
Lecture 7: Multi-Parameter Carleson Measures

In the last lecture we introduced Carleson measures in one parameter. Let Q ⊂ Rn be a
cube and let

T (Q) = {(x, y) : x ∈ Q, 0 ≤ y ≤ `(Q)}
Recall that a measure µ is a Carleson measure if for all cubes Q ⊂ Rn we have a constant C
such that

(0.1) µ (T (Q)) ≤ C |Q| .

Now, note that we also have another way by which we can test is a measure is Carleson.
For simplicity, we focus on the case n = 1. Let Ω ⊂ R be an arbitrary open set. Then it is
easy to see that a measure is Carleson if and only if for all open sets Ω ⊂ R we have

(0.2) µ (T (Ω)) ≤ C |Ω| .

It is clear that if (0.2) holds, then so does (0.1). Now, suppose that (0.1) holds. Since Ω is
a open set in R, there exists disjoint open intervals {Ik} such that Ω = ∪Ik. Consider now
T (Ω), and note

µ (T (Ω)) ≤ µ (T (∪Ik))
≤

∑
k

µ(T (Ik))

≤ C
∑
k

|Ik| = C |Ω| .

A similar argument applies when Ω ⊂ Rn is open. In this case, we use the Whitney Decom-
position of an open set. The interested reader can see [2] for the details of this decomposition
of an open set in Rn.

Thus we have two possible ways by which to study Carleson measures in one-parameter.
We can either form the tent over arbitrary open sets, or we can form the tent over cubes.
This suggests that we have two competing definitions of Carleson measures in the multi-
parameter setting. For simplicity, we will focus on the case of when Ω ⊂ R2 is open. One
possible candidate is:

(0.3) µ (T (R)) ≤ C |R| ∀R = I × J

Here the tent over the rectangle R is given by T (R) = T (I) × T (J). The other competing
definition is the following:

(0.4) µ (T (Ω)) ≤ C |Ω| ∀Ω ⊂ R2.

Again, it is immediate that (0.4) implies (0.3). But, it is not so clear that (0.3) should (or
could) imply (0.4). One reason to be suspicious about the equivalence between (0.3) and
(0.4) is that there isn’t a “good” way to decompose an open set into disjoint rectangles, and
so the idea of proof above appears to be problematic.
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Our goal in this lecture is to gain an understanding of which is the right notion of Carleson
measure in the multi-parameter setting.

1. Preliminaries

Note that in the last lecture we (essentially) proved the following Theorem.

Theorem 1.1 (Carleson’s Embedding Theorem). Let f ∈ Lp(T) and let u(z) denote the
Poisson integral of f . If µ is a positive measure on the disc D, then the following are
equivalent

(a) µ is a Carleson measure, i.e., µ (T (I)) ≤ C(µ) |I| for any I ⊂ T;
(b) For 1 < p <∞ and for all f ∈ Lp(T), u(z) ∈ Lp(D;µ);
(c) For 1 < p <∞∫

D
|u(z)|p dµ(z) ≤ C(p)

∫
T
|f(t)|p dt ∀f ∈ Lp(T).

It was proved explicitly in the case of R and the upper half plane, but without much work,
the proof we gave can be modified to handle the case in the Theorem above.

Based on this, and as an attempt to understand the multi-parameter Carleson measures,
we should attempt to study functions with are harmonic in each variable on the bidisc D2.
And, we should attempt to understand the measures µ such that we have

(1.1)

∫
D2

|u(z, w)|p dµ(z, w) ≤ C(p)

∫
T2

|f(t, s)|p dtds ∀f ∈ Lp(T2),

where u is the corresponding extension. It is obvious that a simple necessary condition is
the following estimate

µ(T (R)) ≤ C |R| .
This is nothing other then (0.3). To see that (1.1) implies estimate (0.3) holds, simply
consider functions u(z, w) = f(z)g(w) where f and g are harmonic.

