Lecture 8: Nevanlinna-Pick Interpolation in $H^{\infty}(\mathbb{D})$

Remark. Since this is a shorter week because of the Thanksgiving Holiday, the lecture will be shorter as well.

We next turn to studying another interpolation problem in $H^{\infty}(\mathbb{D})$. Given a finite set of distinct points $Z=\left\{z_{1}, \ldots, z_{n}\right\}$ (the nodes) and a finite set $W=\left\{w_{1}, \ldots, w_{n}\right\}$ (the targets), we want to characterize when it is possible to find a function $f \in H^{\infty}(\mathbb{D})$ with $\|f\|_{\infty} \leq 1$ and $f\left(z_{j}\right)=w_{j}$.

First, lets see that for this problem to have a solution, there is an obvious necessary condition. Let M_{f} denote the operator of multiplication by f acting on the Hardy space $H^{2}(\mathbb{D})$. Since $f \in H^{\infty}(\mathbb{D})$ we have that this operator is bounded and $\left\|M_{f}\right\|=\left\|M_{f}^{*}\right\|=$ $\|f\|_{\infty} \leq 1$. Let $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$ and consider the function

$$
\sum_{j=1}^{n} a_{j} k_{z_{j}}(z)
$$

where $k_{z_{j}}$ is the reproducing kernel for $H^{2}(\mathbb{D})$. Then, we have

$$
\left\|M_{f}^{*}\left(\sum_{j=1}^{n} a_{j} k_{z_{j}}\right)\right\|_{H^{2}(\mathbb{D})}^{2} \leq\left\|\sum_{j=1}^{n} a_{j} k_{z_{j}}\right\|_{H^{2}(\mathbb{D})}^{2}
$$

We then compute both the left hand side and the right hand side of the above inequality. Using that $M_{f}^{*} k_{\lambda}=\overline{f(\lambda)} k_{\lambda}$ for any $\lambda \in \mathbb{D}$ we see that

$$
\begin{aligned}
\left\|M_{f}^{*}\left(\sum_{j=1}^{n} a_{j} k_{z_{j}}\right)\right\|_{H^{2}(\mathbb{D})}^{2} & =\left\langle M_{f}^{*}\left(\sum_{j=1}^{n} a_{j} k_{z_{j}}\right), M_{f}^{*}\left(\sum_{j=1}^{n} a_{j} k_{z_{j}}\right)\right\rangle_{H^{2}(\mathbb{D})} \\
& =\left\langle\sum_{j=1}^{n} \overline{f\left(z_{j}\right)} a_{j} k_{z_{j}}, \sum_{j=1}^{n} \overline{f\left(z_{j}\right)} a_{j} k_{z_{j}}\right\rangle_{H^{2}(\mathbb{D})} \\
& =\left\langle\sum_{j=1}^{n} \overline{w_{j}} a_{j} k_{z_{j}}, \sum_{j=1}^{n} \overline{w_{j}} a_{j} k_{z_{j}}\right\rangle_{H^{2}(\mathbb{D})} \\
& =\sum_{j, k=1}^{n} \overline{w_{j}} w_{k}\left\langle k_{z_{j}}, k_{z_{k}}\right\rangle_{H^{2}(\mathbb{D})} a_{j} \overline{a_{k}} \\
& =\sum_{j, k=1}^{n} \frac{\overline{w_{j}} w_{k}}{1-\overline{z_{j}} z_{k}} a_{j} \overline{a_{k}} .
\end{aligned}
$$

Here we have used the fact that $f\left(z_{j}\right)=w_{j}$ for $j=1, \ldots, n$. Similar computations show that

$$
\left\|\sum_{j=1}^{n} a_{j} k_{z_{j}}\right\|_{H^{2}(\mathbb{D})}^{2}=\sum_{j, k=1}^{n} \frac{1}{1-\overline{z_{j}} z_{k}} a_{j} \overline{a_{k}}
$$

Rearrangment then gives that for all vectors $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$ we have

$$
0 \leq \sum_{j, k=1}^{n} \frac{1-\overline{w_{j}} w_{k}}{1-\overline{z_{j}} z_{k}} a_{j} \overline{a_{k}} .
$$

