Lecture 8: Nevanlinna-Pick Interpolation in $H^{\infty}(\mathbb{D})$

Remark. Since this is a shorter week because of the Thanksgiving Holiday, the lecture will be shorter as well.

We next turn to studying another interpolation problem in $H^{\infty}(\mathbb{D})$. Given a finite set of distinct points $Z = \{z_1, \ldots, z_n\}$ (the *nodes*) and a finite set $W = \{w_1, \ldots, w_n\}$ (the *targets*), we want to characterize when it is possible to find a function $f \in H^{\infty}(\mathbb{D})$ with $||f||_{\infty} \leq 1$ and $f(z_j) = w_j$.

First, lets see that for this problem to have a solution, there is an obvious necessary condition. Let M_f denote the operator of multiplication by f acting on the Hardy space $H^2(\mathbb{D})$. Since $f \in H^{\infty}(\mathbb{D})$ we have that this operator is bounded and $||M_f|| = ||M_f^*|| =$ $||f||_{\infty} \leq 1$. Let $(a_1, \ldots, a_n) \in \mathbb{C}^n$ and consider the function

$$\sum_{j=1}^{n} a_j k_{z_j}(z)$$

where k_{z_i} is the reproducing kernel for $H^2(\mathbb{D})$. Then, we have

$$\left\| M_f^* \left(\sum_{j=1}^n a_j k_{z_j} \right) \right\|_{H^2(\mathbb{D})}^2 \le \left\| \sum_{j=1}^n a_j k_{z_j} \right\|_{H^2(\mathbb{D})}^2$$

We then compute both the left hand side and the right hand side of the above inequality. Using that $M_f^* k_{\lambda} = \overline{f(\lambda)} k_{\lambda}$ for any $\lambda \in \mathbb{D}$ we see that

$$\begin{split} \left\| M_{f}^{*} \left(\sum_{j=1}^{n} a_{j} k_{z_{j}} \right) \right\|_{H^{2}(\mathbb{D})}^{2} &= \left\langle M_{f}^{*} \left(\sum_{j=1}^{n} a_{j} k_{z_{j}} \right), M_{f}^{*} \left(\sum_{j=1}^{n} a_{j} k_{z_{j}} \right) \right\rangle_{H^{2}(\mathbb{D})} \\ &= \left\langle \sum_{j=1}^{n} \overline{f(z_{j})} a_{j} k_{z_{j}}, \sum_{j=1}^{n} \overline{f(z_{j})} a_{j} k_{z_{j}} \right\rangle_{H^{2}(\mathbb{D})} \\ &= \left\langle \sum_{j=1}^{n} \overline{w_{j}} a_{j} k_{z_{j}}, \sum_{j=1}^{n} \overline{w_{j}} a_{j} k_{z_{j}} \right\rangle_{H^{2}(\mathbb{D})} \\ &= \sum_{j,k=1}^{n} \overline{w_{j}} w_{k} \left\langle k_{z_{j}}, k_{z_{k}} \right\rangle_{H^{2}(\mathbb{D})} a_{j} \overline{a_{k}} \\ &= \sum_{j,k=1}^{n} \frac{\overline{w_{j}} w_{k}}{1 - \overline{z_{j}} z_{k}} a_{j} \overline{a_{k}}. \end{split}$$

Here we have used the fact that $f(z_j) = w_j$ for j = 1, ..., n. Similar computations show that

$$\left\| \sum_{j=1}^n a_j k_{z_j} \right\|_{H^2(\mathbb{D})}^2 = \sum_{\substack{j,k=1\\1}}^n \frac{1}{1 - \overline{z_j} z_k} a_j \overline{a_k}.$$

$$0 \le \sum_{j,k=1}^n \frac{1 - \overline{w_j} w_k}{1 - \overline{z_j} z_k} a_j \overline{a_k}.$$

This shows that to solve this interpolation problem a necessary condition is that the matrix

$$Q_n(Z,W) := \left(\frac{1 - \overline{w_j}w_k}{1 - \overline{z_j}z_k}\right)_{i,j}$$

is positive semi-definite. It turns out that this simple necessary condition is in fact sufficient. This is the content of the following Theorem

Theorem 0.1 (Nevanlinna-Pick Interpolation). Let $Z = \{z_1, \ldots, z_n\}$ be a collection of distinct points in \mathbb{D} and let $W = \{w_1, \ldots, w_n\}$ be another collection of points in the disc. Then there exists a function $f \in H^{\infty}(\mathbb{D})$ of norm at most one with $f(z_j) = w_j$ for $j = 1, \ldots, n$ if and only if that matrix

$$Q_n(Z, W) := \left(\frac{1 - \overline{w_j}w_k}{1 - \overline{z_j}z_k}\right)_{i,j} \ge 0$$

Moreover, when $Q_n(Z, W) \ge 0$ there is a Blaschke product of degree at most n that solves the problem.

