
Lecture 4: Multi-Parameter Calderón–Zygmund Operators

As we saw in the last lecture, if we are given a Calderón–Zygmund operator T , that is
represented by

Tf(x) = p.v.

∫
Rn
K(x− y)f(y)dy

and the kernel K satisfies some growth and cancellation conditions, then for 1 < p <∞ we
have that

‖Tf‖Lp(Rn) . ‖f‖Lp(Rn) .

Now we turn to the multi-parameter setting where we consider Lp(Rn × Rm) and are
interested in what a Calderón–Zygmund operator is, and if it is bounded. First, note that if
the kernel is really a product kernel, namely,

K(x− y) = K1(x1 − y1)K2(x2 − y2)

and if each of the kernels Kj(xj, yj) satisfy appropriate kernel estimates, then by a simple
application of Fubini’s Theorem we have that the operator

T (f)(x1, x2) = p.v.

∫
Rn

∫
Rm

K1(x1 − y1)K2(x2 − y2)f(y1, y2)dy1dy2

is bounded on Lp(Rn × Rm) when 1 < p < ∞. So in particular we have that the operators
H1H2, the composition of the Hilbert transform in the first and second variable, is a bounded
operator on Lp(R2) → Lp(R2). A similar statement applies when considering iterations of
Riesz transforms.

However, this argument needs to be modified when the kernel isn’t of this product type.
As soon as we move to the product setting in this regard, it turns out that that problem
becomes more interesting. In this lecture we will look at a special case of when multi-
parameter Calderón–Zygmund operators are bounded. To focus on ideas and avoid some of
the technicalities associated with the objects being studied, we will restrict to the case of
two-parameter Calderón–Zygmund operators.

1. Definitions and Statement of the Result

To motivate the definitions in the multi-parameter setting we recall the conditions we need
on the kernel in the one-parameter result. We let K(x) be a function on Rn and will suppose
that

(i) |K(x)| . |x|−n;
(ii)

∫
a<|x|<bK(x)dx = 0 for 0 < a < b;

(iii)
∫
|x|>2|h| |K(x+ h)−K(x)| dx . 1 for all h 6= 0.

Then using the tools developed in Lecture 3, one can show that the operator T (f)(x) =
f ∗K(x) is bounded on Lp(Rn) when 1 < p <∞.

Now to state the results when the kernel K is supposed to be multi-parameter, we consider
a function K(x, y) defined on Rn × Rm that satisfies the following list of conditions:

(a) |K(x)| . |x|−n |y|−m;
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(b1)
∣∣∣∫a<|x|<bK(x, y)dx

∣∣∣ . |y|−m for 0 < a < b for all y ∈ Rm;

(b2)
∣∣∣∫a<|y|<bK(x, y)dy

∣∣∣ . |x|−n for 0 < a < b for all x ∈ Rn;

(b3)
∣∣∣∫a<|y|<b ∫c<|x|<dK(x, y)dxdy

∣∣∣ . 1 for 0 < a < b, 0 < c < d;

(c1)
∫
|x|>2|h| |K(x+ h, y)−K(x, y)| dx . |y|−m for all h 6= 0 and for all y ∈ Rm;

(c2)
∫
|y|>2|k| |K(x, y + k)−K(x, y)| dy . |x|−n for all h 6= 0 and for all x ∈ Rn;

(c3)
∫
|y|>2|k|

∫
|x|>2|h| |K(x+ h, y + k)−K(x+ h, y)−K(x, y + k) +K(x, y)| dxdy . 1 for

all h 6= 0 and k 6= 0;
(d1) If G(x) =

∫
a<|y|<bK(x, y)dy, then∫

|x|>2|h|
|G(x+ h)−G(x)| dx . 1

uniformly in a, b;

(d2) If H(y) =
∫
a<|x|<bK(x, y)dx, then∫

|y|>2|h|
|H(y + h)−H(y)| dx . 1

uniformly in a, b.