One of our main results from this lecture will be the following Theorem of Carleson.

Theorem 1.2 (Carleson, [1]). There exists a measure µ such that (0.3) holds, but (1.1) fails
for any p ≥ 1.

We first reduce the result we want to prove to a covering problem. Let R = {R} be a
collection of rectangles with the property that for any rectangle Q we have

(1.2)
∑

R⊂Q:R∈R

|R| ≤ A |Q| .

Now suppose that (0.3) implies (1.1). Then we claim that for the collection of rectangles in
R that we have

(1.3)
∑
R∈R

|R| . AC(p)

∣∣∣∣∣ ⋃
R∈R

R

∣∣∣∣∣
where the implied constant is numerical, and A is the constant appearing in (1.2) and C(p)
is the constant appearing in (1.1).

We need to construct our (problem) measure µ now. Let a = 1
100A

and for each rectangle
R ∈ R, we form the following point in D2,

(zR, wR) = ((1− |I|)c(I), (1− |J |)c(J))
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where c(I) is the center of the corresponding interval I. Then, define the measure µ as

µ =
∑
R∈R

a |R| δ(zR,wR).

Namely, µ is a weighted sum of Dirac functions at the points constructed. Then using (1.2)
we can easily see that for any rectangle S ⊂ T2 that we have

µ (T (S)) . |S| .

Now, let f(s, t) = χS
RR(s, t), and u(z, w) the corresponding bi-harmonic function. Then

using (1.1) we find that

C(p)

∣∣∣∣∣ ⋃
R∈R

R

∣∣∣∣∣ = C(p)

∫
T2

|f(s, t)|p dsdt

≥
∫

D2

|u(z, w)|p dµ(z, w)

= a
∑
R∈R

|R|u(zR, wR)p

Next, note that u(zR, wR) & 1 for some absolute constant. To see this, one uses the Poisson
representation for the function u(zR, wR), the choice of point (zR, wR), and obvious estimates.
This is much as the same estimates in the case of one-parameter, and so we leave them to
the reader. So we have that ∑

R∈R

|R| . AC(p)

∣∣∣∣∣ ⋃
R∈R

R

∣∣∣∣∣
Since we are after a contradiction, the idea now becomes clear. We need to construct a

collection of rectangles R such that
∑

R∈R |R| is large, say,∑
R∈R

|R| = 1

and ∣∣∣∣∣ ⋃
R∈R

R

∣∣∣∣∣
can be made as small as we wish.

2. Construction of the Counterexample

We are going to follow the general idea as illustrated by Carleson, [1], and as further
explained by Tao, [3]. First, define a quilt to be a finite collection of rectangles R in the unit
square [0, 1]× [0, 1] := [0, 1]2 such that

(2.1)
∑
R∈R

|R| = 1

and

(2.2)
∑

R∈R:R⊂Q

|R| ≤ |Q|
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for every dyadic cube Q ⊂ [0, 1]2 (a dyadic rectangle Q = I × J is one for which the sides I,
J are dyadic intervals). The first condition is saying that our quilt has “large” area in the
unit square, while the second condition is related to (0.3). Also note that quilts clearly exist
since as one can easily check {[0, 1]2} is a quilt. Define the area of our quilt to be∣∣∣∣∣ ⋃

R∈R

R

∣∣∣∣∣
Now, we show that it is possible to find quilts with area as small as we wish.

Lemma 2.1. There exist quilts of arbitrarily small area. Namely, for any ε > 0 there exists
a quilt with area less than ε.

