
Lecture 8: Examples of Multi-Parameter Carleson Measures

Now that we know the story for Carleson measures in the multi-parameter setting is
more complicated, our goal should be to attempt to gain some understanding of examples
of Carleson measures. Again for simplicity we restrict to the case of two parameters, and
will focus on the case of the bidisc D2 (or equivalently, the bi-upper half plane) since it
contains all the main ideas necessary to understand the subtleties of the examples associated
to Carleson measures in two parameters.

First, recall that given an open set Ω ⊂ T2, we form the tent over Ω to be the union of
the products of the rectangles R = I × J with I, J ⊂ T and I on the boundary of the first
disc, J on the boundary of the second disc, and R ⊂ Ω. Namely,

S(Ω) =
⋃
R⊂Ω

S(I)× S(J).

Here S(I) is the (one-parameter) tent over the interval I.
We now will focus on a special example of Carleson measures:

Theorem 0.1 (Chang [1], Fefferman [2]). Let f ∈ L∞(T2), and let v(z, w) denote the
multiple Poisson extension of f to the bidisc D2. Then for every open set Ω ⊂ T2 we have∫∫

S(Ω)

|∇z∇wv(z, w)|2 log
1

|z|
log

1

|w|
dA(z)dA(w) . |Ω| .

The theorem above is the core ingredient in understanding the duality of H1 and BMO
on the bidisc. The first proof of this fact was given by Chang in [1], with an alternate proof
given by Fefferman in [2]. We will follow the approach by Fefferman in this lecture.

The corresponding statement on the bi-upper half plane is the following.

Theorem 0.2 (Chang [1], Fefferman [2]). Let f ∈ L∞(R2), and let v(z1, z2) denote the
multiple Poisson extension of f to the bidisc R2

+ × R2
+. Then for every open set Ω ⊂ R2 we

have ∫∫
S(Ω)

|∇1∇2v(z1, z2)|2 y1y2dA(z1)dA(z2) . |Ω| .

Here zj = xj + iyj.

We will focus on proving this Theorem now. As a point of strategy, in the proof below,
we will seeking to prove estimates of the form

X ≤ CY

where C is some absolute constant. Here X will be things like the left hand side of the
estimate 0.2, and Y is the right hand side. Note that we can prove a weaker estimate,

X ≤ AY +BX1/2Y 1/2

and then will be able to deduce the corresponding estimates X ≤ C ′Y for some worse
constant C ′. In some cases below we will be able to deduce the good estimate we are after,
while in other cases, we should aim for the second worse estimate.
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1. Proof of Theorem 0.2

For the rest of the proof going forward, we make the following assumptions and notational
conventions. First, we suppose that f ∈ L∞(R2) with ‖f‖∞ = 10−10. As before v will
denote the multiple Poisson extension of the function f , and u will denote the multiple
Poisson extension of the function χΩ.

1.1. Preliminary Lemmas. Now we collect some key lemmas.

Lemma 1.1. Let u denote the multiple Poisson integral of χΩ. The for some constant δ > 0
we have

u(z1, z2) ≥ δ ∀z ∈ S(Ω).

Proof. The idea behind this proof is exactly what happens in one variable. We can estimate
the multiple Poisson kernel Py1(x1)Py2(x2) from below by

Py1(x1)Py2(x2) &
1

2y1

χ[−cy1,cy1](x1)
1

2y2

χ[−cy2,cy2](x2).

If we have (z1, z2) = (x1 + iy1, x2 + iy2) ∈ S(Ω), then for some intervals Ij with |Ij| & yj we
have (x1, x2) ∈ I1 × I2 ⊂ Ω. This then allows us to conclude that

u(z1, z2) & χΩ ∗
(

1

2y1

χ[−cy1,cy1](x1)
1

2y2

χ[−cy2,cy2](x2)

)
& δ > 0

since for appropriate choice of constants we will have that [x1−cy1, x1+cy1]×[x2−cy2, x2+cy2]
have some fixed fraction of its area contained in Ω. �

Lemma 1.2. For u the multiple Poisson integral of χΩ, we have∫
R2

+×R2
+

(
|∇1∇2u|2 + |∇1u|2 |∇2u|2

)
y1y2dA(z1)dA(z2) . |Ω|

Proof. The idea behind this Lemma is very simple. We will apply Green’s formula to the
function u4 +u2 and then just compute. Some of the terms we are interested in will immedi-
ately appear when computing. We will be left with many remainder terms, but each of these
remainder terms can be hidden back on the other side. Let’s now carry out this strategy.