These conditions that we impose may seem unnecessarily technical. However, to have a
kernel be a “multi-parameter” kernel, we really will need information about how the functions
behave when we restrict the number of variables, and how they the variables interact with
each other.

As a class of examples of kernels that satisfy these conditions, one can take a kernel K(x, y)
that is smooth away from the “fat diagonal” {(x, y) : x = 0 or y = 0} and satisfies

|K(x, y)| . 1

|x|n |y|m
,

|∇xK(x, y)| . 1

|x|n+1 |y|m
|∇yK(x, y)| . 1

|x|n |y|m+1

and

|∇x∇yK(x, y)| . 1

|x|n+1 |y|m+1 ,

and ∫
r<|x|<R

K(x, y)dx =

∫
r<|y|<R

K(x, y)dy = 0 0 < r < R.

In particular this handles kernels more general than the products of Riesz kernels.
Observe that what we have done is expanded the conditions for the standard Calderón–

Zygmund kernels and considered appropriate size and cancellation conditions uniformly in
each variable.

We can now prove the following Theorem
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Theorem 1.1 (Fefferman, [2]). Let K be a kernel that satisfies (a), (b1), (b2), (c1), (c2),
(c3) above. Then the operator Tf(x) := f ∗K(x) is bounded on L2(Rn × Rm), i.e.,

‖Tf‖L2(Rn×Rm) . ‖f‖L2(Rn×Rm) .

Proof. Our strategy will be to show that under the hypotheses above, we have that the
Fourier transform of K is bounded on all of Rn ×Rm. If we demonstrate this, then we have

‖Tf‖L2(Rn×Rm) =
∥∥∥K̂f̂∥∥∥

L2(Rn×Rm)
. ‖f‖L2(Rn×Rm) .

We now turn to computing K̂. The idea will be to split the domain Rn × Rm into four
pieces. One each piece, we will use some of the properties of the kernel to obtain the desired
estiamte. Now by dilation invariance of the kernel and the estimates in question, we can
suppose that |η| = |ξ| = 1. Note that by the definition of the Fourier transform we have, for
some R > 10,

K̂(η, ξ) =

∫
Rn×Rm

K(x, y)ei(ηx+ξy)dxdy

=

∫
|x|<R

∫
|y|<R

+

∫
|x|<R

∫
|y|≥R

+

∫
|x|≥R

∫
|y|<R

+

∫
|x|≥R

∫
|y|≥R

(
K(x, y)ei(ηx+ξy)

)
dxdy

= I + II + III + IV.

Note that II and III are symmetric with respect to the variables x and y and so if suffices
to prove the boundedness of one of the desired integrals since the other will follow by the
same argument. We thus need to show the boundedness of the following integrals:

I =

∫
|x|<R

∫
|y|<R

K(x, y)ei(ηx+ξy)dxdy

III =

∫
|x|>R

∫
|y|≤R

K(x, y)ei(ηx+ξy)dxdy

IV =

∫
|x|≥R

∫
|y|≥R

K(x, y)ei(ηx+ξy)dxdy

Lets consider the term III. We can write this as

III =

∫
|x|>R

∫
|y|≤R

K(x, y)ei(ηx+ξy)dxdy

=

∫
|x|>R

∫
|y|≤R

K(x, y)eiηx
(
1 + eiξy − 1

)
dxdy

= III1 + III2.
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Consider now term III2. Notice that for each fixed y, we have

III2 =

∫
|y|≤R

(
eiξy − 1

)(∫
|x|>R

K(x, y)eiηxdx

)
dy

=

∫
|y|≤R

(
eiξy − 1

)(∫
|x|>R

eiηx (K(x, y)−K(x+ πη, y)) dx

)
dy

+

∫
|y|≤R

(
eiξy − 1

)(∫
|x|>R

eiηxK(x+ πη, y)dx

)
dy

Consider the first term that appears above, for the inner integral, we use condition (c1) to
conclude that ∫

|x|>R
|K(x, y)−K(x+ πη, y)| dx . |y|−m

Couple this with the following estimate to see that∫
|y|≤R

(
eiξy − 1

)(∫
|x|>R

eiηx (K(x, y)−K(x+ πη, y)) dx

)
dy .