Before we prove this theorem, we make a couple observations about this Theorem in some simple cases. In the case n = 1 we need a function $f(z_1) = w_1$ with norm at most one. This is always possible by choosing a Blaschke product since the automorphism group of the disc \mathbb{D} is transitive so for appropriate choices of $a = a(z_1, w_1)$ and $\varphi = \varphi(z_1, w_1)$ we will have

$$\varphi_a(z) = e^{i\varphi} \frac{z-a}{1-\overline{a}z}$$

will satisfy $\varphi(z_1) = w_1$.

In the case when n = 2 we first note that $Q_n(Z, W) \ge 0$ if and only if $1 \ge |w_1|$ and $\det Q_n(Z, W) \ge 0$. A simple computation gives that

$$\det Q_n(Z,W) = \frac{1 - |w_1|^2}{1 - |z_1|^2} \frac{1 - |w_2|^2}{1 - |z_2|^2} - \frac{1 - \overline{w_1}w_2}{1 - \overline{z_1}z_2} \frac{1 - \overline{w_2}w_1}{1 - \overline{z_2}z_1} \ge 0$$

which we can rearrange to be

$$\frac{(1-|z_1|^2)(1-|z_2|^2)}{|1-\overline{z_1}z_2|^2} \le \frac{(1-|w_1|^2)(1-|w_2|^2)}{|1-\overline{w_1}w_2|^2},$$

and can further be simplified to

$$\left|\frac{w_1 - w_2}{1 - \overline{w_2}w_1}\right| \le \left|\frac{z_1 - z_2}{1 - \overline{z_2}z_1}\right|$$

Recall the following Lemma

Lemma 0.2 (Invariant Schwarz Lemma). Let $f \in H^{\infty}(\mathbb{D})$ with $||f||_{\infty} \leq 1$. Then

$$\left|\frac{f(z) - f(z_0)}{1 - \overline{f(z_0)}f(z)}\right| \le \left|\frac{z - z_0}{1 - \overline{z_0}z}\right| \quad z \ne z_0$$

Using this Lemma we then see that in the case when n = 2 the problem reduces to something well known and studied.

Exercise 0.3. Prove this Lemma. Hint: Think about the proof of the usual Schwarz Lemma, and then connect it with Möbius maps appropriately.

In the proof below, given a vector $a = (a_1, \ldots, a_n) \in \mathbb{C}^n$ we will let

$$Q_n(Z,W)(a) = \sum_{j,k=1}^n \frac{1 - \overline{w_j}w_k}{1 - \overline{z_j}z_k} a_k \overline{a_j}$$

Proof. The argument given before the statement of Theorem 0.1 gives the necessity of the matrix condition.

It only remains to prove the sufficiency of the condition on the matrix $Q_n(Z, W)$. The proof will proceed by induction. The case n = 1 is trivial by the above discussion, so suppose that the result is true for n - 1 points. Clearly we must have that $|w_j| \leq 1$ for $j = 1, \ldots, n$. For simplicity, we will suppose that $|w_j| < 1$ and leave the remaining case as an exercise since it is easier.

We first show that it is possible to reduce to the case when $Z = \{z_1, \ldots, z_{n-1}, 0\}$ and $W = \{w_1, \ldots, w_{n-1}, 0\}$. Move the point z_n and w_n via Möbius maps. In doing this, we must move the remaining points in the disc as well. This gives us a new collection of points

$$z'_j = \frac{z_j - z_n}{1 - \overline{z_n} z_j} \quad w'_j = \frac{w_j - w_n}{1 - \overline{w_n} w_j} \quad 1 \le j \le n$$

It will be possible to find a function f of norm at most one and satisfying $f(z_j) = w_j$ if and only if

$$g(z) = \frac{f\left(\frac{z+z_n}{1+\overline{z_n}z}\right) - w_n}{1 - \overline{w_n}f\left(\frac{z+z_n}{1+\overline{z_n}z}\right)}$$

is of norm at most one and solves $g(z'_j) = w'_j$ for j = 1, ..., n. Also we will have f a Blaschke product of degree at most n if and only if g is a Blaschke product of degree at most n-1. Consider the resulting quadratic form $Q_n(Z', W')$. We will see that it is very closely related to the quadratic form for $Q_n(Z, W)$. A simple computation gives

$$\frac{1-\overline{z'_k}z'_j}{1-\overline{z_k}z_j} = \frac{1-|z_n|^2}{(1-\overline{z_n}z_j)(1-\overline{z_k}z_n)} := \alpha_j\overline{\alpha_k}.$$