Note now that Lemma 2.1 then gives us the desired counter example to Theorem 1.2
Here is the idea we are aiming for in the proof below. We have a quilt of rectangles R

that have desired area. The plan is to take each rectangle in the collection and “shrink” it
on one of its sides, and then place “copies” of these rectangles back inside the unit square,
but well separated. This shrinking and coping will be done in both the horizontal and
vertical directions. The shrinking and copying should be done in a manner that allows for
the collections to be disjoint, which will be useful in proving certain estimates on the desired
sets. For the construction of the new quilt, it will (more or less) obvious that we still have
the covering property, (2.1) and the “embedding” property (2.2). Showing that the area of
the new quilt is the desired amount is the slightly more complicated part. The fact that
the resulting area is small will be due to the new quilt having lots of overlap. Here we have
tried to follow the ideas of the note by Tao, [3]. The note by Tao is doing a fantastic job of
extracting the key ideas from the more complicated paper by Carleson [1].

A very useful exercise to consider in the proof of this Lemma is the following example.
One should start with the following quilt:

R =

{[
0,

1

2

]
×
[
0,

1

2

]
,

[
0,

1

2

]
×
[

1

2
, 1

]
,

[
1

2
, 1

]
×
[
0,

1

2

]
,

[
1

2
, 1

]
×
[

1

2
, 1

]}
.

If one performs the “scaling” and “copying”, it will be obvious that these versions will have
a certain disjointness property. It will also be clear from this example that the area of the
new quilt is what appears in the claim of the Lemma.

Proof. Given a quilt R with area α we will construct a new quilt R′ that has area α − α2

4
.

Then to construct any quilt with small enough area, we simply will start with the quilt [0, 1]2

and iterate the necessary construction as often as necessary to obtain the lemma.
Fix the finite collection R and the area of the quilt α (think of this as an iterated version

of the unit quilt). Let N ≥ 1 be a sufficiently large integer so that every rectangle in R has
length and width at least 2−N . For each integer 0 ≤ j ≤ 2N−1, define affine transformations

Axj (x, y) =

(
j

2N
+

x

2N+1
, y

)
Ayj (x, y) =

(
x,

j

2N
+

y

2N+1

)
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We then define a new quilt R′ from our old quilt using these transformations. Set

R′ =
⋃

s∈{x,y}

2N⋃
j=1

Asj (R)

Lets first note that (2.1) holds for the collection R′. If R = I × J = (s1, s2)× (t1, t2) then
we see that

Axj (R) =

(
j

2N
+

s1

2N+1
,
j

2N
+

s2

2N+1

)
×(t1, t2) and Ayj (R) = (s1, s2)×

(
j

2N
+

t1
2N+1

,
j

2N
+

t2
2N+1

)
Note that this implies that the families of rectangles Asj(R) are disjoint. In fact, one can
show that we have Asj(R) being disjoint in j for fixed s. Essentially this reduces to the
fact that each rectangle is translated by some amount, and the side lengths of the resulting
rectangle are decreased by a smaller amount. Also note that∣∣Asj (R)

∣∣ = 2−N−1 |R| ∀0 ≤ j ≤ 2N − 1 and s ∈ {x, y}.

From this last equality we have that∑
As

j(R)∈R′

∣∣Asj(R)
∣∣ =

∑
R∈R

|R| = 1

and so our new quilt satisfies (2.1). Before we show that the quilt satisfies the conditions of
(2.2), we next show that this procedure decreases the area of our quilts.

Since the collections Axj (R) are disjoint, we have∣∣∣∣∣∣
2N−1⋃
j=0

⋃
R∈Ax

j (R)

R

∣∣∣∣∣∣ =
2N−1∑
j=0

∣∣∣∣∣∣
⋃

R∈Ax
j (R)

R

∣∣∣∣∣∣ =
2N−1∑
j=0

2−N−1α =
α

2
.

Similarly, we have ∣∣∣∣∣∣
2N−1⋃
j=0

⋃
R∈Ay

j (R)

R

∣∣∣∣∣∣ =
2N−1∑
j=0

∣∣∣∣∣∣
⋃

R∈Ay
j (R)

R

∣∣∣∣∣∣ =
α

2
.