∫
|y|≤R

|y|−m
∣∣eiξy − 1

∣∣ dy
. 1,

with the last estimate following by direct computations.
Now for the remaining error term, we make the following observation geometric observa-

tion. For the choice of R and η, we have that, after a change of variables, that the inner
integral in the second remaining term is given by∫

S

K(x, y)eixηdx

where S ⊂ {x : R − 4 < |x| < R + 4}. So to estimate this term, we now use condition (a),
and then we have that∫
|y|≤R

(
eiξy − 1

)(∫
|x|>R

eiηxK(x+ πη, y)dx

)
dy .

∫
|y|≤R

|y|−m
∣∣eiξy − 1

∣∣ dy ∫
S

|x|−n dx

. 1.

Next, turn to term III1, then note that

III1 =

∫
|x|>R

eiηx
∫
|y|≤R

K(x, y)dydx

The idea is similar to what appeared above, so we just sketch more of the computations. We
can write the term III1 as

|III1| ≤
∫
|x|>R

|G(x+ πη)−G(x)| dx+

∫
S

|G(x)| dx.

Here S is the same set that appears above. This is then finite since the first term above can
be controlled by the condition appearing in (d1). The second term can be controlled since
|G(x)| . |x|−n by (b2), and we have already computed that the integral of |x|−n over S is
finite. This then completes the estimate of term III.

The estimate for II is identical to what we did for III, but we just interchanged the roles
of x and y, and then use the appropriate hypotheses on the kernel. It also turns out that
all the techniques we used in estimating term III can be used to handle the terms in I and
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IV as well. Since the proof is essentially the same in each of the remaining cases, we simply
point out the necessary steps and leave the computations and verification to the reader.

To handle the term I, note that we can write

eixηeiyξ = (eixη − 1)(eiyξ − 1) + (eiyξ − 1) + (eixη − 1) + 1

This implies that we can write term I as∫
|x|<R

∫
|y|<R

K(x, y)ei(ηx+ξy)dxdy =

∫
|x|<R

∫
|y|<R

K(x, y)(eixη − 1)(eiyξ − 1)dxdy

+

∫
|x|<R

∫
|y|<R

K(x, y)(eiyξ − 1)dxdy

+

∫
|x|<R

∫
|y|<R

K(x, y)(eixη − 1)dxdy

+

∫
|x|<R

∫
|y|<R

K(x, y)dxdy

= I1 + I2 + I3 + I4.

Form term I1 use the fact that |eixη − 1| . |x| and
∣∣eiyξ − 1

∣∣ . |y| along with the kernel

estimates |K(x, y)| . |x|−n |y|−m to obtain

|I1| .
∫
|x|<R

∫
|y|<R

|x|−n+1 |y|−m+1 dxdy . 1.

The terms I2 and I3 one uses ideas from above. One can see that in this case, we will use
the fact that |eixη − 1| . |x| and

∣∣eiyξ − 1
∣∣ . |y| and then apply estimates from (b1), (b2),

(c1), and (c2), (d1), (d2) to conclude that the terms are finite. The term I4 is also handled
in a similar fashion, except now one uses the estimates in (c3) and the kernel estimates in
(a).

Finally, to handle term IV one simply writes

ei(xη+yξ) = −ei(x+
π
2
η)ηei(y+

π
2
ξ)ξ

and then split the integral to be estimated into pieces for which the hypotheses can be
applied.

�

2. Extensions of The Main Result

It is also possible to prove an Lp version of the above Theorem. We won’t state the result
at this point since the conditions to impose on the kernel are slightly different than what
we have already been discussing. See the paper by Fefferman, [2], for the exact hypothesis
needed. The method of proof is to incorporate the square function into the mix. Since we
haven’t introduced the multi-parameter square function at this point, we will just take this
as a fact for now. We unfortunately can’t apply the techniques of proving a weak-type (1, 1)
estimate (since it isn’t true) and then interpolating. However, if we impose slightly stronger
conditions on the kernel, then it is possible to prove the following Theorem.

