
Lecture 1: One Parameter Maximal Functions and Covering Lemmas

In this first lecture we start studying one of the basic and fundamental operators in
harmonic analysis, the Hardy-Littlewood maximal function. We will focus primarily on the
standard maximal function, but at the end will make some comments about the dyadic
maximal operator and the standard results that one can deduce from the boundedness of
the maximal function.

1. Definitions and Basic Properties of the Maximal Function

For a function f ∈ L1
loc(Rn) we define the Hardy-Littlewood maximal function in the

following manner:

f ∗(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)| dy.

Here the supremum is taken over all cubes Q that have the point x as its center. Based
solely on the definition, we can see some elementary properties of the maximal function of
f .

Trivially, we have that f ∗(x) ≥ 0. Even more precisely, when x is large we have that

(1.1) f ∗(x) ≥ C

|x|n

where C is an absolute constant. This implies that the maximal function can never be in
L1(Rn), and so we will need a replacement for this space of functions.

Next, note that the operator ·∗ is a sub-linear operator. Namely,

(f + g)∗(x) ≤ f ∗(x) + g∗(x) ∀f, g ∈ L1
loc(Rn)

and
(cf)∗(x) = |c| f ∗(x) ∀c ∈ R ∀f ∈ L1

loc(Rn).

Both these computations follow immediately (and trivially) from the definitions.
Finally, observe that if f ∈ L∞(Rn) then we have that

‖f ∗‖∞ ≤ ‖f‖∞ .
Our first question to answer is what happens for the other Lp(Rn) when 1 < p < ∞. By

(1.1) we easily see that f ∗(x) /∈ L1(Rn), and so we also need to address the appropriate
replacement for the estimate

‖f ∗‖1 . ‖f‖1 .

Exercise 1.1. Define an alternate maximal function by

f ∗∗(x) = sup
r>0

1

cnrn

∫
Br(x)

|f(y)| dy

whre Br(x) is the ball of radius r centered at the point x. Here cn is the volume of the unit
ball in Rn. Show that the maximal function f ∗(x) is pointwise equivalent to the function
f ∗∗(x), namely there exists constants c1(n) and c2(n) such that

c2f
∗∗(x) ≤ f ∗(x) ≤ c1(n)f ∗∗(x).

1
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2. Marcinkiewicz Interpolation

We now turn to proving a general theorem about interpolation of sub-linear operators.
Before, we do this, we recall a fact about how to compute the norm of a function in Lp from
its distribution function.

Lemma 2.1. Let (X,µ) be a measure space. If f is measurable and 0 < p <∞ then∫
X

|f(x)|p dµ(x) =

∫ ∞
0

pλp−1µ ({x ∈ X : |f(x)| > λ}) dλ

Proof. Simply observe that∫
X

|f(x)|p dµ(x) =

∫
X

∫ |f(x)|

0

pλp−1dλdµ(x)

=

∫ ∞
0

pλp−1

∫
X

χ{f(x)>λ}(x)dµ(x)dλ

=

∫ ∞
0

pλp−1µ ({x ∈ X : |f(x)| > λ}) dλ.

�

Theorem 2.2 (Marcinkiewicz Interpolation). Suppose that (X,µ) and (Y, ν) are measure
spaces. Let 1 ≤ p0 < p1 ≤ ∞ and suppose that T : Lp0(X;µ) + Lp1(X;µ) is a mapping to
the ν-measurable functions on Y such that

(a) |T (f + g)(y)| ≤ |Tf(y)|+ |Tg(y)|;
(b) ν ({y ∈ Y : |Tf(y)| > λ}) ≤ A

p0
0

λp0
‖f‖p0Lp0 (X;µ) for all f ∈ Lp0(X;µ);

(c) ν ({y ∈ Y : |Tf(y)| > λ}) ≤ A
p1
1

λp1
‖f‖p1Lp1 (X;µ) for all f ∈ Lp1(X;µ).

Then for any p0 < p < p1 we have that the operator T : Lp(X;µ)→ Lp(Y ; ν) is bounded by
a constant C depending on p0, p1, A0, A1. Namely, when p0 < p < p1

‖Tf‖Lp(Y ;ν) ≤ C ‖f‖Lp(X;µ) .

The condition that T maps into the measurable functions is assumed just so we can define
Tf when f ∈ Lp(X mu). The properties in estimates in (b) and (c) are important enough
for an operator, that they deserve their own definition going forward.

