
ENTIRE FUNCTIONS AND COMPLETENESS
PROBLEMS

A. POLTORATSKI

Lecture 4

In this lecture we continue our discussion of connections with spectral
theory for differential operators, started in Lecture 3, in more detail.
We will only discuss the case of Schrödinger operators although similar
theories exist for general canonical systems. See [4] and [2] for the
basics of the spectral theory. Present discussion is a shortened version
of selected sections of our paper with N. Makarov [3].

Recall that the H2-model space of an inner function Θ,

KΘ = H2 	ΘH2 = H2 ∩ΘH̄2,

is a Hilbert space with the Hilbert structure inherited from H2. A
function kλ from a Hilbert space H of analytic functions in a complex
domain is called a reproducing kernel corresponding to the point λ from
the domain if for any f ∈ H,

< f, kλ >H= f(λ).

In the case of KΘ the reproducing kernels are given by the formula

kΘ
λ (z) =

1

2πi

1−Θ(λ)Θ(z)

λ̄− z
, λ ∈ C+. (0.1)

The system of all reproducing kernels is complete in KΘ (why?). It
follows that if Θ is meromorphic, then all elements of KΘ are mero-
morphic, and one can extend (0.1) to all λ ∈ R. The monograph [5]
provides a comprehensive study of model spaces.

Weyl inner functions

As was discussed earlier, meromorphic inner functions appear in the
theory of 2nd order selfadjoint differential operators. Let q be a real
locally summable function on (a, b). We always assume that selfadjoint
operators associated with the differential operation u 7→ −ü+ qu have
compact resolvent. This will be the case, for instance, if q is from
Lp(a, b), as well as for most other ’reasonable’ potentials. We suppose
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that a is a regular point (finite with q summable near a), but we allow
b to be infinite and/or singular. Let us fix a selfadjoint boundary
condition β at b; for example, β means u ∈ L2 at b in the case when
b is infinite. The Weyl-Titchmarsh m-function of (q; b, β) evaluated at
a,

m(λ) = ma
b,β(λ), λ ∈ C,

is defined by the formula

m(λ) =
u̇λ(a)

uλ(a)
,

where uλ(·) is a non-trivial solution of the Schrödinger equation satisfy-
ing the boundary condition at b. It is well-known that m is a Herglotz
function, and therefore we can define the corresponding inner function
Θa
b,β as

Θa
b,β =

m− i
m+ i

.

We call Θa
b,β the Weyl (or Weyl-Titchmarsh) inner function of q.

Similarly, if b ∈ R is a regular point and α is a selfadjoint boundary
condition at a ∈ [−∞, b), we can consider the m-function of (q; a, α)
evaluated at b,

mb
a,α(λ) = − u̇λ(b)

uλ(b)

and define the corresponding Weyl inner function Θb
a,α. Note that the

sign in the last formula has changed with the change of the endpoint.

Example. The Weyl inner functions of the potential q ≡ 0 on [0, 1]
with Dirichlet and, respectively, Neumann boundary conditions at a =
0 are

ΘD(λ) =

√
λ cos

√
λ+ i sin

√
λ√

λ cos
√
λ− i sin

√
λ
, ΘN(λ) =

√
λ sin

√
λ− i cos

√
λ√

λ sin
√
λ+ i cos

√
λ
.

(0.2)

(Them-functions aremD(λ) = −
√
λ cot

√
λ, and andmN(λ) =

√
λ tan

√
λ.)

Example. More generally, for ν ≥ −1/2 consider the potential

q(t) =
ν2 − 1

4

t2
on (0, 1),

and let the boundary condition α at a = 0 be satisfied by the solution

uλ(t) =
√
tJν(t

√
λ)

of the Schrödinger equation. For example, if ν = −1/2 then α = (N),
and if ν = 1/2 then α = (D), and we have the limit point case if ν ≥ 1.
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Jν is of course the standard notation for the Bessel function of order
ν. Since

uλ(1) = Jν(
√
λ), u̇λ(1) =

1

2
Jν(
√
λ) +

√
λJ ′ν(
√
λ),

the corresponding Weyl inner function is

Θν(λ) =

√
λJ ′ν(
√
λ) + (1/2 + i)Jν(

√
λ)√

λJ ′ν(
√
λ) + (1/2− i)Jν(

√
λ)
. (0.3)

In particular, we have Θ−1/2 = ΘN and Θ1/2 = ΘD.

We will discuss the Bessel example further in our lectures.

Modified Fourier transform

Let Θ = Θa
b,β be the Weyl-Titchmarsh inner function of a potential q

defined in the previous section. We will construct a unitary operator
L2(a, b)→ KΘ, which is a modification of the Weyl-Titchmarsh Fourier
transform. We modify the usual construction so that the case of a
singular (i.e. non-regular) endpoint b could be included.

