LECTURE 8: NEVANLINNA-PICK INTERPOLATION IN H*(DD)

Remark. Since this is a shorter week because of the Thanksgiving Holiday, the lecture will
be shorter as well.

We next turn to studying another interpolation problem in H*(D). Given a finite set of
distinct points Z = {z1,..., z,} (the nodes) and a finite set W = {wy, ..., w,} (the targets),
we want to characterize when it is possible to find a function f € H*(D) with || f]|_ <1
and f(z;) = wj.

First, lets see that for this problem to have a solution, there is an obvious necessary
condition. Let My denote the operator of multiplication by f acting on the Hardy space
H?*(D). Since f € H*(D) we have that this operator is bounded and | M| = H]W}k
1 fllo < 1. Let (a1,...,a,) € C" and consider the function

Z ajk.,;(z)
j=1

where k., is the reproducing kernel for H*(D). Then, we have

M; (Z aijJ) Z ajkzj
=t o) 7= H(D)

We then compute both the left hand side and the right hand side of the above inequality.

Using that M7ky = f(A\)ky for any A € D we see that
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Here we have used the fact that f(z;) = w; for j = 1,...,n. Similar computations show
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Rearrangment then gives that for all vectors (ay,...,a,) € C" we have
n
1 —wjw
=1 C IRk

This shows that to solve this interpolation problem a necessary condition is that the matrix

Qn(Z, W) = (ﬂ) |

1—Z_jZk

is positive semi-definite. It turns out that this simple necessary condition is in fact sufficient.
This is the content of the following Theorem

Theorem 0.1 (Nevanlinna-Pick Interpolation). Let Z = {z1,...,z,} be a collection of dis-

tinct points in D and let W = {wy, ..., w,} be another collection of points in the disc. Then
there exists a function f € H®(D) of norm at most one with f(z;) = w; for j=1,...,n if
and only if that matriz
1 — s
Quz.w) = (T222) 20
1—Zz, i

Moreover, when Q,(Z,W) > 0 there is a Blaschke product of degree at most n that solves
the problem.

Before we prove this theorem, we make a couple observations about this Theorem in some
simple cases. In the case n = 1 we need a function f(z;) = w; with norm at most one. This
is always possible by choosing a Blaschke product since the automorphism group of the disc
D is transitive so for appropriate choices of a = a(z1,w;) and ¢ = (21, w;) we will have

zZ—a

— ¢
palz) = e 1—az

will satisfy ¢(z1) = wy.
In the case when n = 2 we first note that Q,(Z, W) > 0 if and only if 1 > |w;| and
det Q,(Z, W) > 0. A simple computation gives that

1—|wP1=|ws* 1 —wiw,1— 705
dot Qu(z,w) = Lo lwil L= lwal 1m0 L Z g

2 2 — —
1— |z 1 — 2] 1 =Z1z0 1 =72
which we can rearrange to be

(L=l = |2) _ (L= [wn[*)(L —[wsl*)
— < —
|1—2122| |1—w1w2|

Y

and can further be simplified to

21 — 22

<

’wl_w2

1—w_2w1 1—2_221

Recall the following Lemma
Lemma 0.2 (Invariant Schwarz Lemma). Let f € H*(D) with | f| < 1. Then
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Using this Lemma we then see that in the case when n = 2 the problem reduces to
something well known and studied.

Exercise 0.3. Prove this Lemma. Hint: Think about the proof of the usual Schwarz Lemma,
and then connect it with Mobius maps appropriately.

In the proof below, given a vector a = (ay,...,a,) € C" we will let
“1- W, Wi
(2 W = Ik -
Uz W = 3 T

Proof. The argument given before the statement of Theorem 0.1 gives the necessity of the
matrix condition.

It only remains to prove the sufficiency of the condition on the matrix @, (Z, W). The
proof will proceed by induction. The case n = 1 is trivial by the above discussion, so suppose
that the result is true for n — 1 points. Clearly we must have that |w;| < 1for j=1,... n.
For simplicity, we will suppose that |w;| < 1 and leave the remaining case as an exercise
since it is easier.

We first show that it is possible to reduce to the case when Z = {z,...,2,-1,0} and
W ={ws,...,w,_1,0}. Move the point z, and w, via Mébius maps. In doing this, we must
move the remaining points in the disc as well. This gives us a new collection of points

=T = <<

T 1 —-Zpz 71— wLw,
It will be possible to find a function f of norm at most one and satisfying f(z;) = w; if and
only if

f <1Z4:rzi:z> — Wn
is of norm at most one and solves g(z}) = w’; for j = 1,...,n. Also we will have f a Blaschke
product of degree at most n if and only if g is a Blaschke product of degree at most n — 1.

Consider the resulting quadratic form @Q,,(Z’, W'). We will see that it is very closely related
to the quadratic form for @, (Z, W). A simple computation gives

9(z) =

1— 22, 1— |z, Rp—
1—Zz;  (1—zZz) (1 —Z2) 0 F
Indeed, we have
1—%22 - 1 (1_zj—zn zj—%)
1 —Zkz; 1 —Zkz; 1 —Z521 —Zgz,

(1 —Znz) (1 = Zzn) — (25 — 24) (3 — Za)
(1 —=Zx25) (1 = Znzy) (1 — Zz)
1— |2n|2

(1= Znz) (1 — Zkza)

Similarly, we have
1- wl::w;' 1— |wn‘2

= = ﬁ]@
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So we have -
/ / J— o
L= wyw 1 —wjwe B Be

1 — 2z, 1 —-Zjz o

Thus, we have that

Thus, Q,(Z',W') >0 1f and only if Q,(Z,W) > 0.

So we can suppose that the Z = {z1,...,2,-1,0} and W = {wy,...,w,_1,0}. There
will be a function f € H*(D) of norm at most 1 such that f(0) = 0 and f(z;) = w; for
1 <j <n-—1if and only if there is a function g = % € H>*(D) such that

g(zj):% 1<j<n-1.
Zj
Again, if we can find a Blachke product ¢ of at most degree n — 1, then the f will be a
Blaschke product of degree at most n. By induction, we can find this function g if the

matrix ) - %g
Qn(Z, W) = (1_—2%2:> . > 0.
We have thus reduced the proof of the Theorem to shoxjvjing that
Qu(Z, W) >0 & Qu(Z, W) >0

under the assumption that z, = w, = 0.
Because we have that z, = w, =0 a computation gives that

Qu(Z,W) (@) = |a|* +2Re2a]an+z 1‘”’“%%

Ji.k=1

We complete the square to obtain

n 2 n—1
1 — Tow:
Qu(ZW)(a) = Yo + % (#—1) o,
j=1 k=1 T AkE
However, B
l-wew; | _ -~ Pk
1— Z_ij 1— ZjZ_k ik
and so
. 2
Qn(Z7 W)(a/) - QR(Z7 W)(Zl(ll, v 7Zn—1an—1) + Z (lj
j=1
Thus Q,(Z, W) > 0 implies that Q,(Z, W) > 0. Similarly, setting a, = — Z;;l a; we see
that Q,(Z, W) > 0 implies Q,(Z, W) > 0 as well. O

Exercise 0.4. Complete the proof of the sufficiency when |w;| = 1.
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