
Lecture 2: Strong Maximal Functions and Covering Lemmas

We now turn our attention to a different type of maximal function. In Lecture 1 we looked
at maximal functions associated to cubes or, equivalently balls. These geometric objects are
in principle described by one piece of data, the side length or the radius. However, we could
form maximal functions with respect to more general collections of sets and attempt to study
what happens. In this lecture we turn our attention to the maximal operator formed with
respect to rectangles. We now see a first difference between one parameter harmonic analysis
and multi-parameter harmonic analysis.

1. Definitions and Basic Properties

Let R denote the collection of rectangles R in Rn with sides parallel to the coordinate
axes. Then we define the strong maximal function to be the operator

MSf(x) = sup
R3x

1

|R|

∫
R

|f(y)| dy.

Once again it is trivial to see that ‖MSf‖∞ ≤ ‖f‖∞. Next, if we denote by Mj the one
dimensional maximal function in the jth coordinate, then it isn’t difficult to see that

MSf ≤M1M2 · · ·Mnf.

Thus, if we want to understand the behavior of MS : Lp(Rn) → Lp(Rn) when 1 < p < ∞,
it turns out to be rather easy. Since the maximal function Mj will be bounded on Lp(R) by
the results in Lecture 1, we have that an iteration of them will be bounded on Lp(Rn) by
applications of Fubini’s Theorem along with the boundedness of the maximal functions Mj.

Note that this iteration argument will fail us when we turn to the L1 behavior of MS.
Now we know by the results in Lecture 1, that each Mj has a weak (1, 1) bound. We then
have for two iterations M1M2f that

‖M1M2f‖L1,∞ . ‖M2f‖L1 ,

but at this stage we run into a problem since the maximal function need not preserve L1.
However, it is true that the one dimensional maximal functions take L logL into L1. So we
see that we should expect a weak-type estimate that is closer to L logL in flavor.

In this lecture we will give a direct proof (not via iteration) that the strong maximal
function is bounded on Lp(Rn)→ Lp(Rn). Namely,

Theorem 1.1. Let 1 < p ≤ ∞. Then there exists a constant C(p, n) such that

‖MSf‖Lp(Rn) ≤ C(p, n) ‖f‖Lp(Rn) .

Of course the maximal function MS has some appropriate weak-type estimates near
L1(Rn). We won’t give the proof of this fact, but instead point out what the correct growth
should be and give the more refined covering lemma that can be proved.
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2. Estimates for the Strong Maximal Function

In this section we turn to understanding the proof of the covering lemma that will be
useful to prove the Lp boundedness of the strong maximal function. We will accomplish this
by proving a covering lemma and then proving that covering lemmas are in fact equivalent
to estimates for the maximal function.

Theorem 2.1 (A Covering Lemma for the Strong Maximal Theorem). Suppose that {Rj}j∈J
is a family of rectangles in Rn with sides parallel to the axes. Then there is a sequence of
rectangles {R̃k} ⊂ {Rj}j∈J that satisfy

(a)
∣∣∣⋃j∈J Rj

∣∣∣ ≤ c(n)
∣∣∣⋃k R̃k

∣∣∣
(b)

∥∥(∑
k χR̃k

)∥∥p
Lp(Rn)

≤ C(n)
∣∣∣⋃j∈J Rj

∣∣∣
The main point behind (a) is that it is possible to select a sub-collection of the given

rectangles so that the size of the collected set is still comparable to the original collection.

Proof. The proof is by induction on the dimension. Suppose that the Theorem is true for
n−1, then we will show how to get the Lemma in the case of n. Note that since the Theorem
is true for n − 1 by Theorem 1.1 we have that the maximal operator Mn−1

S : Lp(Rn−1) →
Lp(Rn−1) is bounded when 1 < p <∞.

