
Lecture 8: Nevanlinna-Pick Interpolation in H∞(D)

Remark. Since this is a shorter week because of the Thanksgiving Holiday, the lecture will
be shorter as well.

We next turn to studying another interpolation problem in H∞(D). Given a finite set of
distinct points Z = {z1, . . . , zn} (the nodes) and a finite set W = {w1, . . . , wn} (the targets),
we want to characterize when it is possible to find a function f ∈ H∞(D) with ‖f‖∞ ≤ 1
and f(zj) = wj.

First, lets see that for this problem to have a solution, there is an obvious necessary
condition. Let Mf denote the operator of multiplication by f acting on the Hardy space
H2(D). Since f ∈ H∞(D) we have that this operator is bounded and ‖Mf‖ =

∥∥M∗
f

∥∥ =
‖f‖∞ ≤ 1. Let (a1, . . . , an) ∈ Cn and consider the function

n∑
j=1

ajkzj
(z)

where kzj
is the reproducing kernel for H2(D). Then, we have∥∥∥∥∥M∗

f

(
n∑
j=1

ajkzj

)∥∥∥∥∥
2

H2(D)

≤

∥∥∥∥∥
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j=1

ajkzj

∥∥∥∥∥
2

H2(D)

We then compute both the left hand side and the right hand side of the above inequality.
Using that M∗

f kλ = f(λ)kλ for any λ ∈ D we see that∥∥∥∥∥M∗
f

(
n∑
j=1

ajkzj

)∥∥∥∥∥
2

H2(D)

=

〈
M∗

f

(
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j=1

ajkzj

)
,M∗
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(
n∑
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〈
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f(zj)ajkzj
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n∑
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f(zj)ajkzj

〉
H2(D)

=

〈
n∑
j=1

wjajkzj
,

n∑
j=1

wjajkzj

〉
H2(D)

=
n∑

j,k=1

wjwk
〈
kzj
, kzk

〉
H2(D)

ajak

=
n∑

j,k=1

wjwk
1− zjzk

ajak.

Here we have used the fact that f(zj) = wj for j = 1, . . . , n. Similar computations show
that ∥∥∥∥∥

n∑
j=1

ajkzj

∥∥∥∥∥
2

H2(D)

=
n∑

j,k=1

1

1− zjzk
ajak.
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Rearrangment then gives that for all vectors (a1, . . . , an) ∈ Cn we have

0 ≤
n∑

j,k=1

1− wjwk
1− zjzk

ajak.

This shows that to solve this interpolation problem a necessary condition is that the matrix

Qn(Z,W ) :=

(
1− wjwk
1− zjzk

)
i,j

is positive semi-definite. It turns out that this simple necessary condition is in fact sufficient.
This is the content of the following Theorem

Theorem 0.1 (Nevanlinna-Pick Interpolation). Let Z = {z1, . . . , zn} be a collection of dis-
tinct points in D and let W = {w1, . . . , wn} be another collection of points in the disc. Then
there exists a function f ∈ H∞(D) of norm at most one with f(zj) = wj for j = 1, . . . , n if
and only if that matrix

Qn(Z,W ) :=

(
1− wjwk
1− zjzk

)
i,j

≥ 0

Moreover, when Qn(Z,W ) ≥ 0 there is a Blaschke product of degree at most n that solves
the problem.

Before we prove this theorem, we make a couple observations about this Theorem in some
simple cases. In the case n = 1 we need a function f(z1) = w1 with norm at most one. This
is always possible by choosing a Blaschke product since the automorphism group of the disc
D is transitive so for appropriate choices of a = a(z1, w1) and ϕ = ϕ(z1, w1) we will have

ϕa(z) = eiϕ
z − a
1− az

will satisfy ϕ(z1) = w1.
In the case when n = 2 we first note that Qn(Z,W ) ≥ 0 if and only if 1 ≥ |w1| and

detQn(Z,W ) ≥ 0. A simple computation gives that

detQn(Z,W ) =
1− |w1|2

1− |z1|2
1− |w2|2

1− |z2|2
− 1− w1w2

1− z1z2

1− w2w1

1− z2z1

≥ 0

which we can rearrange to be

(1− |z1|2)(1− |z2|2)
|1− z1z2|2

≤ (1− |w1|2)(1− |w2|2)
|1− w1w2|2

,

and can further be simplified to ∣∣∣∣ w1 − w2

1− w2w1

∣∣∣∣ ≤ ∣∣∣∣ z1 − z2

1− z2z1

∣∣∣∣ .
Recall the following Lemma

Lemma 0.2 (Invariant Schwarz Lemma). Let f ∈ H∞(D) with ‖f‖∞ ≤ 1. Then∣∣∣∣∣ f(z)− f(z0)

1− f(z0)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ z − z0

1− z0z

∣∣∣∣ z 6= z0
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Using this Lemma we then see that in the case when n = 2 the problem reduces to
something well known and studied.

