.
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