
ENTIRE FUNCTIONS AND COMPLETENESS
PROBLEMS

A. POLTORATSKI

Lecture 5

We continue to discuss applications of complex function theory to spec-
tral problems for differential operators. In this lecture we will be able
to reach recent results and enter an area of current research.

Abstract Hochstadt-Liberman problem

We will be considering the following problem concerning general mero-
morphic inner functions. In the next section we will explain its relation
to Hochstadt-Liberman’s theorem on the spectra of Schrödinger oper-
ators [8].

Let Φ and Ψ be meromorphic inner function and Θ = ΨΦ. As usual,
σ(Θ) denotes the (point) spectrum of Θ, {Θ = 1}, see the last lecture.
Recall that σ(Θ) may include ∞. We say that the data [Ψ, σ(Θ)] de-
termine Θ if any inner function divisible by Ψ whose spectrum is σ(Θ)
is equal to Θ. I.e. [Ψ, σ(Θ)] determine Θ if for any inner function Φ̃,

Θ̃ = ΨΦ̃, σ(Θ̃) = σ(Θ) ⇒ Θ = Θ̃.

Alternatively, we can say that Ψ and σ(ΦΨ) determine Φ. Given Φ
and Ψ, the problem is to decide if this is the case.

The set of Herglotz measures of inner functions Θ̃ satisfying Ψ|Θ̃ (Ψ
divides Θ) and σ(Θ̃) = σ(Θ) is convex, see Section 1.2 in [16]. We
will refer to the dimension of this set as the dimension of the set of
solutions.

Example. Suppose Θ is a finite Blaschke product. Then

[Ψ, σ(Θ)] determine Θ ⇔ 2 deg Ψ > deg Θ.

The proof is elementary; it also follows from the results below. As an
illustration consider the simplest case Θ = b2, Ψ = b, where

b(z) =
z − i
z + i

.
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Then σ(Θ) = {0,∞}, and the data [Ψ, σ(Θ)] does not determine Θ. In
fact, the set of solutions is one-dimensional; the solutions are given by
the formula

Φ̃(z) =
z − ia
z + ia

, (a > 0).

Finding necessary and sufficient conditions for [Ψ, σ(Θ)] to determine
Θ is an important problem of complex function theory. As we will see
shortly, it appears in spectral theory for differential operators, as well as
in other areas of analysis. In [16] several such conditions are formulated
in terms of the Toeplitz kernels with symbol U = Φ̄Ψ. The theory of
Toeplitz operators is a broad and important part of complex analysis
that, due to lack of space, will not be covered in this introductory
course. We refer an interested reader to [16, 17] for more information
and further references.

The rough meaning of the conditions formulated in [16] is the follow-
ing: for the data [Ψ, σ(Θ)] to determine Θ, the known factor Ψ of
the inner function has to be ”bigger” than the unknown factor Φ.
Let us formulate one of the results of the ’Toeplitz approach’ from
[16]. This relatively simple example extends the original Hochstadt-
Liberman theorem, which we will state in the next subsection.

Corollary. Suppose Θ = Ψ2. Then the set of solutions is exactly one-
dimensional: Θ̃ satisfies Ψ|Θ̃, σ(Θ̃) = σ(Θ) iff

∃r ∈ (−1, 1), Θ̃ = Ψ
r + Ψ

1 + rΨ
. (0.1)

Spectral theory interpretation: Hochstadt-Liberman and Kho-
dakovski theorems

Consider a Schrödinger operator L = (q, α, β) on (a, b), where q ∈
L1

loc(a, b) and α, β are selfadjoint boundary conditions at a and b re-
spectively; the endpoints can be infinite and/or singular. We assume
that L has compact resolvent. As usual, σ(L) denotes the spectrum of
L.

Suppose a < c < b. We will write q− for the restriction of q to (a, c) and
q+ for the restriction of q to (c, b). We say that the data (q−, α, σ(L))

determines L if for any other Schrödinger operator L̃ = (q̃, α̃, β̃),

q− = q, α = α̃, σ(L̃) = σ(L) ⇒ q̃+ = q+, β̃ = β.
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Let Θ− denote the Weyl inner function of (q−, α) computed at c and
Θ+ the Weyl inner function of (q+, β) computed at c.

Lemma. σ(L) = σ(Θ−Θ+).

Proof. The equation Θ−(λ)Θ+(λ) = 1 is equivalent to the statement

m+(λ) +m−(λ) = 0 or m−(λ) = m+(λ) =∞
for the corresponding m-functions. The latter means that we have the
matching

u̇−(c, λ)

u−(c, λ)
=
u̇+(c, λ)

u+(c, λ)

for any two non-trivial solutions u−(·, λ) and u+(·, λ) of the Schrödinger
equation with boundary conditions α and β respectively, which is pos-
sible if and only if λ is an eigenvalue of L. �

Corollary. (q−, α, σ(L)) determine L if the data (Θ−, σ(Θ−Θ+)) de-
termine Θ+.