For a rectangle S ⊂ Rn, let Ŝ denote the rectangle obtained by keeping all the sides of S
the same except the nth side, which we triple in size. Given the collection {Rj}, first relabel
if necessary so that the Rj are ordered so that their nth sidelengths decrease. We now give

a selection procedure to find the desired collection of rectangles. Take R̃1 = R1 and let R̃2

be the first rectangle Rk such that ∣∣∣Rk ∩ R̃1

∣∣∣ < 1

2
|Rk| .

Suppose have now chosen the rectangles R̃1, R̃2, . . . , R̃j−1. We select R̃j to be the first

rectangle occurring after R̃j−1 so that∣∣∣∣∣Rk ∩

(⋃
l<j

˜̂
Rl

)∣∣∣∣∣ < 1

2
|Rk| .

Choose any point x inside a rectangle Ri that is not one of the selected rectangles R̃j.
Slice a rectangle R on the nth coordinate by a hyperplane that is perpendicular to the nth
axis at a height given by the nth coordinate of x. Note that these produce n−1 dimensional
rectangles T. And,

(2.1)

∣∣∣∣∣Ti ∩
(⋃

j

˜̂
Tj

)∣∣∣∣∣
n−1

≥ 1

2
|Ti|n−1

where we use the sub-script to denote n− 1 dimensional Lebesgue measure. (Note that we
had given an incorrect argument at this point before. It wasn’t such a simple contradiction
argument as I had indicated). We write R = T × I for the rectangles. To see this last
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inequality note that if Ri is not a selected rectangle, the we must have∣∣∣∣∣Ri ∩

(⋃
j

˜̂
Rj

)∣∣∣∣∣
n−1

≥ 1

2
|Ri| =

1

2
|Ti|n−1 |Ii| .

Note that we haven’t used the condition on the decreasing side lengths yet. Here we now
exploit this fact to conclude that∣∣∣∣∣Ti ∩

(⋃
j

˜̂
Tj

)∣∣∣∣∣
n−1

≥ 1

2
|Ti|n−1 .

Now note that (2.1) implies that

(2.2) Mn−1
S

(
χS ˜̂

Tj

)
(x) ≥ 1

2

and so we have for all points x ∈ ∪Ti that⋃
T̂i ⊂

{
Mn−1

S

(
χS ˜̂

Tj

)
(x) ≥ 1

2

}
.

Since for points in selected rectangles, this containment is obvious, while for points in the
non-selected rectangles, (2.2) gives the containment. This then implies∣∣∣⋃Ti

∣∣∣
n−1

≤
∣∣∣∣{Mn−1

S

(
χS

T̃j

)
(x) ≥ 1

2

}∣∣∣∣
≤ C

∫
Rn−1

χS ˜̂
Tj

(x)dx

= C
∣∣∣⋃ ˜̂

Tj

∣∣∣
n−1

.

Here we have used the induction hypothesis that Mn−1
S : Lp(Rn−1) → Lp(Rn−1) is bounded

when 1 < p <∞ coupled with Chebyshev’s Inequality for p. Finally, integrate this inequality
over the nth coordinate to arrive at ∣∣∣⋃Ri

∣∣∣ ≤ C
∣∣∣⋃ R̃j

∣∣∣
which proves (i) in the Covering Lemma.

Now, we turn to (ii). We want to show that the function χS
R̃ belongs to Lp(Rn). To

accomplish this, we will use a duality argument and test it against f ∈ Lp′(Rn) and show
we have good estimates.

With this in mind, note that if we define the sets

Ẽj =
˜̂
Tj \

⋃
l<j

˜̂
Tl

then (2.1) gives that

|Ej|n−1 >
1

2

∣∣∣T̂j∣∣∣
n−1

.
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Choose f ∈ Lp
′
(Rn−1) of norm at most 1 (here we identify Rn−1 with the first n − 1

coordinates). Then we have∫
Rn−1

∑
j

χT̃j
(x)f(x)dx =

∑
j

∫
T̃j

f(x)dx

=
∑
j

∣∣∣T̃j∣∣∣∣∣∣T̃j∣∣∣
∫
T̃j

f(x)dx

≤ 2
∑
j

|Ej|
1∣∣∣T̃j∣∣∣
∫
T̃j

f(x)dx

≤ 2
∑
j

|Ej|Mn−1
S f(x).