This shows that to solve this interpolation problem a necessary condition is that the matrix

$$
Q_{n}(Z, W):=\left(\frac{1-\overline{w_{j}} w_{k}}{1-\overline{z_{j}} z_{k}}\right)_{i, j}
$$

is positive semi-definite. It turns out that this simple necessary condition is in fact sufficient. This is the content of the following Theorem

Theorem 0.1 (Nevanlinna-Pick Interpolation). Let $Z=\left\{z_{1}, \ldots, z_{n}\right\}$ be a collection of distinct points in \mathbb{D} and let $W=\left\{w_{1}, \ldots, w_{n}\right\}$ be another collection of points in the disc. Then there exists a function $f \in H^{\infty}(\mathbb{D})$ of norm at most one with $f\left(z_{j}\right)=w_{j}$ for $j=1, \ldots, n$ if and only if that matrix

$$
Q_{n}(Z, W):=\left(\frac{1-\overline{w_{j}} w_{k}}{1-\overline{z_{j}} z_{k}}\right)_{i, j} \geq 0
$$

Moreover, when $Q_{n}(Z, W) \geq 0$ there is a Blaschke product of degree at most n that solves the problem.

Before we prove this theorem, we make a couple observations about this Theorem in some simple cases. In the case $n=1$ we need a function $f\left(z_{1}\right)=w_{1}$ with norm at most one. This is always possible by choosing a Blaschke product since the automorphism group of the disc \mathbb{D} is transitive so for appropriate choices of $a=a\left(z_{1}, w_{1}\right)$ and $\varphi=\varphi\left(z_{1}, w_{1}\right)$ we will have

$$
\varphi_{a}(z)=e^{i \varphi} \frac{z-a}{1-\bar{a} z}
$$

will satisfy $\varphi\left(z_{1}\right)=w_{1}$.
In the case when $n=2$ we first note that $Q_{n}(Z, W) \geq 0$ if and only if $1 \geq\left|w_{1}\right|$ and $\operatorname{det} Q_{n}(Z, W) \geq 0$. A simple computation gives that

$$
\operatorname{det} Q_{n}(Z, W)=\frac{1-\left|w_{1}\right|^{2}}{1-\left|z_{1}\right|^{2}} \frac{1-\left|w_{2}\right|^{2}}{1-\left|z_{2}\right|^{2}}-\frac{1-\overline{w_{1}} w_{2}}{1-\overline{z_{1}} z_{2}} \frac{1-\overline{w_{2}} w_{1}}{1-\overline{z_{2}} z_{1}} \geq 0
$$

which we can rearrange to be

$$
\frac{\left(1-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|^{2}\right)}{\left|1-\overline{z_{1}} z_{2}\right|^{2}} \leq \frac{\left(1-\left|w_{1}\right|^{2}\right)\left(1-\left|w_{2}\right|^{2}\right)}{\left|1-\overline{w_{1}} w_{2}\right|^{2}}
$$

and can further be simplified to

$$
\left|\frac{w_{1}-w_{2}}{1-\overline{w_{2}} w_{1}}\right| \leq\left|\frac{z_{1}-z_{2}}{1-\overline{z_{2}} z_{1}}\right| .
$$

Recall the following Lemma
Lemma 0.2 (Invariant Schwarz Lemma). Let $f \in H^{\infty}(\mathbb{D})$ with $\|f\|_{\infty} \leq 1$. Then

$$
\left|\frac{f(z)-f\left(z_{0}\right)}{1-\overline{f\left(z_{0}\right)} f(z)}\right| \leq\left|\frac{z-z_{0}}{1-\overline{z_{0}} z}\right| \quad z \neq z_{0}
$$

Using this Lemma we then see that in the case when $n=2$ the problem reduces to something well known and studied.

Exercise 0.3. Prove this Lemma. Hint: Think about the proof of the usual Schwarz Lemma, and then connect it with Möbius maps appropriately.

In the proof below, given a vector $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$ we will let

$$
Q_{n}(Z, W)(a)=\sum_{j, k=1}^{n} \frac{1-\overline{w_{j}} w_{k}}{1-\overline{z_{j}} z_{k}} a_{k} \overline{a_{j}}
$$

Proof. The argument given before the statement of Theorem 0.1 gives the necessity of the matrix condition.