Exercise 0.3. Prove this Lemma. Hint: Think about the proof of the usual Schwarz Lemma,
and then connect it with Möbius maps appropriately.

In the proof below, given a vector a = (a1, . . . , an) ∈ Cn we will let

Qn(Z,W )(a) =
n∑

j,k=1

1− wjwk
1− zjzk

akaj

Proof. The argument given before the statement of Theorem 0.1 gives the necessity of the
matrix condition.

It only remains to prove the sufficiency of the condition on the matrix Qn(Z,W ). The
proof will proceed by induction. The case n = 1 is trivial by the above discussion, so suppose
that the result is true for n− 1 points. Clearly we must have that |wj| ≤ 1 for j = 1, . . . , n.
For simplicity, we will suppose that |wj| < 1 and leave the remaining case as an exercise
since it is easier.

We first show that it is possible to reduce to the case when Z = {z1, . . . , zn−1, 0} and
W = {w1, . . . , wn−1, 0}. Move the point zn and wn via Möbius maps. In doing this, we must
move the remaining points in the disc as well. This gives us a new collection of points

z′j =
zj − zn
1− znzj

w′j =
wj − wn
1− wnwj

1 ≤ j ≤ n.

It will be possible to find a function f of norm at most one and satisfying f(zj) = wj if and
only if

g(z) =
f
(
z+zn

1+znz

)
− wn

1− wnf
(
z+zn

1+znz

)
is of norm at most one and solves g(z′j) = w′j for j = 1, . . . , n. Also we will have f a Blaschke
product of degree at most n if and only if g is a Blaschke product of degree at most n− 1.
Consider the resulting quadratic form Qn(Z ′,W ′). We will see that it is very closely related
to the quadratic form for Qn(Z,W ). A simple computation gives

1− z′kz′j
1− zkzj

=
1− |zn|2

(1− znzj)(1− zkzn)
:= αjαk.

Indeed, we have

1− z′kz′j
1− zkzj

=
1

1− zkzj

(
1− zj − zn

1− znzj
zk − zn
1− zkzn

)
=

(1− znzj)(1− zkzn)− (zj − zn)(zk − zn)

(1− zkzj)(1− znzj)(1− znzk)

=
1− |zn|2

(1− znzj)(1− zkzn)
.

Similarly, we have
1− w′kw′j
1− wkwj

=
1− |wn|2

(1− wnwj)(1− wkwn)
:= βjβk.
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So we have
1− w′jw′k
1− z′jz′k

=
1− wjwk
1− zjzk

βj
αj

βk
αk
.

Thus, we have that
n∑

j,k=1

1− w′jw′k
1− z′jz′k

ajak =
n∑

j,k=1

1− wjwk
1− zjzk

βj
αj
aj
βk
αk
ak.

Thus, Qn(Z ′,W ′) ≥ 0 if and only if Qn(Z,W ) ≥ 0.
So we can suppose that the Z = {z1, . . . , zn−1, 0} and W = {w1, . . . , wn−1, 0}. There

will be a function f ∈ H∞(D) of norm at most 1 such that f(0) = 0 and f(zj) = wj for

1 ≤ j ≤ n− 1 if and only if there is a function g = f
z
∈ H∞(D) such that

g(zj) =
wj
zj

1 ≤ j ≤ n− 1.

Again, if we can find a Blachke product g of at most degree n − 1, then the f will be a
Blaschke product of degree at most n. By induction, we can find this function g if the
matrix

Q̃n(Z,W ) =

(
1− wj

zj

wk

zk

1− zkzj

)
i,j

≥ 0.

We have thus reduced the proof of the Theorem to showing that

Qn(Z,W ) ≥ 0⇔ Q̃n(Z,W ) ≥ 0

under the assumption that zn = wn = 0.
Because we have that zn = wn = 0 a computation gives that

Qn(Z,W )(a) = |an|2 + 2Re
n−1∑
j=1

ajan +
n−1∑
j,k=1

1− wkwj
1− zkzj

ajak.

We complete the square to obtain

Qn(Z,W )(a) =

∣∣∣∣∣
n∑
j=1

aj

∣∣∣∣∣
2

+
n−1∑
j,k=1

(
1− wkwj
1− zkzj

− 1

)
ajak.

However,

1− wkwj
1− zkzj

− 1 =
1− wj

zj

wk

zk

1− zjzk
zjzk

and so

Qn(Z,W )(a) = Q̃n(Z,W )(z1a1, . . . , zn−1an−1) +

∣∣∣∣∣
n∑
j=1

aj

∣∣∣∣∣
2

Thus Q̃n(Z,W ) ≥ 0 implies that Qn(Z,W ) ≥ 0. Similarly, setting an = −
∑n−1

j=1 aj we see

that Qn(Z,W ) ≥ 0 implies Q̃n(Z,W ) ≥ 0 as well. �

Exercise 0.4. Complete the proof of the sufficiency when |wj| = 1.
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