
ENTIRE FUNCTIONS AND COMPLETENESS
PROBLEMS

A. POLTORATSKI

Lecture 2

Let us recall one of the classical completeness problems discussed in
the first lecture. Let Λ = {λn} be a sequence of distinct points in the
complex plane and let

EΛ = {ei2πλnx}
be a sequence of complex exponential functions on R with frequencies
from Λ. We ask under what conditions on Λ will EΛ be complete in
L2([0, a]).

In this general form the problem does not have a reasonable answer. To
formulate the results, including the famous Beruling-Malliavin theorem
mentioned in the first lecture, we will have to refine the formulation
of the problem. Recall that for any complex sequence Λ its radius of
completeness is defined as

R(Λ) = sup{a | EΛ is complete in L2(0, a)}.

A more realistic goal is to find a formula for R(Λ) for an arbitrary
Λ. That goal was accomplished by Beruling and Malliavin and we will
state their result in this lecture.

It is well-known in the theory of completeness that the general problem
can be easily reduced to the case of real sequences Λ. More precisely,
if Λ is a general complex sequence then EΛ is complete in L2([0, a]) if
and only if EΛ′ is complete in L2([0, a]), where Λ′ is the real sequence
defined as λ′n = 1/< 1

λn
, see for instance [1]. Also, as will be explained

below, one can always assume that Λ is a discrete sequence, i.e. has no
finite accumulation points.

One of the main tools in the theory of completeness of complex expo-
nentials is the Fourier transform. Recall that if f ∈ L2(R) then its

Fourier transform, f̂ is defined as

f̂(z) =

∫
R
e−2πixf(x)dx.
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The Payley-Wiener theorem says that if supp f ⊂ [−a, a] then f̂(z) is
an entire function of exponential type at most 2πa, i.e.

|f̂(z)| ≤ conste2πa|z|,

and f̂(x) ∈ L2(R). By Parseval’s theorem

||f ||L2([−a,a]) = ||f̂ ||L2(R).

Moreover, every entire function of exponential type at most 2πa that
belongs to L2(R) is the Fourier transform of a function from L2([−a, a]).
The image of L2([−a, a]) under the Fourier transform is the so-called
Payley-Wiener space of entire functions, PWa. More directly, PWa is
a space of entire functions of exponential type at most 2πa that belong
to L2(R).

A system of vectors in a Hilbert space is incomplete if and only if there
exists a non-zero vector orthogonal to all of the vectors of the system.
In particular, a system of complex exponentials EΛ is incomplete in
L2([0, a]) if and only if there exists a non-zero f ∈ L2([0, a]) such that
f ⊥ ei2πλnx for all λn ∈ Λ. By the definition of the Fourier transform,
the last condition is equivalent to the condition that f̂(λn) = 0 for all
λn ∈ Λ.

Thus, via the Fourier transform and the Payley-Wiener theorem, the
completeness problem we are discussing becomes a problem of complex
analysis. Namely, EΛ is incomplete in L2([0, 2a)]) if and only if Λ is a
zero set of a non-zero function from PWa.

Let us point out one immediate consequence of this connection: If Λ
has a finite accumulation point then R(Λ) =∞. Indeed, if there exists
a finite a > 0 such that EΛ is incomplete in L2([0, a]) then there exits a

non-zero f ∈ L2([0, a]), f ⊥ EΛ. Then the entire function f̂ is non-zero
and vanishes on Λ. But non-zero entire functions cannot vanish on sets
with finite accumulation points.

A study of zero sets of PWa-functions can give many more results
on completeness of complex exponentials. This idea was first used by
Payley and Wiener themselves and later perfected by Levinson in his
classical book [2] of 1940, that remains one of the best books in the
area. One of the first fundamental results on completeness obtained
this way is the following theorem mentioned in the last lecture.

Theorem 1 (Paley and Wiener, 1934).

R(Λ) > D̄(Λ) = lim sup
x→∞

n#(Λ ∩ (0, x))

x
.
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The idea of the proof is simple. One needs to show that if F ∈ PWa

then the sequence of its real positive zeros N cannot satisfy D̄(N) > a.
This can be done using standard methods of complex analysis, such
as Jensen’s inequality. (To complete the details of the proof is a good
exercise.)

This theorem started a long and intensive hunt for the formula for
R(Λ) in terms of densities. The upper density D̄(Λ), or its various
derivations, proved to be insufficient for that goal, as follows from the
following historic examples.

Example 1 (Kahane, 1959). There exits Λ ⊂ R such that D̄(Λ) = 0
but R(Λ) =∞.

In other words, even a very ’thin’ sequence of frequencies, in terms
of upper density, can generate a sequence of exponentials that will be
complete in L2 on any finite interval.