The last inequality holds for any x ∈ ˜̂
Tj. This last sum can be recovered as in integral over

the desired sets. In particular, we end up with∫
Rn−1

∑
j

χ ˜̂
Tj

(x)f(x)dx .
∫

S
k

˜̂
Tk

Mn−1
S f(x)dx

≤
∥∥Mn−1

S f
∥∥
Lp′ (Rn−1)

∣∣∣⋃ ˜̂
Tk

∣∣∣ 1p
≤ ‖f‖Lp′ (Rn−1)

∣∣∣⋃ ˜̂
Tk

∣∣∣ 1p
≤

∣∣∣⋃ ˜̂
Tk

∣∣∣ 1p .
By duality, this last inequality gives that∥∥∥∥∥∑

j

χ ˜̂
Tj

∥∥∥∥∥
Lp(Rn−1)

.
∣∣∣⋃ ˜̂

Tk

∣∣∣ 1p .
Now raise this inequality to the p power and integrate over the remaining coordinate to
arrive at the statement in (ii). �

A collection of rectangles has the covering property Vq, 1 ≤ q ≤ ∞ if there exists constants

C1 < ∞ and C2 > 0 so that given any family {Rj}J we can find a sequence {R̃k} ⊂ {Rj}J
such that

(a)
∣∣∣⋃j∈J Rj

∣∣∣ ≤ C2(n)
∣∣∣⋃k R̃k

∣∣∣
(b)

∥∥(∑
k χR̃k

)∥∥q
Lq(Rn)

≤ C1(n)
∣∣∣⋃j∈J Rj

∣∣∣.
Theorem 2.2 (Cordoba-Fefferman, [3]). The maximal operator MS is of weak-type (p, p) if
and only if the collection of rectangles has the covering property Vq where 1

p
+ 1

q
= 1 and

1 < p ≤ ∞.

It is easy to see how Theorem 2.2 and Theorem 2.1 can be used to prove Theorem 1.1.

Exercise 2.3. Prove Theorem 1.1 by applying Theorem 2.2 and Theorem 2.1.
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Proof of Theorem 2.2. One direction is immediate. Suppose the collection of rectangles has
the covering property Vq. Fix λ > 0 and consider the set

Eλ = {x ∈ Rn : MSf(x) > λ}.
Then we have that Eλ =

⋃
j Rj where for each rectangle Rj we have

λ <
1

|Rj|

∫
Rj

|f(y)| dy.

Now apply the definition of Vq property to select a subcollection R̃k. Then we have

|Eλ| =

∣∣∣∣∣⋃
j

Rj

∣∣∣∣∣
≤ C2

∣∣∣∣∣⋃
k

R̃k

∣∣∣∣∣
≤ C2

λ

∑
k

∫
R̃k

|f(y)| dy

=
C2

λ

∫
Rn

∑
k

χR̃k
(y) |f(y)| dy

≤ C2

λ

∥∥∥∥∥∑
k

χR̃k

∥∥∥∥∥
Lq(Rn)

‖f‖Lp(Rn)

≤ C1C2

λ

∣∣∣∣∣⋃
j

Rj

∣∣∣∣∣
1
q

‖f‖Lp(Rn)

=
C1C2

λ
|Eλ|

1
q ‖f‖Lp(Rn) .

This then gives that

|Eλ| ≤
C

λp
‖f‖pLp(Rn)

which is the desired weak-type estimate.
For the converse, suppose that MS satisfies the weak-type estimates. Given a family of

rectangles {Rj}, we assume the existence of a subsequence {R̃k} such that∣∣∣∣∣⋃
j

RJ

∣∣∣∣∣ ≤ C

∣∣∣∣∣⋃
k

R̃k

∣∣∣∣∣
and with the following disjointness property:∣∣∣∣∣R̃k ∩

⋃
j<k

R̃j

∣∣∣∣∣ ≤ 1

2

∣∣∣R̃k

∣∣∣ ∀k.