It only remains to prove the sufficiency of the condition on the matrix $Q_{n}(Z, W)$. The proof will proceed by induction. The case $n=1$ is trivial by the above discussion, so suppose that the result is true for $n-1$ points. Clearly we must have that $\left|w_{j}\right| \leq 1$ for $j=1, \ldots, n$. For simplicity, we will suppose that $\left|w_{j}\right|<1$ and leave the remaining case as an exercise since it is easier.

We first show that it is possible to reduce to the case when $Z=\left\{z_{1}, \ldots, z_{n-1}, 0\right\}$ and $W=\left\{w_{1}, \ldots, w_{n-1}, 0\right\}$. Move the point z_{n} and w_{n} via Möbius maps. In doing this, we must move the remaining points in the disc as well. This gives us a new collection of points

$$
z_{j}^{\prime}=\frac{z_{j}-z_{n}}{1-\overline{z_{n}} z_{j}} \quad w_{j}^{\prime}=\frac{w_{j}-w_{n}}{1-\overline{w_{n}} w_{j}} \quad 1 \leq j \leq n .
$$

It will be possible to find a function f of norm at most one and satisfying $f\left(z_{j}\right)=w_{j}$ if and only if

$$
g(z)=\frac{f\left(\frac{z+z_{n}}{1+\overline{z_{n}} z}\right)-w_{n}}{1-\overline{w_{n}} f\left(\frac{z+z_{n}}{1+\overline{z_{n}} z}\right)}
$$

is of norm at most one and solves $g\left(z_{j}^{\prime}\right)=w_{j}^{\prime}$ for $j=1, \ldots, n$. Also we will have f a Blaschke product of degree at most n if and only if g is a Blaschke product of degree at most $n-1$. Consider the resulting quadratic form $Q_{n}\left(Z^{\prime}, W^{\prime}\right)$. We will see that it is very closely related to the quadratic form for $Q_{n}(Z, W)$. A simple computation gives

$$
\frac{1-\overline{z_{k}^{\prime}} z_{j}^{\prime}}{1-\overline{z_{k}} z_{j}}=\frac{1-\left|z_{n}\right|^{2}}{\left(1-\overline{z_{n}} z_{j}\right)\left(1-\overline{z_{k}} z_{n}\right)}:=\alpha_{j} \overline{\alpha_{k}} .
$$

Indeed, we have

$$
\begin{aligned}
\frac{1-\overline{z_{k}^{\prime}} z_{j}^{\prime}}{1-\overline{z_{k}} z_{j}} & =\frac{1}{1-\overline{z_{k}} z_{j}}\left(1-\frac{z_{j}-z_{n}}{1-\overline{z_{n}} z_{j}} \frac{\overline{z_{k}}-\overline{z_{n}}}{1-\overline{z_{k}} z_{n}}\right) \\
& =\frac{\left(1-\overline{z_{n}} z_{j}\right)\left(1-\overline{z_{k}} z_{n}\right)-\left(z_{j}-z_{n}\right)\left(\overline{z_{k}}-\overline{z_{n}}\right)}{\left(1-\overline{z_{k}} z_{j}\right)\left(1-\overline{z_{n}} z_{j}\right)\left(1-\overline{z_{n}} z_{k}\right)} \\
& =\frac{1-\left|z_{n}\right|^{2}}{\left(1-\overline{z_{n}} z_{j}\right)\left(1-\overline{z_{k}} z_{n}\right)} .
\end{aligned}
$$

Similarly, we have

$$
\frac{1-\overline{w_{k}^{\prime}} w_{j}^{\prime}}{1-\overline{w_{k}} w_{j}}=\frac{1-\left|w_{n}\right|^{2}}{\left(1-\overline{w_{n}} w_{j}\right)\left(1-\overline{w_{k}} w_{n}\right)}:=\beta_{j} \overline{\beta_{k}} .
$$

So we have

$$
\frac{1-\overline{w_{j}^{\prime}} w_{k}^{\prime}}{1-\overline{z_{j}^{\prime}} z_{k}^{\prime}}=\frac{1-\overline{w_{j}} w_{k}}{1-\overline{z_{j}} z_{k}} \frac{\beta_{j}}{\alpha_{j}} \frac{\overline{\beta_{k}}}{\overline{\alpha_{k}}}
$$