Lets first apply Green’s formula to find that∫
R2

+×R2
+

∆1∆2(u4 + u2)y1y2dA(z1)dA(z2) =

∫
R2

(χ4
Ω + χ2

Ω)dx = 2 |Ω|

Next compute ∆1∆2(u4 + u2). Basic calculus lets us get that this can be written as

∆1∆2(u4 + u2) = (2 + 12u2) |∇1∇2u|2 + 24 |∇1u|2 |∇2u|2 + Remainder.

Now, consider the quantity

(1.1) G =

∫
R2

+×R2
+

(
(2 + 12u2) |∇1∇2u|2 + 24 |∇1u|2 |∇2u|2

)
y1y2dA(z1)dA(z2).

We claim that the remainder terms can be handled by some multiple of G. There are two
types of typical terms that we need to consider, those that arise from computing ∆1∆2u

2

and those that come from ∆1∆2u
4. Typical terms that arise when computing ∆1∆2u

2 are
like

∂1∂1∂2u∂2u or ∂1∂2u∂2∂1u.
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Other terms of this type similar in nature and can be handled by the same arguments as we
now give. For the first of these terms, we actually have 0 since we have taken the multiple
Poisson extension. The second term is clearly controlled by terms like those appearing as
the first term in (1.1). More precisely, we have∣∣∣∣∣

∫
R2

+×R2
+

∂1∂2u∂2∂1uy1y2dA(z1)dA(z2)

∣∣∣∣∣ ≤
∫

R2
+×R2

+

|∇1∇2u|2 y1y2dA(z1)dA(z2)

by Cauchy-Schwarz.
Handling the terms that arise from ∆1∆2u

4 are similar. Here, a typical term that needs
to be estimated is ∫

R2
+×R2

+

u∂1u∂2u∂1∂2uy1y2dA(z1)dA(z2).

But, this term is easily controlled by(∫
R2

+×R2
+

|∇1u|2 |∇2u|2 y1y2dA(z1)dA(z2)

) 1
2
(∫

R2
+×R2

+

u2 |∇1∇2u|2 y1y2dA(z1)dA(z2)

) 1
2

which is in turn controlled by the term (1.1).
Now instead of the function u, we consider the function 10−10u. Using these estimates

from above one can now show that

G ≤ C |Ω|+ 10−8G

which then gives the claim in the Lemma. �

Lemma 1.3. For u the multiple Poisson integral of χΩ, and for v the multiple Poisson
integral of f we have ∫

R2
+×R2

+

|∂1u∂2v|2 y1y2dA(z1)dA(z2) . |Ω| .

Proof. One starts from the function ∂1u∂1uv
2 and computes ∆2 of this function. Again,

calculus gives that

∆2(∂1u∂1uv
2) = 2 |∂1u∂2v|+ Remainder.

Thus, one is left showing that all the remainder terms, when estimated, contribute a constant
times either |Ω| or

|Ω|
1
2

(∫
R2

+×R2
+

|∂1u∂2v|2 y1y2dA(z1)dA(z2)

) 1
2

.

