
ENTIRE FUNCTIONS AND COMPLETENESS
PROBLEMS

A. POLTORATSKI

Lecture 3

A version of the Heisenberg Uncertainty Principle formulated in terms
of Harmonic Analysis claims that a non-zero measure (distribution)
and its Fourier transform cannot be simultaneously small, see for in-
stance [3]. This broad statement raises a multitude of deep mathemat-
ical questions, each corresponding to a particular sense of ”smallness.”
It includes problems on completeness of exponentials and polynomials
that we discussed earlier, inverse spectral problems for differential op-
erators and Krein’s canonical systems, classical problems in the theory
of stationary Gaussian Processes, signal processing, etc. Many of such
problems remain open to this day.

For instance, the Beurling-Malliavin Problem discussed in the last lec-
ture fits into the general statement of the Uncertainty Principle in the
following way. We consider functions with small support, i.e. square
summable functions whose support is contained in a finite interval. We
want to show that the Fourier transform of such a function cannot be
small in the sense that it cannot have a large zero set (a sequence of
external density larger than the length of the interval). In the opposite

direction, if f̂ vanishes on a sequence of large density, then the support
of f cannot be contained in a small interval.

Our next goal is to discuss another area within the Uncertainty Prin-
ciple that deals with Spectral Problems for differential operators and
completeness problems for special functions. To do that we need some
preparation in basic complex analysis. The topics we discuss here are
covered in a number of textbooks such as [6, 10, 2, 1].

Herglotz functions

We say that a function f on R is Poisson-summable, and write f ∈ L1
Π

if it is summable with respect to the Poisson measure Π,

dΠ = dx/(1 + x2).
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We say that a complex measure µ on R is Poisson-finite if∫
d|µ(x)|
1 + x2

.

We denote the set of all Poisson-finite measures on R by MΠ(R). We

will also consider the set of measures MΠ(R̂) on R̂ = R ∪ {∞}. Each

measure from MΠ(R̂) has the form µ = ν + cδ∞, where ν ∈ MΠ(R),
c ∈ C and δ∞ is the unit point mass at infinity.

For any µ ∈ MΠ(R) one can consider its Poisson integral in the upper
half-plane C+,

Pµ(x+ iy) =
1

π

∫
y

(x− t)2 + y2
dµ(t),

that defines a harmonic function in C+. If the measure µ is positive,
then Pµ defines a positive harmonic function in C+ (and a negative
harmonic function in C−).

For µ ∈MΠ(R̂) the Poisson formula takes the form

Pµ(x+ iy) =
1

π

∫
R

y

(x− t)2 + y2
dµ(t) + cy,

where the term cy is understood as the Poisson integral of the point
mass at infinity.

The well-known representation theorem says that any positive har-
monic function in C+ is a Poisson integral of a positive measure in

MΠ(R̂). (Exercise: find a proof of that statement. Hint: for a positive
harmonic function in the unit disk, show that L1-norms of its restric-
tions on circles centered at the origin are bounded and take a weak
limit of a subsequence as r → 1.)

Moving on from harmonic to analytic functions, for any µ ∈ MΠ(R)
the Schwarz integral

Sµ(z) =
1

πi

∫ (
1

t− z
− t

1 + t2

)
dµ(t)

defines an analytic function in C+ (and in C−). If µ is positive, Sµ has
positive real part in C+. Analytic functions with positive real parts are
called Herglotz functions (and the integral Sµ is often called Herglotz
integral).

For µ ∈MΠ(R̂),

Sµ(z) =
1

πi

∫
R

(
1

t− z
− t

1 + t2

)
dµ(t)− icz,
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where, once again, the last term is understood as the Schwarz integral
of the point mass at infinity. In the analytic case the representation
statement is called the Herglotz Representation Theorem, which says
that any Herglotz function F in C+ can be represented as

F = Sµ+ ib,

where µ > 0, µ ∈MΠ(R̂), b ∈ R.

Inner functions

By a theorem of Fatou, any bounded analytic function in C+ has non-
tangential boundary values almost everywhere on R, see for instance [6].
If those limits have absolute value 1 a. e. on R, then such a function is
called inner. I. e., inner functions in C+ are bounded analytic functions
that are equal to 1 by the absolute value a. e. on the boundary.

An important example of an inner function in C+ is the exponential
function

Sa(z) = eiaz, a > 0.

(Question: why should a be positive?) Another example is a Blaschke
factor

bλ =
z − λ
z − λ̄

, λ ∈ C+.

Obviously, any finite product of Blaschke factors will also define an
inner function. Finally, if Λ = {λn} ⊂ C+ is a sequence satisfying the
Blaschke condition ∑ =λn

1 + |λn|2
<∞,

Then the infinite product

BΛ(z) =
∏

εnbλn ,

where the constants εn are chosen so that εnbλn(i) > 0, converges
normally in C+ and defines an inner function BΛ called a Blaschke
product. A theorem by Beurling says that any inner function I in C+

has the form
I(z) = C exp(−Sµ)BΛ,

where BΛ is a Blaschke product, µ ∈ MΠ(R̂) is a positive singular
measure and C is a unimodular constant, see for instance [1, 6, 10, 2].
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Meromorphic inner functions

An important subclass of inner functions in C+ consists of the so-
called meromorphic inner functions. These are inner functions that
can be extended into the whole complex plane meromorphically. Such
inner functions play an important role in problems of the Uncertainty
Principle.