Here we rely on the fundamental uniqueness theorem of Borg and
Marchenko [1], [14]: the m-function (and therefore the Weyl inner func-
tion) determines both the potential and the boundary condition.

Remark. We would have an ”iff” statement if we considered the
problem in some class of canonical systems with a one-to-one corre-
spondence between the systems and inner functions such as the class
of Krein’s ”strings”, see [2], [3]. The effective characterization of inner
functions of Schrödinger operators is an open problem, so we will use
our general results to state only sufficient conditions for Schrödinger
operators. To obtain necessary condition one has to use more specific
techniques of the Schrödinger operator theory, see [1], [9].

Let us apply the above corollary to the situation described at the end
of the last subsection.

Example 1. Let L be a Schrödinger operator on R with compact
resolvent and limit point boundary conditions at ±∞. Suppose the
potential q(x) is an even function:

q(−x) = q(x), (x > 0).

Then q|R− and σ(L) determine L.
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Proof. By Everitt’s theorem [4] (see [16] for a more detailed discussion
of that result), all the inner functions (r+ Ψ)/(1 + r+ Ψ) in (0.1) with
r 6= 0 are not Weyl inner functions corresponding to a Schrödinger
operator. �

This result is a special case of Khodakovski’s theorem [11], where only
the equality q(−x) ≤ q(x) for x > 0 is assumed. The full version
of Khodakovski’s theorem requires a slightly different approach which
we describe in the next subsection. Similarly, we derive the following
statement (if follows from our previous discussion and from the remark
at the end of Section 2.5 in [16]).

Proposition. Let L be as above, and let L̃ be another Schrödinger
operator on (−∞, b), b ≥ 0. If

q = q̃ on R− and σ(L̃) ⊂ σ(L),

then either L̃ = L or b = 0 and L̃ is the operator with potential q− and
Dirichlet or Neumann condition at 0.

Example 2. Let L be a regular selfadjoint Schrödinger operator on
[a, b] with non-Dirichlet boundary conditions α and β at a and b re-
spectively. If c = (a+ b)/2, then (q−, α, σ(L)) determine L.

The statement is also true if one or both boundary conditions are
Dirichlet, see next subsection. This is a stronger version of the Hochstadt-
Liberman theorem [8], see also [5] which states that if both L and L̃
are regular, and q̃− = q−, α̃ = α, σ(L̃) = σ(L), then L̃ = L. We do
not require L̃ to be regular (recall that regular = summable potential).
Also, we can replace σ(L̃) = σ(L) with σ(L̃) ⊂ σ(L).

Example: Bessel inner functions

This is an extension of the previous example. We want to show that
the Hochstadt-Liberman phenomenon occurs not only for regular po-
tentials.

We consider the Bessel inner functions Θν , ν ≥ −1/2, see the last
lecture.

Applying our methods we get the following result, see [16].
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Theorem. Let L be the Schrödinger operator with potential q(t) =
2t−2 on [0, 2] and with Dirichlet boundary condition at t = 2. Then
q|(0,1) and the spectrum σ(L) determine L in the class of Schrödinger
operators.

Defining sets of inner functions

Let Φ be a meromorphic inner function, Φ = eiφ on R for a smooth
real function φ. Let Λ ⊂ R. We say that Λ is a defining set for Φ if for

any other meromorphic inner function Φ̃, Φ̃ = eiφ̃,

φ̃ = φ on Λ ⇒ Φ ≡ Φ̃.

In this definition we tacitly assume φ(±∞) = ±∞. In the ”one-sided”
case, say if φ(−∞) > −∞ and φ(+∞) = +∞, one should modify the
definition in an obvious way. (An important and well-known property
of arguments of meromorphic inner functions on R is that they are
always monotonnically growing. Why?)

One can extend this definition to divisors. For instance, if all points in
Λ ⊂ σ(Φ) are double, then the equality Φ̃ = Φ on Λ means that the
spectral measures of the inner functions coincide on Λ.

Let us mention several special cases.

(a) Two spectra problem.

Let Φ be a meromorphic inner function. Then a meromorphic inner
function Φ̃ satisfies {Φ̃ = 1} = {Φ = 1} and {Φ̃ = −1} = {Φ = −1}
iff

Φ̃ =
Φ− c
1− cΦ

, c ∈ (−1, 1). (0.2)

This corresponds to the case

Λ = {Φ = 1} ∪ {Φ = −1}.
The meaning of the statement is that Λ is defining for Φ with deficiency
one (in the case φ(±∞) = ±∞, to be accurate). Various related state-
ments are of course well-known, see e.g. [1].