For every z ∈ C we choose a non-trivial solution uz(t) of the Schrödinger
equation satisfying the boundary condition β. (For real z such a solu-
tion exists because of the compact resolvent assumption). If z ∈ C+∪R,
then the solution

wz(t) =
uz(t)

u̇z(a) + iuz(a)

does not depend on the choice of uz, and wz ∈ L2(a, b). The transform
W is defined as follows:

W : f(t) 7→ F (z) =

∫ b

a

f(t)wz(t)dt, (z ∈ C+ ∪ R). (0.4)

To state the main result we introduce the dual reproducing kernel of
the model space KΘ. For λ ∈ C+ ∪ R we define

k∗λ(z) =
1

2πi

Θ(z)−Θ(λ)

z − λ
, (z ∈ C+ ∪ R), (0.5)

so we have
Θ̄kΘ

λ = k∗λ on R,
and k∗λ ∈ KΘ. Note that if λ ∈ R, then k∗λ = const kΘ

λ .

Theorem 1. [3] The modified Fourier transform W is (up to a factor√
π) a unitary operator L2(a, b)→ KΘ. Furthermore, we have

Wwλ = πk∗λ, Ww̄λ = πkλ (λ ∈ C+ ∪ R). (0.6)
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Proof. The formulae (0.6) follow from the Lagrange identity

(z − λ)

∫ b

a

uλuz = uλ(a)u̇z(a)− u̇λ(a)uz(a).

(The Wronskian at b is zero because the two solutions satisfy the same
boundary conditions.) The rest is straightforward:

(w̄λ, w̄µ)L2 =

∫ b

a

wµw̄λ =Ww̄λ(µ) = πkλ(µ) = π(kλ, kµ)KΘ
,

etc. �

As was discussed in the last lecture, a meromorphic Herglotz function
is a meromorphic function m such that

=m > 0 in C+, m(z̄) = m(z).

One can establish a 1-to-1 correspondence between meromorphic inner
and Herglotz functions by means of the equations

m = i
1 + Θ

1−Θ
, Θ =

m− i
m+ i

. (0.7)

Meromorphic Herglotz functions (and therefore inner functions) can be
described by parameters (b, c, µ) in the Herglotz representation

m(z) = bz + c+ iSµ, (0.8)

where b ≥ 0, c ∈ R, and µ is a positive discrete measure on R satisfying∫
dµ(t)

1 + t2
<∞.

It is convenient to interprete the number πb as a point mass of µ at
infinity. In the case m = mΘ, see (0.7), we call this extended measure
µΘ the spectral (or Herglotz) measure of Θ. By definition, the (point)
spectrum of Θ is the set

σ(Θ) = supp µΘ = {Θ = 1} or {Θ = 1} ∪ {∞},

and by residue calculus we have

µΘ(t) =
2π

|Θ′(t)|
, t ∈ σ(Θ). (0.9)

The following equivalent conditions are necessary and sufficient for
µΘ(∞) 6= 0, see e.g. [6]:

(i) Θ−1 ∈ H2; (ii) Θ(∞) = 1, ∃Θ′(∞); (iii)
∑
=λ <∞.
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In (ii), Θ(∞) and Θ′(∞) mean the angular limit and angular derivative
at infinity:

Θ(∞) = lim
y→+∞

Θ(iy), Θ′(∞) = lim
y→+∞

y2Θ′(iy),

and in (iii) we also require that the singular factor is trivial.

Note that Weyl inner functions of Schrödinger operators have no point
masses at infinity, so if Θ = Θa

b,β, then

σ(Θ) = σ(q,D, β), σ(−Θ) = σ(q,N, β).

Here σ(q,D, β) means the spectrum of the Schrödinger operator with
potential q, Dirichlet boundary condition at a, and boundary condition
β at b. More generally, for α ∈ R let α denote the following selfadjoint
boundary condition at a regular endpoint a:

cos
α

2
u(a) + sin

α

2
u̇(a) = 0. (0.10)

Then

σ(e−iαΘ) = σ(q, α, β).

The spectral measure of the Schrödinger operator (q, α, β) is the Her-
glotz measure of the inner function e−iαΘ (this can be viewed as a
definition of the spectral measure of a Schrödinger operator).

(Note: for those readers familiar with Clark theory, see for instance [1],
the Herglotz measure of e−iαΘ is the Clark measure σα corresponding
to Θ.)

Exercises

1) Let H be a Hilbert space of analytic functions in a complex domain Ω
such that the linear functional of point evaluation f 7→ f(λ) is bounded
with respect to the norm of H for any λ ∈ Ω. Prove that H has a full
system of reproducing kernels kλ, i.e. that kλ exists for any λ ∈ Ω.

2) If H is as above, show that reproducing kernels are complete in H.

3) Using the formula for the reproducing kernel of a KΘ space and the
connection between KΘ and PWa discussed in the previous lecture, find
the formula for a reproducing kernel for PWa. Find the same formula
directly by calculating the Fourier transform of a restriction of eiλz on
(−a, a).

4) Calculate the Weyl inner functions for the free Laplacian (q = 0),
given in the example above, by hand.
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5) Let Θ be a fixed inner function. Prove the following simple properties
of Herglotz measures σα for e−iαΘ |α| = 1, (a.k.a. Clark measures).

a) All σα are singular (with respect to the Lebesgue measure on the
line).

b) All σα are mutually singular, i.e. σα ⊥ σβ for α 6= β.

c) σα is supported on a set where the non-tangential limits of Θ are
equal to α (note that the set is not generally closed, so it is not the
closed support of σα).

Think about the corresponding statements for spectral measures for
differential operators, that follow from a)-c) and the above discussion.
For these and further properties of σα see for instance [1].
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