So, it suffices to show that

(2.3)

∣∣∣∣∣∣
2N−1⋃

j=0

⋃
R∈Ax

j (R)

R

⋂2N−1⋃
k=0

⋃
R∈Ay

k(R)

R

∣∣∣∣∣∣ =
α2

4
.

and then note by the inclusion-exclusion principle that∣∣∣∣∣ ⋃
R∈R′

R

∣∣∣∣∣ = α− α2

4
.

Now to show (2.3), let Ij = [ j
2N ,

j+ 1
2

2N ). Then, we can first write the set we are studying as∣∣∣∣∣∣
2N−1⋃

j=0

⋃
R∈Ax

j (R)

R

⋂2N−1⋃
k=0

⋃
R∈Ay

k(R)

R

∣∣∣∣∣∣ =
2N−1∑
j=0

2N−1∑
k=0

∣∣∣∣∣∣
Ij × Ik ∩ ⋃

R∈Ax
j (R)

R

⋂Ij × Ik ∩ ⋃
R∈Ay

k(R)

R

∣∣∣∣∣∣ .
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This decomposition follows from the scaling and copying we have done. Now observe that
we can recognize this last expression as∣∣∣∣∣∣

2N−1⋃
j=0

⋃
R∈Ax

j (R)

R

⋂2N−1⋃
k=0

⋃
R∈Ay

k(R)

R

∣∣∣∣∣∣ =
2N−1∑
j=0

2N−1∑
k=0

|Ej,k × Ik ∩ Ij × Fj,k| .

Here the sets Ej,k is a collection of intervals in the x direction, with a similar statement
applying to the sets Fj,k. It turns out that we have

2N−1∑
j=0

|Fj,k| =
2N−1∑
k=0

|Ej,k| =
α

2
.

(Drawing pictures at this point is very helpful in seeing that this it true, and is the only way
I could convince myself; the example suggested before this Lemma is very helpful!) Once we
have this, then we arrive at∣∣∣∣∣∣

2N−1⋃
j=0

⋃
R∈Ax

j (R)

R

⋂2N−1⋃
k=0

⋃
R∈Ay

k(R)

R

∣∣∣∣∣∣ =
2N−1∑
j=0

2N−1∑
k=0

|Ej,k| |Fj,k| =
α2

4
,

and then we have the desired area of the new quilt:∣∣∣∣∣ ⋃
R∈R′

R

∣∣∣∣∣ = α− α2

4
.

Finally, we turn to showing (2.2) for our collection R′. Let Q = I × J be any dyadic
rectangle with sides |I| = 2−k1 and |J | = 2−k2 . First, suppose that k1 > N . Then, if the sum
appearing in (2.2) empty, then we trivially have (2.2) holding. If the sum is non-empty, then
we have that at most one of the summands Axj (R) can contribute. However, if this is true,
then since the collection R satisfies (2.2), then we have that the collection Axj (R) satisfies

the condition as well, but with a larger constant, 2N (just scale the rectangles appearing in
(2.2) but for the collection R). The case of k2 > N is handled identically.

It remains to address the case when k1, k2 ≤ N . In this case,the first side of Q has length
2−k1 > 2−N , and so will cover more of the corresponding collections Axj (R). In fact, there

can be at most 2N−k1 collections from Axj (R) that can contribute to the sum. By rescaling,

we can easily see that each of these collections can contribute at most 2−N−1−k2 . We then
have the desired estimate for (2.2) in this case. The case of Ayj (R) is similar.

The careful reader will note that we really only focused on dyadic rectangles. However, if
Q is an arbitrary rectangle then it is possible to cover Q by dyadic rectangles Ti with

Q ⊂
4⋃
i=1

Ti

where each rectangle Ti is dyadic, and 1
4
|Q| ≤ |Ti| ≤ |Q|. Since all the rectangles in R′

are dyadic, using this last observation, we have that result for all rectangles, with a worse
constant.

�
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