These are rather straightforward applications of Lemma 1.2 or using one-dimensional argu-
ments. We leave the computations to the reader. �

Note that we would also have a symmetric version of this Lemma where the roles of the
derivatives falling on u and v had been swapped. We don’t state this as an explicit lemma,
but just note that we have flexibility when applying Lemma 1.3.
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1.2. Proof Proper of Theorem 0.2. Now to prove the main result we will use a similar
strategy as what appeared when proving Lemma 1.2. We will apply Green’s formula to a
certain function. When we go to the boundary, this function will obviously produce the
desired estimate of |Ω|, and then we will be left with computing terms on the domain
R2

+ × R2
+. Some of these terms will be directly controllable and produce the terms we want

to estimate, while the others will be remainder terms and we will have to show that each of

these remainder terms contributes at most |Ω| or |Ω|
1
2 times another quantity that we can

control. We now proceed to carry out this strategy.
First take a function ϕ : R → R such that ϕ(x) ≥ 0 for all x ∈ R, ϕ is non-decreasing,

ϕ(x) = 1 if x ≥ δ, ϕ(x) = 0 for x ≤ δ
2
, and

∣∣ϕ(j)(x)
∣∣2 . |ϕ| for j = 1, 2, 3, 4.

Let ψ(x) = x2 + x4, and consider the function ϕ(u)ψ(v). First, by Green’s Theorem we
have∫

R2
+×R2

+

∆1∆2(ϕ(u)ψ(v))y1y2dA(z1)dA(z2) =

∫
R2

ϕ(u)ψ(v) =

∫
Ω

v2 + v4dx1dx2 . |Ω| .

Here we have used the fact that on the boundary ϕ(u) = ϕ(χΩ), and that v = f on the
boundary, and so is bounded. Now we proceed to compute

∆1∆2(ϕ(u)ψ(v)) =
4∑

k,j=0

ϕ(k)ψ(j)Ikj(u, v).

Here Ikj is an expression involving derivatives of the functions u and v (and some of the
Ikj = 0).

Consider the terms corresponding to j = 2, 4, k = 0 and compute that

I02 + I04 = (2 + 12v2) |∇1∇2v|2 + 24 |∇1v|2 |∇2v|2

and so we have the corresponding integrals related to these terms I02 + I04

M =

∫
R2

+×R2
+

(
(2 + 12v2) |∇1∇2v|2 + 24 |∇1v|2 |∇2v|2

)
ϕy1y2dA(z1)dA(z2).

It is clear that we can show that M . |Ω|, then we will have a proof of our Theorem. Our
plan now is to show that every term that arises when we computed the expression from

Green’s Formula can be controlled by M
1
2 |Ω|

1
2 or by |Ω|.

First note that if we compute I03, then we will have that the term I03 ≤ 24
1010 (I02 + I04).

We have that

I03 = ∂1v∂1∂2v∂2v + ∂1v∂2v∂1∂2v + ∂1v∂1∂2v∂2v + ∂1v∂2v∂1∂2v + ∂1v∂1v∂2v∂2v.

Once you see this, it becomes obvious that∣∣∣∣∣
∫

R2
+×R2

+

24vI03y1y2ϕdA(z1)dA(z2)

∣∣∣∣∣ ≤ 24

1010
M

The terms I00 and I01 are easier (no contribution at all actually). Using this estimate we
then see that(

1− 24

1010

)
M ≤ |Ω|+

4∑
k=1

4∑
j=0

∣∣∣∣∣
∫

R2
+×R2

+

ϕ(k)ψ(j)Ikj(u, v)y1y2dA(z1)dA(z2)

∣∣∣∣∣ .
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The plan is now to show that each of the terms on the right hand side is controlled by the
desired quantities. We won’t show this for all the terms, but will give some representative
terms that provide the main ideas. To obtain these estimates we will have to use Lemmas
1.2 and 1.3.

First, consider the case of j = 0 and 2 ≤ k ≤ 4 (again we get no contribution from the
k = 1 term. Since we have computed the term I03, for concreteness lets consider the term
I30. In this case, we are attempting to control terms that look like∣∣∣∣∣

∫
R2

+×R2
+

ϕ(3)(u)ψ(v)∂1u∂1∂2u∂2uy1y2dA(z1)dA(z2)

∣∣∣∣∣
And it is easy to see by Cauchy-Schwarz and using obvious estimates on ψ(v) and ϕ that
this term above is controlled by(∫

R2
+×R2

+

∣∣∂1u
∣∣2 ∣∣∂2u

∣∣2 y1y2dA(z1)dA(z2)

) 1
2
(∫

R2
+×R2

+

∣∣∂1∂2u
∣∣2 y1y2dA(z1)dA(z2)

) 1
2

. |Ω| .

