
Lecture 3: Carleson Measures via Harmonic Analysis

Much of the argument from this section is taken from the book by Garnett, [1]. The
interested reader can also see variants of this argument in the book by Stein, [2]. The
arguments in Stein are carried out more generally in Rn. Since the ideas are the essentially
the same, we will work in the case when one can draw simple pictures to convince oneself of
what is going on.

We need to make a excursion into maximal functions and non-tangential maximal func-
tions. Let R denote the real line and H the upper half plane.

Let I denote an interval in R. Recall, the Hardy-Littlewood maximal function of f is
defined by

Mf(x) = sup
x∈I

1

|I|

∫
I

|f(t)|dt.

And that,

Theorem 0.1 (Hardy-Littlewood Maximal Theorem). If f ∈ Lp(R), 1 < p ≤ ∞, the Mf(t)
is finite almost everywhere.

(a) If f ∈ L1(R), then Mf is weak-type (1, 1),

|{t ∈ R : Mf(t) > λ}| ≤ 2

λ
‖f‖L1(R) ;

(b) If f ∈ Lp(R), with 1 < p ≤ ∞, then Mf ∈ Lp(R) and

‖Mf‖Lp(R) ≤ C(p) ‖f‖Lp(R)

with C(p) depending only on p.

The proof of this Theorem was given in the first lecture. We now define a related maximal
function on harmonic functions. First, recall that the Poisson kernel for the the upper half
plane H is given by

Pz(t) = Py(x− t) =
1

π
Im

(
1

t− z

)
=

1

π

y

(x− t)2 + y2
.

Theorem 0.2. For α > 0 and t ∈ R, let Γα(t) be the cone in H with vertex t and angle
2 tan−1 α,

Γα(t) = {(x, y) : |x− t| < αy, 0 < y <∞} .
Suppose that f ∈ L1

(
dt

1+t2

)
and let u(x, y) denote the Poisson extension of f(t),

u(x, y) =

∫
R
f(x− s)Py(s)ds

Then
sup

(x,y)∈Γα(t)

|u(x, y)| ≤ AαMf(t), t ∈ R

The expression on the left-hand side is called the non-tangential maximal function asso-
ciated to the function f , while the condition on the function f just makes sure that the
integral defining u converges.
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Proof. First, assume that t = 0. We focus now on points of the form (0, y) that lie on the
axis of the cone Γα(0). We have that

u(0, y) =

∫
R
Py(s)f(s)ds.

Now, note that the Poisson kernel is a positive even function which is decreasing for positive
s, so it is a convex combination of box kernels

1

2h
χ(−h,h)(s).

To see this, sketch the Poisson kernel and then it becomes obvious to see. Note that these
kernels are what appears in the definition of the maximal function Mf .

Now, take step functions hn(s) which are also nonnegative, even, and decreasing for s > 0
and such that hn(s) increases to Py(s). We have that

hn(s) =
N∑
j=1

ajχ(−xj ,xj)(s)

with aj ≥ 0 and ∫
R
hn(s)ds =

N∑
j=1

2xjaj ≤ 1 =

∫
R
Py(s)ds.

Using this we see that∣∣∣∣∫
R
hn(s)f(s)ds

∣∣∣∣ ≤ ∫
R
hn(s) |f(s)| ds

≤
N∑
j=1

2xjaj
1

2xj

∫ xj

−xj
|f(s)| ds

≤ Mf(0).

Now fix (x, y) ∈ Γα(0). Then we have that |x| < αy and Py(x − s) is majorized by a
positive even function ψ(s) which is decreasing on s > 0, such that∫

R
ψ(s)ds ≤ Aα.

Simply take ψ(s) = sup{|Py(x− t)| : |t| > s}. Then, approximating ψ by step functions hn
as before, we conclude in the same manner that∫

R
ψ(s) |f(s)| ds ≤ AαMf(0).

These put together imply that

|u(x, y)| ≤
∫

R
ψ(s) |f(s)| ds ≤ AαMf(0).

�

Exercise 0.3. Show that the same theorem remains true for the case of the unit disc D.
Here, the cone Γα(t) must be replaced by the set

Γα(eiθ) =
{
z ∈ D : |1− ze−iθ| < α(1− |z|)

}
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and one uses the Poisson kernel for the disc,

Pz(w) =
1− |z|2

|1− zw|2
.

One need only repeat the proof in this context.

Since the non-tangential maximal function will play a role for the rest of this section, we
will make a definition encapsulating what we have done. Fix α > 0 and consider the cone

Γα(t) = {z ∈ H : |x− t| < αy} t ∈ R.

For a harmonic function u on H, we define the non-tangential maximal function of u at
t ∈ R as

u∗(t) = sup
z∈Γα(t)

|u(z)|.

We then have the following theorem

Theorem 0.4. Let u(z) be harmonic in H and suppose that 1 ≤ p <∞. Assume that

sup
y

∫
R
|u(x+ iy)|pdx <∞.

If p > 1 then u∗(t) ∈ Lp(R) and

‖u∗‖pLp(R) ≤ C(p, α) sup
y

∫
R
|u(x+ iy)|pdx.