In Kahane’s example the sequence had large clusters (multiplicities)
of points. An immediate questions that followed naturally from his
construction was if such clustering is necessary for such a sequence. In
particular it was still unclear if a separated sequence can produce a
similar example. A sequence Λ = {λn} is separated if |λn−λk| > c > 0
for some c and all n 6= k. The new question was answered much quicker
with the following example by Koosis, ruining the remaining hopes for
the use of the upper density.

Example 2 (Koosis, 1960). There exists Λ ⊂ Z such that D̄(Λ) = 0
but R(Λ) = 1.

Notice, that since Λ ⊂ Z, R(Λ) ≤ R(Z) = 1. Hence, Koosis’ example
gives a subsequence, much thinner than Z, that has maximal possible
radius of completeness.

Nevertheless, it turned out that the equation in the Payley-Wiener
result will hold if one replaces the upper density with a more delicate
density found in the early sixties by Beurling and Malliavin. We now
pass to the definition of the Beurling-Malliavin (effective) density of a
real discrete sequence and a dual density that will be used later in the
course.

If {In} is a sequence of disjoint intervals on R, we call it short if∑ |In|2

1 + dist2(0, In)
<∞

and long otherwise.
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Let us point out some simple examples and properties of long (short)
sequences of intervals. If |In| < C then {In} is short:∑

�
∑ 1

n2
.

Also, In = (na, (n+ 1)a) is short for any a > 0:∑
�
∑ 1

n2
.

At the same time, a subsequence of diadic intervals, In = (2nk , 2nk+1),
is long for any nk ↗∞, no mater how rare:∑

� 1 + 1 + 1 + ...

If Λ is a sequence of real points define its exterior BM density (effective
BM density) as

D∗(Λ) = sup{d | ∃ long {In} such that #(Λ ∩ In) > d|In|}, ∀n}

Let us point out the following obvious properties of the new density:

D∗(Λ) ≥ D̄(Λ)

and
D∗(Z) = D∗(N) = 1, D∗(CZ) = D∗(CN) = C−1.

A dual definition is used to introduce the interior BM density:

D∗(Λ) = inf{d | ∃ long {In} such that #(Λ ∩ In) 6 d|In|}, ∀n}.

We postpone the discussion of the interior density until future lectures.

An alternative definition of the two densities, that proves to be more
convenient in some of the applications, can be given as follows.

For a discrete sequence Λ ⊂ R we denote by nΛ(x) its counting function,
i.e. the step function on R, that is constant between any two points of
Λ, jumps up by 1 at each point of Λ and is equal to 0 at 0. We say
that Λ is a-regular if ∫

|nΛ(x)− ax|
1 + x2

<∞.

On other words, a sequence is a-regular if it is close to the arithmeti-
cal progression a−1Z, in the sense that the difference between their
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counting functions is summable with respect to the Poisson weight
dx/(1 + x2).

The exterior density, introduced above, can be equivalently defined as

D∗(Λ) := inf{a | ∃ a-regular supsequence Λ′ ⊃ Λ}.

Similarly, for the interior density we have

D∗(Λ) := sup{a | ∃ a-regular subsequence Λ′ ⊂ Λ}.
This definition shows why the terms ’exterior’ and ’interior’ were used
by Beurling and Malliavin in the names of their densities.

Now we are ready to formulate one of the deepest theorems of the 20th
century Harmonic Analysis.

Theorem 2 (Beurling and Malliavin, around 1961). Let Λ be a discrete
real sequence. Then

R(Λ) = D∗(Λ).

(The family EΛ = {eiλz, λ ∈ Λ} is complete in L2 on any interval
of length less than 2πD∗(Λ) and incomplete on any interval of length
more than 2πD∗(Λ).)

As was mentioned at the beginning of the lecture, the formula extends
to the general case Λ ⊂ C as follows. If Λ satisfies the Blaschke condi-
tion

(B),
∑
λ∈Λ

∣∣= λ−1
∣∣ <∞,

then R(Λ) = πDeff(Λ∗), where

Λ∗ =
{
λ∗| λ∗ :=

[
< λ−1

]−1
, λ ∈ Λ

}
,

and R(Λ) =∞ if Λ 6∈ (B).

Exercises.

1) Prove equivalence of the two definitions of BM densities.

2) If D∗(Λ1) = a and D∗(Λ2) = b, what can be said about D∗(Λ1 ∩
Λ2), D∗(Λ1 ∪ Λ2), D∗(Λ1 \ Λ2)? The same question about D∗.

3) Using the Beurling-Malliavin theorem, produce real sequences that
satisfy the conditions of Kahane’s and Koosis’ examples.

4) If 0 ≤ a ≤ ∞, ε > 0 and Λ is a sequence such that R(Λ) = a, show
that the sequence of complex exponentials EΛ contains infinitely many
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disjoint subsequences such that each of the subsequences is complete
in L2([0, a− ε]).
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