Where the last inequality follows from Lemma 1.2. All the other terms in I30 are handled
identically. The terms corresponding to I20 and I40 are also handled directly by Lemma 1.2.

It is easy to see that for terms that arise in I12, you are left estimating integrals that look
like: ∫

R2
+×R2

+

ϕ(2)(4v3 + 2v)
(
∂2u∂1∂2u∂1v

)
y1y2dA(z1)dA(z2)

However, it is very easy to see that terms like this can be easily controlled using Hölder’s
and then applicaiton of Lemma 1.2 and one application of Lemma 1.3. Thus, terms like this
contribute at most |Ω|. There are other terms that can arise when computing I12, and they
look like ∫

R2
+×R2

+

ϕ(2)(4v3 + 2v)
(
∂2u∂1∂2v∂1u

)
y1y2dA(z1)dA(z2)

But this term can then easily be controlled by Hölder and Lemma 1.2 to arrive at an estimate

of the form M
1
2 |Ω|

1
2 . The full details are left to the reader.

Finally, we consider the expressions that arise when studying I13 + I12, namely. Now in
the integral

(1.2)

∫
R2

+×R2
+

ϕ′(ψ(3)I13(u, v) + ψ(2)I12(u, v))y1y2dA(z1)dA(z2)

we collect the terms for which we have u appearing with 2 derivatives, and v appearing with
either 2 derivatives, or two copies of v, each with one derivative, call this sum H. Now it is
easy to see that for terms that appear in this sum, we have

|H| .M
1
2 |Ω|

1
2 .

The two derivatives of u are controlled directly by Lemma 1.2, and the term involving the
derivatives of v are estimated as term M .

In in (1.2) collect all the terms that have u appears by its first derivative ∂2u and call the
term K2. Similarly collect the terms in (1.2) that have u appearing by ∂1u, ∂1u and ∂2u and
call these terms K1, K1 and K2 respectively. It then suffices to show that for each of these
terms we have

|Kj| . |Ω|
1
2 |M |

1
2 ∀j = 1, 2, 1, 2.
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These estimates will all follow from Lemma 1.2 and 1.3. To carry out this program is lots
of computations with derivatives. Do so, we find the following expression (assuming I didn’t
make a mistake!)

I13 = ∂1v∂1v∂2v∂2u+ ∂1v∂1v∂2u∂2v + ∂1v∂1u∂2v∂2u+ ∂1u∂1v∂2v∂2v.

For expressions like this, it is easy to see how to use Lemma 1.2 and 1.3 along with the

properties of ϕ and ψ to obtain the estimate |Ω|
1
2 M

1
2 .

The term I12 can be computed similarly (a good exercise in derivative computation) and
here we see that we have the terms corresponding to the second derivatives of u, and then
expressions like:

∂1v∂1∂2v∂u
and permutations of the various derivatives. In all these cases we can apply Lemma 1.2 and
1.3 as well.

2. Extension of the Main Result in this Lecture

Using the main ideas from this lecture it is possible to extend the work we have done and
obtain the following characterization of the dual of H1(D2) obtained by Chang:

Theorem 2.1 (Chang, [1]). Let f denote a function on T2 whose multiple Poisson integral
on the bidisc D2 is denoted by u. For f in the dual of H1(T2) we have the following Carleson
measure condition satisfied:

1

|Ω|

∫
S(Ω)

|∇1∇2u(z1, z2)|2 log
1

|z1|
log

1

|z2|
dA(z1)dA(z2) . 1

where Ω ⊂ T2 is an arbitrary open set, S(Ω) is the tent over the open set, and M is inde-
pendent of Ω.

There is of course more work in obtaining this Theorem, but the interested reader now
has some of the necessary tools by which to understand more of what is going on for this
Carleson measure condition.
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