Thus, we have that

$$
\sum_{j, k=1}^{n} \frac{1-\overline{w_{j}^{\prime}} w_{k}^{\prime}}{1-\overline{z_{j}^{\prime}} z_{k}^{\prime}} a_{j} \overline{a_{k}}=\sum_{j, k=1}^{n} \frac{1-\overline{w_{j}} w_{k}}{1-\overline{z_{j}} z_{k}} \frac{\beta_{j}}{\alpha_{j}} a_{j} \frac{\overline{\beta_{k}}}{\overline{\alpha_{k}}} \overline{a_{k}} .
$$

Thus, $Q_{n}\left(Z^{\prime}, W^{\prime}\right) \geq 0$ if and only if $Q_{n}(Z, W) \geq 0$.
So we can suppose that the $Z=\left\{z_{1}, \ldots, z_{n-1}, 0\right\}$ and $W=\left\{w_{1}, \ldots, w_{n-1}, 0\right\}$. There will be a function $f \in H^{\infty}(\mathbb{D})$ of norm at most 1 such that $f(0)=0$ and $f\left(z_{j}\right)=w_{j}$ for $1 \leq j \leq n-1$ if and only if there is a function $g=\frac{f}{z} \in H^{\infty}(\mathbb{D})$ such that

$$
g\left(z_{j}\right)=\frac{w_{j}}{z_{j}} \quad 1 \leq j \leq n-1
$$

Again, if we can find a Blachke product g of at most degree $n-1$, then the f will be a Blaschke product of degree at most n. By induction, we can find this function g if the matrix

$$
\tilde{Q}_{n}(Z, W)=\left(\frac{1-\frac{w_{j}}{z_{j}} \overline{\overline{w_{k}}}}{1-\overline{z_{k}} z_{j}}\right)_{i, j} \geq 0 .
$$

We have thus reduced the proof of the Theorem to showing that

$$
Q_{n}(Z, W) \geq 0 \Leftrightarrow \tilde{Q}_{n}(Z, W) \geq 0
$$

under the assumption that $z_{n}=w_{n}=0$.
Because we have that $z_{n}=w_{n}=0$ a computation gives that

$$
Q_{n}(Z, W)(a)=\left|a_{n}\right|^{2}+2 \operatorname{Re} \sum_{j=1}^{n-1} \overline{a_{j}} a_{n}+\sum_{j, k=1}^{n-1} \frac{1-\overline{w_{k}} w_{j}}{1-\overline{z_{k}} z_{j}} a_{j} \overline{a_{k}} .
$$

We complete the square to obtain

$$
Q_{n}(Z, W)(a)=\left|\sum_{j=1}^{n} a_{j}\right|^{2}+\sum_{j, k=1}^{n-1}\left(\frac{1-\overline{w_{k}} w_{j}}{1-\overline{z_{k}} z_{j}}-1\right) a_{j} \overline{a_{k}} .
$$

However,

$$
\frac{1-\overline{w_{k}} w_{j}}{1-\overline{z_{k}} z_{j}}-1=\frac{1-\frac{w_{j}}{z_{j}} \frac{\overline{w_{k}}}{\overline{z_{k}}}}{1-z_{j} \overline{z_{k}}} z_{j} \overline{z_{k}}
$$

and so

$$
Q_{n}(Z, W)(a)=\tilde{Q}_{n}(Z, W)\left(z_{1} a_{1}, \ldots, z_{n-1} a_{n-1}\right)+\left|\sum_{j=1}^{n} a_{j}\right|^{2}
$$

Thus $\tilde{Q}_{n}(Z, W) \geq 0$ implies that $Q_{n}(Z, W) \geq 0$. Similarly, setting $a_{n}=-\sum_{j=1}^{n-1} a_{j}$ we see that $Q_{n}(Z, W) \geq 0$ implies $\tilde{Q}_{n}(Z, W) \geq 0$ as well.
Exercise 0.4. Complete the proof of the sufficiency when $\left|w_{j}\right|=1$.