Indeed, we have

$$\frac{1-\overline{z_k'}z_j'}{1-\overline{z_k}z_j} = \frac{1}{1-\overline{z_k}z_j} \left(1-\frac{z_j-z_n}{1-\overline{z_n}z_j}\frac{\overline{z_k}-\overline{z_n}}{1-\overline{z_k}z_n}\right) \\
= \frac{(1-\overline{z_n}z_j)(1-\overline{z_k}z_n)-(z_j-z_n)(\overline{z_k}-\overline{z_n})}{(1-\overline{z_k}z_j)(1-\overline{z_n}z_j)(1-\overline{z_n}z_k)} \\
= \frac{1-|z_n|^2}{(1-\overline{z_n}z_j)(1-\overline{z_k}z_n)}.$$

Similarly, we have

$$\frac{1-\overline{w_k'}w_j'}{1-\overline{w_k}w_j} = \frac{1-|w_n|^2}{(1-\overline{w_n}w_j)(1-\overline{w_k}w_n)} := \beta_j\overline{\beta_k}.$$

So we have

$$\frac{1-\overline{w_j'}w_k'}{1-\overline{z_j'}z_k'} = \frac{1-\overline{w_j}w_k}{1-\overline{z_j}z_k}\frac{\beta_j}{\alpha_j}\frac{\overline{\beta_k}}{\overline{\alpha_k}}$$

Thus, we have that

$$\sum_{j,k=1}^{n} \frac{1 - \overline{w'_j} w'_k}{1 - \overline{z'_j} z'_k} a_j \overline{a_k} = \sum_{j,k=1}^{n} \frac{1 - \overline{w_j} w_k}{1 - \overline{z_j} z_k} \frac{\beta_j}{\alpha_j} a_j \frac{\overline{\beta_k}}{\overline{\alpha_k}} \overline{a_k}$$

Thus, $Q_n(Z', W') \ge 0$ if and only if $Q_n(Z, W) \ge 0$.

So we can suppose that the $Z = \{z_1, \ldots, z_{n-1}, 0\}$ and $W = \{w_1, \ldots, w_{n-1}, 0\}$. There will be a function $f \in H^{\infty}(\mathbb{D})$ of norm at most 1 such that f(0) = 0 and $f(z_j) = w_j$ for $1 \leq j \leq n-1$ if and only if there is a function $g = \frac{f}{z} \in H^{\infty}(\mathbb{D})$ such that

$$g(z_j) = \frac{w_j}{z_j} \quad 1 \le j \le n-1.$$

Again, if we can find a Blachke product g of at most degree n-1, then the f will be a Blaschke product of degree at most n. By induction, we can find this function g if the matrix

$$\tilde{Q}_n(Z,W) = \left(\frac{1 - \frac{w_j}{z_j} \frac{\overline{w_k}}{\overline{z_k}}}{1 - \overline{z_k} z_j}\right)_{i,j} \ge 0.$$

We have thus reduced the proof of the Theorem to showing that

$$Q_n(Z,W) \ge 0 \Leftrightarrow Q_n(Z,W) \ge 0$$

under the assumption that $z_n = w_n = 0$.

Because we have that $z_n = w_n = 0$ a computation gives that

$$Q_n(Z,W)(a) = |a_n|^2 + 2\operatorname{Re}\sum_{j=1}^{n-1} \overline{a_j}a_n + \sum_{j,k=1}^{n-1} \frac{1 - \overline{w_k}w_j}{1 - \overline{z_k}z_j}a_j\overline{a_k}.$$

We complete the square to obtain

$$Q_n(Z,W)(a) = \left|\sum_{j=1}^n a_j\right|^2 + \sum_{j,k=1}^{n-1} \left(\frac{1-\overline{w_k}w_j}{1-\overline{z_k}z_j} - 1\right) a_j\overline{a_k}.$$

However,

$$\frac{1 - \overline{w_k} w_j}{1 - \overline{z_k} z_j} - 1 = \frac{1 - \frac{w_j}{z_j} \frac{\overline{w_k}}{\overline{z_k}}}{1 - z_j \overline{z_k}} z_j \overline{z_k}$$

and so

$$Q_n(Z,W)(a) = \tilde{Q}_n(Z,W)(z_1a_1,\ldots,z_{n-1}a_{n-1}) + \left|\sum_{j=1}^n a_j\right|^2$$

Thus $\tilde{Q}_n(Z, W) \ge 0$ implies that $Q_n(Z, W) \ge 0$. Similarly, setting $a_n = -\sum_{j=1}^{n-1} a_j$ we see that $Q_n(Z, W) \ge 0$ implies $\tilde{Q}_n(Z, W) \ge 0$ as well.

Exercise 0.4. Complete the proof of the sufficiency when $|w_j| = 1$.