Then for this sequence we will also have that∥∥∥∥∥∑
k

χR̃k

∥∥∥∥∥
Lq(Rn)

≤ C

∣∣∣∣∣⋃
j

Rj

∣∣∣∣∣
1
q

.
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Based on these sets, define Ek = R̃k \
⋃
j<k R̃j and a related operator

Tf(x) =
∑
k

 1∣∣∣R̃k

∣∣∣
∫
R̃k

f(y)dy

χEk
(x).

We clearly have |Tf(x)| ≤Mf(x) and for its adjoint

T ∗f(x) =
∑
k

 1∣∣∣R̃k

∣∣∣
∫
Ek

f(y)dy

χR̃k
(x)

we have T ∗
(
χS

k R̃k

)
≥ 1

2

∑
k χR̃k

.

Since MS satisfies a weak-type estimate, then T also satisfies the corresponding weak-type
estimate. If we consider the action of the dual operator T ∗, then it is also bounded between
certain function spaces and we have∥∥∥∥∥∑

k

χR̃k

∥∥∥∥∥
Lq(Rn)

≤ C
∥∥∥T ∗ (χS

k R̃k

)∥∥∥
Lq(Rn)

≤ C

∣∣∣∣∣⋃
k

R̃k

∣∣∣∣∣
1
q

.

It only remains to show how we can select the sequence of rectangles that has the additional
disjointness property. This idea is similar to what we did in the proof of the covering lemma.

To see this, we set R̃1 = R1. Suppose that we have selected R̃2, . . . , R̃n. To select R̃n+1

look for the first rectangle in the sequence {Rj} after R̃n with the property that∣∣∣∣∣R̃′n+1 ∩

(⋃
j≤n

R̃j

)∣∣∣∣∣ < 1

2

∣∣∣R̃n+1

∣∣∣ .
Now we claim that ⋃

j

Rj ⊂
{
x ∈ Rn : MS

(
χS

R̃k

)
(x) ≥ 1

2

}
.

Note that the claim implies that∣∣∣∣∣⋃
j

Rj

∣∣∣∣∣ ≤
∣∣∣∣{x ∈ Rn : MS

(
χS

R̃k

)
(x) ≥ 1

2

}∣∣∣∣
.

∥∥∥χS
R̃k

∥∥∥p
Lp(Rn)

=

∣∣∣∣∣⋃
k

R̃k

∣∣∣∣∣ .
�

3. The Strong Maximal Theorem and Behavior Near L1

Being more careful in the selection procedure of the covering lemma above, one can prove
the following better covering result.
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Theorem 3.1 (Cordoba, Fefferman). Suppose that {Rj}j∈J is a family of rectangles in Rn

with sides parallel to the axes. Then there is a sequence of rectangles {R̃k} ⊂ {Rj}j∈J that
satisfy

(a)
∣∣∣⋃j∈J Rj

∣∣∣ ≤ c(n)
∣∣∣⋃k R̃k

∣∣∣
(b)

∥∥∥exp
(∑

k χR̃k

) 1
n−1

∥∥∥
L1(Rn)

≤ C(n)
∣∣∣⋃j∈J Rj

∣∣∣
If one uses this covering Lemma in conjunction with the methods of this Lecture we arrive

at the weak-type estimates associated to the strong maximal function.

Theorem 3.2. The operator MS is bounded from the Orlicz space L(logL)n−1(Rn) to L1,∞(Rn).
Namely, for any f ∈ L(logL)n−1 and any λ > 0

|{x ∈ Rn : Msf(x) > λ}| ≤ C

λ

∫
Rn

|f(x)|

(
1 +

(
log
|f(x)|
λ

)n−1
)
dx

Exercise 3.3. Carry out the details to arrive at the above Theorem.
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