Theorem 2.1 (Fefferman, [2]). Suppose that K(x, y) is defined on R2 and is smooth away
from the coordinate axes and satisfies

(a)
∣∣∂αx∂βyK(x)

∣∣ . |x|−α−1 |y|−β−1 for all α, β ≥ 0;
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(b1)
∣∣∣∫c<|y|<d ∫a<|x|<bK(x, y)dxdy

∣∣∣ . 1 for 0 < a < b and 0 < c < d;

(b2)
∣∣∣∫a<|x|<bK(x, y)dx

∣∣∣ . |y|−1 for 0 < a < b for all y ∈ R;

(b3)
∣∣∣∫a<|y|<bK(x, y)dy

∣∣∣ . |x|−1 for 0 < a < b for all x ∈ R.

(c1) If G(x) =
∫
a<|y|<bK(x, y)dy then G(x) is smooth and

|∂γxG| . |x|
−γ−1

uniformly in a, b;
(c1) If H(y) =

∫
a<|x|<bK(x, y)dx then H(y) is smooth and∣∣∂γyH∣∣ . |y|−γ−1

uniformly in a, b.

Then if Tf(x, y) = f ∗K(x, y) we have

T : L
(
log+ L

)
(R2)→ L1,∞(R2).

The idea of proof is similar to what appears in the proof of Theorem 1.1. One notes that
the hypotheses of this theorem allow one to prove K̂(ξ, η), ξK̂(ξ, η), ηK̂(ξ, η) ∈ L∞(R2).
This allows one to apply a version of the Marcinkiewicz Multiplier Theorem to conclude
that the operator T (f) = f ∗K is bounded for all 1 < p <∞.

Another more general extension of this result is given by Fefferman and Stein in [1].
Suppose that K(x, y), (x, y) ∈ Rn × Rm, is locally integrable away from the cross {x =
0} ∪ {y = 0}.

(a)
∣∣∣∫a1<|x|<a2

∣∣∣ ∫b1<|y|<b2 K(x, y)dxdy . 1 for all 0 < a1 < a2 and 0 < b1 < b2;

(b) Let K1(x) =
∫
b1≤|y|≤b2 K(x, y)dy = 0 then∫

|x|≤r
|x| |K1(x)| dx . r

and ∫
|x|≥2|h|

|K1(x+ h)−K1(x)| dx . 1;

A similar condition holding for K2(y) =
∫
a1<|x|<a2

K(x, y)dx.

(c)
∫
|y|<r2

∫
|x|<r1 |x| |y| |K(x, y)| dxdy . r1r2 for all 0 < r1, r2 <∞;

(d1)
∫
|y|<r2

∫
|x|≥2|h| |y| |K(x+ h, y)−K(x, y)| dxdy . r2 for all 0 < r2 <∞ and h 6= 0;

(d2)
∫
|x|<r1

∫
|y|≥2|k| |x| |K(x, y + k)−K(x, y)| dxdy . r1 for all 0 < r1 <∞ and k 6= 0;

(d3)
∫
|x|≥2|h|

∫
|y|≥2|k| |K(x+ h, y + k)−K(x+ h, y)−K(x, y + k) +K(x, y)| dxdy . 1 for

all h 6= 0 and k 6= 0.

Theorem 2.2 (Fefferman and Stein, [1]). Let K be a kernel that satisfies the above condi-
tions, then we have that the operator Tf = f ∗K satisfies

T : L2(Rn × Rm)→ L2(Rn × Rm)

with norm depending on the implied constants in the hypotheses imposed upon the kernel.
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The idea of proof is to again show that the function K̂ ∈ L∞(Rn ×Rm). We leave this to
the interested reader to check since the main ideas how to split the integral can be seen in
Theorem 1.1.
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