Definition 2.3. Let 0 < p < ∞. Then a operator T from Lp(X; ν) to the measurable
functions on Y is said to be weak-type (p, p) if there exists a constant A such that

ν ({y ∈ Y : |Tf(y)| > λ}) ≤ Ap

λp
‖f‖pLp(X;µ)

for all λ > 0 and all f ∈ Lp(X;µ). When this estimate holds, we say that T : Lp(X;µ) →
Lp,∞(Y ; ν).

Proof. We first decompose and arbitrary f ∈ Lp(X;µ) into fj ∈ Lpj (X;µ) for j = 0, 1 for
which f = f0 + f1. Let K be a constant to be chosen later, and for a fixed α define

f0(x) =

{
f(x) if |f(x)| > Kα

0 else
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and

f1(x) =

{
f(x) if |f(x)| ≤ Kα

0 else.

Then we have that f = f0 + f1. Now observe that fj ∈ Lpj (X;µ) for j = 0, 1. Indeed, we
have

‖f0‖p0Lp0 (X;µ) =

∫
X

|f0(x)|p0 dµ(x)

=

∫ ∞
0

p0λ
p0−1µ ({x ∈ X : |f0(x)| > λ}) dλ

=

∫ ∞
Kα

p0λ
p0−1µ ({x ∈ X : |f(x)| > λ}) dλ

=
p0

p

∫ ∞
Kα

λp0−ppλp−1µ ({x ∈ X : |f(x)| > λ}) dλ

≤ p0

p
(Kα)p0−p

∫ ∞
0

pλp−1µ ({x ∈ X : |f(x)| > λ}) dλ

=
p0

p
(Kα)p0−p ‖f‖pLp(X;µ) <∞.

In this computation, we have used Lemma 2.1 twice, and the fact that p0 < p so that on
[0, α] we have that λp0−p ≤ (Kα)p0−p. The conclusion that f1 ∈ Lp1(X;µ) is similar, and
one concludes that

‖f1‖p1Lp1 (X;µ) ≤
p1

p
(Kα)p1−p ‖f‖pLp(X;µ) .

Now for fixed α we have that

{y ∈ Y |Tf(y)| > α} ⊂
{
y ∈ Y : |Tf0(y)| > α

2

}
∪
{
y ∈ Y : |Tf1(y)| > α

2

}
by condition (a) from the hypotheses of the Theorem. Thus, we have that

ν ({y ∈ Y |Tf(y)| > α}) ≤ ν
({
y ∈ Y : |Tf0(y)| > α

2

})
+ ν

({
y ∈ Y : |Tf1(y)| > α

2

})
≤ (2A0)

p0

αp0
‖f0‖p0Lp0 (X;µ) +

(2A1)
p1

αp1
‖f1‖p1Lp1 (X;µ) ,

where we have now used conditions (b) and (c) in the hypotheses of the Theorem. We will
apply this for each α when computing the norm of Tf by the distribution function.

Now we again use Lemma 2.1 to find that

‖Tf‖pLp(Y ;ν) =

∫
Y

|Tf(y)|p dν(y)

= p

∫ ∞
0

αp−1ν ({y ∈ Y |Tf(y)| > α}) dα

≤ p

∫ ∞
0

αp−1
(
ν
({
y ∈ Y : |Tf0(y)| > α

2

})
+ ν

({
y ∈ Y : |Tf1(y)| > α

2

}))
dα

≤ p

∫ ∞
0

αp−1

(
Ap00 2p0

αp0
‖f0‖p0Lp0 (X;µ) +

Ap11 2p1

αp1
‖f1‖p1Lp1 (X;µ)

)
dα

= pAp00 2p0
∫ ∞

0

αp−p0−1 ‖f0‖p0Lp0 (X;µ) dα + pAp11 2p1
∫ ∞

0

αp−p1−1 ‖f1‖p1Lp1 (X;µ) dα.
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Now, for the first integral we have

p(2A0)
p0

∫ ∞
0

αp−p0−1 ‖f0‖p0Lp0 (X;µ) dα = p(2A0)
p0

∫ ∞
0

αp−p0−1

(∫
{|f(x)|>Kα}

|f(x)|p0 dµ(x)

)
dα

= p(2A0)
p0

∫
X

|f(x)|p0
(∫ |f(x)|

K

0

αp−p0−1dα

)
dµ(x)

= p(2A0)
p0

1

Kp−p0(p− p0)

∫
X

|f(x)|p dµ(x).