The easiest way to see this is to use Krein’s shift construction: since

<

[
1

πi
log

Φ̃ + 1

Φ̃− 1

]
= χe on R,
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where e = {=Φ > 0}, we have

1

πi
log

Φ̃ + 1

Φ̃− 1
= Sχe + const. �

This argument also shows that given any two intertwining discrete sets
Λ± of real numbers there is a meromorphic inner function Φ such that

{Φ = ±1} = Λ±

(see Exercises at the end).

Let us also mention that the statement (0.2) can be derived from the
twin inner function theorem, see Section 2.8 in [16].

(b) General mixed data spectral problem. The Hochstadt-Liberman
problem for inner functions that we discussed above can be viewed as
a special case of the defining sets problem. It is easy to see that if
(assuming arg Θ(±∞) = ±∞) Θ = ΨΦ and Λ = σ(Θ), then

(Ψ, σ(Θ)) determine Θ ⇔ Λ is defining for Φ.

This can be generalized in the following way. Let Θ = ΨΦ be a given
meromorphic inner function and let {λn} be the set of its eigenvalues
numbered in the increasing order. Given M ⊂ Z we denote

σM(Θ) = {λn : n ∈M}.
The question is whether the factor Ψ and the partial spectrum σM(Θ)
determine Θ, i.e. whether

Θ̃ = ΨΦ̃, λ̃n = λn (n ∈M) ⇒ Θ̃ ≡ Θ.

Once again, this is equivalent (assuming φ(±∞) = ±∞) to saying
that Λ = σM(Θ) is a defining set for Φ. The spectral theory meaning
was explained in [16] and the partial spectral problem for Schrödinger
operators and Jacobi matrices appeared in several publications, e.g.
[5], [6].

(c) A version for spectral measures. Given a meromorphic inner func-
tion Θ and a factor Ψ|Θ, and also given a part of the spectrum Λ =
σM(Θ), the question is whether there is another inner function Θ̃ 6= Θ
such that Ψ|Θ̃ and the spectral measures µ = µΘ and µ̃ = µΘ̃ coincide
on Λ:

λ̃n = λn, µ̃{λn} = µ̃{λn}, (n ∈M).

Claim: If Θ = ΨΦ, then Ψ and the spectral measure on Λ = σM(Θ)
determine Θ iff the divisor 2χΛ is defining for Φ.
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Indeed, if Θ̃ = ΨΦ̃, and

arg Θ̃(λn) = arg Θ̃(λn) = 2πn, (n ∈M),

then
arg Φ̃ = arg Φ on Λ.

The relation
µ{λ} = µ̃{λ}, λ ∈ Λ

then implies Θ̃′(λ) = Θ′(λ), so

Ψ′(λ)Φ̃(λ) + Ψ(λ)Φ̃′(λ) = Ψ′(λ)Φ(λ) + Ψ(λ)Φ′(λ), (λ ∈ Λ),

and
(arg Φ̃)′ = (arg Φ)′ on Λ. �

Again, the spectral theory interpretation is the same as above: we know
some part of a differential operator and some part of its spectral mea-
sure and we want to know if this information determines the operator
uniquely.

As usual we can consider the problem in a restricted class of inner
functions. Here is the simplest example.

Example. Let Θ = ΨΦ be a finite Blaschke product. Then Ψ and
Λ ⊂ σ(Θ) determine Θ iff #Λ > 2 deg Φ in the class of Blaschke
products of a fixed degree. Similarly, Ψ and the spectral measure on
Λ determine Θ iff #Λ > deg Φ. This extends in an obvious way to
the cases where only Φ or Ψ has a finite degree. These facts follow for
instance from the statements in the next section, also cf. [6].

Exercises

Note: these exercises are difficult, but if you can do it, you are about
ready to start your own research in this area. You may want to consult
[16] or further references given there if you need help. Even if you
cannot finish, try to proceed as far as you can in each exercise.

1) Prove that for any two alternating discrete sequences Λ+, Λ− on R
there exists a unique meromorphic inner function Φ such that

{Φ = ±1} = Λ±.

Consider the case, when one of the sequences contains infinity. What
does this statement mean for Schrödinger operators and their spectra?

2) Consider the following simplified case of the H-L theroem. Let L be
a regular Schroödinger operator on an interval [0, 2]. It is well-known
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that then its spectrum σ(L) is a discrete sequence on the real line.
Suppose that L̃ is another regular Schrödinger operator on [0, 2] such
that q̃ = q on [0, 1], the boundary conditions for L and L̃ coinside
and σ(L̃) contains every other point from σ(L), plus at least one more
point from σ(L). Try to prove that then L = L̃, i.e. q = q̃ on the
whole interval. First translate the problem into the language of Weyl
inner functions. Then find a way to apply complex analytic methods
to show that Θ = Θ̃.
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