The condition of existence of meromorphic extension into C− immedi-
ately implies the following representation formula for a meromorphic
inner function θ:

θ(z) = CeiazBΛ,

where C is a unimodular constant, a > 0 and BΛ is a Blaschke product
corresponding to a discrete sequence Λ (i.e. Λ satisfies the Blaschke
condition and has no finite accumulation points).

Spaces of analytic functions

Recall that the Hardy space H2 = H2(C+) in the upper half-plane is
defined as the space of all analytic functions f in the upper half-plane
such that

||f ||2H2 = sup
y>0

∫
R
|f(x+ iy)|2dx <∞.

By Fatou theorem, each function in H2 is uniquely determined by its
non-tangential boundary values on R. If one identifies each function in
H2 with its boundary values on R, the space becomes a closed subspace
of L2(R) and a Hilbert space. Via this connection, H2 inherits the inner
product from L2(R):

< f, g >H2=< f, g >L2=

∫
R
f(x)ḡ(x)dx.

It turns out that the norm for H2 defined above coincides with the
L2-norm, see for instance [6].

An important role in the problems of Uncertainty Principle is played
by the following collection of subspaces of H2. If θ is an inner function
in C+, denote by θH2 the set of functions

θH2 = {θf | f ∈ H2}.
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It is clear that θH2 is a closed subspace of H2 (that consists of all
functions in H2 that are divisible by θ). Hence, we can consider an
orthogonal complement of θH2 in H2:

Kθ = H2 	 θH2.

This is the definition of the so-called model space Kθ corresponding to
the inner function θ.

As we can see from the definition, such a space Kθ can be constructed
for any inner function θ in C+. Such spaces play fundamental role in
the Functional Model Theory as the only invariant subspaces of the
backward shift operator in H2, see [9, 8].

The spaces Kθ may be viewed as generalizations of the classical Payley-
Wiener spaces PWa, see exercises below. They possess many intriguing
properties and are still under investigation by analytic function theo-
rists. Problems on sampling, interpolation or uniqueness in Kθ spaces
serve as natural modern extensions of classical completeness problems
discussed so far in this course. We hope to illustrate this with further
examples in our future lectures.

Spectral theory

Consider the Schrödinger equation

−ü+ qu = λu (0.1)

on some interval (a, b) and assume that the potential q(t) is locally
integrable and a is a regular point, i.e. a is finite and q is L1 at a. Let
us fix some selfadjoint boundary condition at b and consider the Weyl
m-function

m(λ) =
u̇λ(a)

uλ(a)
, λ 6∈ R,

where uλ(t) is any non-trivial solution of (0.1) satisfying the boundary
condition. We will deal only with the compact resolvent case, which
is equivalent to saying that m extends to a meromorphic function. It
is well known that m defines a Herglotz function in C+. Thus we can
define the meromorphic inner function

Θ =
m− i
m+ i

,
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(see exercises) which we call the Weyl inner function associated with
the potential and the fixed boundary condition at b. The transforma-
tion

f(t) 7→ F (λ) =

∫ b

a

f(t)
uλ(t)

u̇λ(a) + iuλ(a)
dt (0.2)

identifies L2(a, b) with the model space KΘ in the same way as the
classical Fourier transform (times Sa) identifies L2(−a, a) with PWa.
I. e., it is a unitary operator between the two spaces. This allows us to
interprete the completeness problem for families of solutions {uλ : λ ∈
Λ} as a problem of uniqueness sets in the model space of Θ.

For some special choices of the potential q(t) the families of solutions
uλn can become families of special functions, such as Bessel, Jacobi or
Airy functions, see for instance [7]. Completeness problems of this type,
particularly problems involving families of special functions, are well-
known in the literature, see e.g. [4]. More on this in future lectures.

Exercises and notes

1) Prove the Herglotz Representation Theorem. Show that the theorem
fails for non-positive harmonic functions.

2) Prove the Beurling Theorem on the representation formula for in-
ner functions. You may use the fact that for any bounded analytic
functions its zeros satisfy the Blaschke condition.

3) Show that any meromorphic inner function has the simplified rep-
resentation formula given above.

4) Verify that the formula used to define the Weyl inner function,

Θ =
m− i
m+ i

,

establishes a one-to-one correspondence between inner and Herglotz
functions.

5) An alternative definition of the Hardy space is that H2 is equal to
the image of L2(R+) under the Fourier transform. The norm and the
inner product in H2 are then defined to make the Fourier transform a
unitary operator F : L2(R+)→ H2. Can you verify the equivalence of
this definition to our definition?

6) Show that F(L2([0, a])) is a Kθ space with θ = S2πa. This shows
that the Payley-Wiener spaces are particular cases of Kθ:

SaπPWa = KS2πa .
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The classical completeness problems, that are equivalent to uniqueness
problems in PWa, as was discussed in the previous lecture, now become
particular cases of uniqueness problems in Kθ. For general θ, most of
such problems remain unsolved.
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