Similarly, for the second integral, we have

p(2A1)
p1

∫ ∞
0

αp−p1−1 ‖f1‖p1Lp1 (X;µ) dα = p(2A1)
p1

∫ ∞
0

αp−p1−1

(∫
{|f(x)|≤Kα}

|f(x)|p1 dµ(x)

)
dα

= p(2A1)
p1

∫
X

|f(x)|p1
(∫ ∞

|f(x)|
K

αp−p1−1dα

)
dµ(x)

= p(2A1)
p1

1

Kp−p1(p1 − p)

∫
X

|f(x)|p dµ(x).

Combining things, we see that

‖Tf‖pLp(Y ;ν) ≤
(
p(2A0)

p0
1

Kp−p0(p− p0)
+ p(2A1)

p1
1

Kp−p1(p1 − p)

)
‖f‖pLp(X;µ)

=
p

Kp

(
1

p− p0

(2A0K)p0 +
1

p1 − p
(2A1K)p1

)
‖f‖pLp(X;µ) .

Now, choose the constant K so that (2A0K)p0 = (2A1K)p1 , and then one can recognize this
last estimate as

‖Tf‖pLp(Y ;ν) ≤ 2pp

(
1

p− p0

+
1

p1 − p

)
A1−θ

0 Aθ1 ‖f‖
p
Lp(X;µ)

where 0 < θ < 1 and 1
p

= θ
p1

+ 1−θ
p0

. �

One can observe that the estimate for the operator T blows up as both p→ p0 and p1.

Exercise 2.4. In the proof we assumed that p1 < ∞. Note that in the case when p1 = ∞
the proof can be simplified some.

3. Weak-type Estimates for the Maximal Function

We now turn to proving the following Theorem

Theorem 3.1. The Hardy-Littlewood maximal function is weak-type (1, 1). Namely, for any
f ∈ L1(Rn) and for any λ > 0, there exists a constant C(n), depending only on n, such that

|{x ∈ Rn : f ∗(x) > λ}| ≤ C(n)

λ
‖f‖L1(Rn) .

This Theorem is enough to already deduce an interesting Theorem,

Theorem 3.2. Let 1 < p <∞, then

‖f ∗‖Lp(Rn) ≤ C(n, p) ‖f‖Lp(Rn) .

Moreover, C(n, p)→ 1 as p→∞ and C(n, p)→∞ as p→ 1.
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Proof. Observe that f ∗(x) is sub-linear. By trivial estimates we have

‖f ∗‖∞ ≤ ‖f‖∞ .
Theorem 3.1 implies that ·∗ is weak-type (1, 1). Then apply the Marcikiewicz Interpolation
Theorem, Theorem 2.2 to conclude the Theorem. �

Before we prove Theorem 3.1 we first have to prove an useful fact in its own right. Namely,
we have to prove a covering lemma. It turns out that the behavior of maximal functions are
closely connected to covering lemmas, and knowing the appropriate weak-type estimates is
equivalent to knowing an appropriate covering lemma.

Lemma 3.3 (Simple Vitali Covering Lemma). Let E ⊂ Rn and let K be a collection of
cubes covering E. There there exists a positive constant C(n), and a finite number of cubes
Q1, . . . , Qn in K such that

|E| ≤ C(n)
N∑
j=1

|Qj| .

Let’s assume the lemma for the moment and show how we can use this to prove Theorem
3.1.

Proof of Theorem 3.1. Let E = {f ∗ > λ}. For each x ∈ E, by definition of f ∗ there must
exist a cube Qx such that x is the center and

λ <
1

|Qx|

∫
Qx

|f(y)| dy.

Now we have that K = {Qx : x ∈ E} where Qx is the cube selected above is a collection of
cubes covering E. Apply Lemma 3.3 to find a finite collection of cubes Q1, . . . , QN so that

|E| ≤ C(n)
N∑
j=1

|Qj|

≤ C(n)

λ

∫
∪kQk

|f(y)| dy

≤ C(n)

λ

∫
Rn

|f(y)| dy.

This then proves the desired result. �

We now turn to the proof of the Simple Vitali Covering Lemma. The idea behind the proof
will be, at each stage, select the largest possible cube, and then remove from the collection
the cubes that overlap with this large cube. We now turn to giving a proof of this result.