If p = 1 then u∗ is weak-type (1, 1) and

|{t ∈ R : u∗(t) > λ}| ≤ C(p, α)

λ
sup
y

∫
R
|u(x+ iy)|dx.

Here, the constant C(p, α) depends only on p and α.

Proof. Suppose that p > 1. Then, note that u(z) is the Poisson integral of a function
f ∈ Lp(R) and

‖f‖Lp(R) ≤ sup
y

(∫
R
|u(x+ iy)|pdx

) 1
p

By Theorem 0.2 we have that u∗ ≤ C(α)Mf . If we use this, along with Theorem 0.1 then
we see

‖u∗‖pLp(R) ≤ C(α) ‖Mf‖pLp(R)

≤ C(p, α) ‖f‖pLp(R)

≤ sup
y

(∫
R
|u(x+ iy)|pdx

) 1
p

.

�

Exercise 0.5. Complete the details of the proof when p = 1.
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We now, for the remainder of this section, take as the definition of a Carleson measure µ
on H as a measure for which,

µ(T (I)) ≤ C(µ)|I|

where I = (x0, x0 + h) and

T (I) = {z = x+ iy ∈ H : x0 < x < x0 + h, 0 < y < h}

We then begin with a Lemma that will allow us to give the necessary characterization of the
Carleson measures for H2(H). One can compare this with the related conditions for the case
of the disc D.

Exercise 0.6. Show that in the definition of a Carleson measure, one can take “any” sort
of reasonable geometric object to test over that uses one-parameter to describe its geometry.
For example, take any x ∈ R and r > 0 and consider the Br(x), ball of radius r centered at
x. Show that µ is a Carleson measure if and only if for any x ∈ R and r > 0 that

µ (Br(x) ∩H) ≤ Cr.

Lemma 0.7. Let µ be a positive measure on H and let α > 0. Then µ is a Carleson measure
if and only if there exists C(α) such that for every harmonic function u on H

µ ({z ∈ H : |u(z)| > λ}) ≤ C(α) |{t ∈ R : u∗(t) > λ}| λ > 0.

Moreover, we have that C1C(α) ≤ C(µ) ≤ C2C(α).

Proof. Take α = 1, the case of different α is left as an exercise. First, assume that µ is a
Carleson measure. Note that the set

{t : u∗(t) > λ}

is an open set, and so is a disjoint union of open intervals {Ij} with centers cj. Let Tj = T (Ij)
denote the corresponding tent

Tj =

{
z : |x− cj|+ y <

|Ij|
2

}
If it is the case that |u(z)| > λ, then on the interval {t ∈ R : |t− x| < y} we have that

u∗(t) > λ and that this interval is contained in one of the intervals Ij.
So by the computations above, it is the case that

{z ∈ H : |u(z)| > λ} ⊂
⋃
j

Tj

Thus, we have

µ ({z ∈ H : |u(z)| > λ}) ≤
∑
j

µ (Tj)

≤ C(µ)
∑
j

|Ij|

= C(µ) |{t ∈ R : u∗(t) > λ}| .
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Conversely, suppose that I ⊂ R is an open interval, I = (x0, x0 + h). Let u(z) = Py ∗ f(x)
where f(t) = 4λχI(t). Then, by the hypotheses of the lemma we have

µ (T (I)) ≤ C(α) |{t ∈ R : u∗(t) > λ}|

≤ C(α)

λ
‖f‖L1(R)

≤ C(α) |I| .

�

Exercise 0.8. Complete the details for the case of different α.

Exercise 0.9. Show that if z ∈ Γα(t) then z ∈ Γα(t0) for all {t0 : |x − t0| < αy}. Use this
to conclude that if |u(z)| > λ then u∗(t) > λ for {t : |x− t| < αy}

Exercise 0.10. Show that for u(z) = Py ∗ f(x) where f(t) = 4λχI(t) that |u(z)| > λ on
T (I). Hint: Draw a picture.

Using this we can conclude the proof of Carleson’s Embedding Theorem.

Theorem 0.11. Let f ∈ Lp(R) and let u(z) denote the Poisson integral of f . If µ is a
positive measure on the upper half plane, then the following are equivalent

(a) µ is a (geometric) Carleson measure, i.e., µ (T (I)) ≤ C(µ) |I| for any I ⊂ R;
(b) For 1 < p <∞ and for all f ∈ Lp(R), u(z) ∈ Lp(H;µ);
(c) For 1 < p <∞∫

H
|u(z)|p dµ(z) ≤ C(p)

∫
R
|f(t)|p dt ∀f ∈ Lp(R).

Proof. It is clear the (b) and (c) are equivalent. Also, we have already seen that if (c) holds,
then by testing on the box-type kernel then we have (a) holding as well.

It only remains to handle the case of (a) implies (c). To accomplish this, we use Lemma
0.7 and compute the integral via the distribution inequality.∫

H
|u(z)|p dµ(z) =

∫ λ

0

pλp−1{z ∈ H : |u(z)| > λ}dλ

≤ C(α)

∫ λ

0

pλp−1{t ∈ R : u∗(t) > λ}dλ

= C(α)

∫
R
|u∗(t)|p dt

≤ C(α)

∫
R
Mf(t)pdt

≤ C(α, p)

∫
R
|f(t)|p dt.

�
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