Proof of Lemma 3.3. Index the size of each cube Q ∈ K by writing Q = Q(t), where t
denotes the corresponding side length. Let K1 = K and set

t∗1 = sup{t : Q = Q(t) ∈ K1}.
We will assume that case that t∗1 <∞ since if not, the desired conclusion is an easy exercise.
Select a cube in K1 so that Q1 = Q(t1) ∈ K1 and t1 >

1
2
t∗1. Divide K1 = K2 ∪ K ′2 where

K2 are the cubes that are disjoint from Q1 and K ′2 are the cubes that intersect Q1. Let Q∗1
denote the cube concentric with Q1 by sidelength increased by a factor of 5. Then, it is easy
to see that every cube in K ′2 is contained in Q∗1 and |Q∗1| = 5n |Q1|. This follows from the
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geometric observation that if two cubes intersect, the an appropriately large dilation of one
will completely contain the other.

We continue this selection process for all j. Namely, let

t∗j = sup{t : Q = Q(t) ∈ Kj}
and select a cube Qj = Q(tj) with tj >

1
2
t∗j and split Kj = Kj+1 ∪K ′j+1, with the set Kj+1

the collection of cubes in Kj that are disjoint from Qj, and K ′j+1 the cubes that intersection
Qj. Let Q∗j denote the cube concentric with Qj by sidelength increased by a factor of 5.

Then, it is easy to see that every cube in K ′j+1 is contained in Q∗j and
∣∣Q∗j ∣∣ = 5n |Qj|.

If Kj+1 is empty, then this process stops. Note that the construction produces t∗j ≥ t∗j+1.
Also, note that by construction, the cubes Q1, Q2, . . . , Qj are disjoint from each other and
from every cube in Kj+1.

Suppose now that there is a KN+1 that is empty. Then t∗j = 0 for all j ≥ N + 1, and it
is easy to see that E is covered by the cubes in K ′2 ∪ · · · ∪K ′N , hence covered by the cubes
Q∗j . To see that E is covered by this set, note that E is covered by K1 = K, and that
K1 = K2 ∪K ′2, then note that K2 = K3 ∪K ′3, and repeat. Thus,

|E| ≤
N∑
j

∣∣Q∗j ∣∣ = C(n)
∑
j

|Qj| ,

which proves the lemma.
If no t∗j is zero, then there are two possibilities. First, it could happen that t∗j ≥ δ for all

j and for some δ > 0, or else t∗j → 0. The case when t∗j ≥ δ is easy since in this case tj >
1
2
δ,

so the sides of the selected cubes are always large. Hence, as N →∞ we have that
N∑
j=1

|Qj| → ∞.

So, by selecting N sufficiently large, we will have the result for any choice of C(n).
On the other hand, if t∗j → 0, then simply observe that E is covered by {Q∗j} (this is

observed by a simple contradiction argument). Then we have

|E| ≤ C(n)
∑
j

|Qj| .

�

3.1. Applications of the Maximal Function. The standard application of the maximal
function is the following Theorem due to Lebesgue.

Theorem 3.4 (Lebesgue’s Differentiation Theorem). If f ∈ L1(Rn) then for almost every
x ∈ Rn it is true that

lim
Q↘x

1

|Q|

∫
Q

f(y)dy = f(x).

Exercise 3.5. Prove this theorem. Hint: It is obviously true if f is continuous. Attempt to
approximate f by continuous functions ck. Study the set{

x ∈ Rn : lim sup
Q↘x

∣∣∣∣ 1

|Q|

∫
Q

f(y)dy − f(x)

∣∣∣∣ > ε

}
and use the weak-type (1, 1) estimate to help control the size of this set.
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4. Dyadic Maximal Functions

Let D denote the collection of dyadic cubes in Rn. Namely the collection of cubes of the
form

2−k
n∏
l=1

[jl, jl + 1]

where k ∈ Z and j ∈ Zn. We can then form a maximal function with respect to this family
of cubes, namely,

Mdf(x) = sup
Q∈D

1

|Q|

∫
Q

|f(y)| dy.

One can then ask about the behvior of this operator on the spaces Lp(Rn) when 1 < p <∞.
It turns out that one can prove the following results, in an analogous manner, to what
appeared in this lecture. In particular one can prove that

Md : Lp(Rn)→ Lp(Rn) 1 < p <∞
and

{x ∈ Rn : Mdf(x) > λ} ≤ C

λ
‖f‖L1(Rn) .

These proofs are mostly repeats of what appears in this lecture, so we omit them but en-
courage the interested reader to think more about these facts.
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