
Lecture 7: Interpolation in H2(D) and H∞(D)

We are now interested in the following question: Given a collection of points Z = {zj}∞j=1

in D and a sequence of numbers {aj}∞j=1 does there exist a function f that interpolates the
values aj at the points zj. Namely, can we find a function such that

f(zj) = aj ∀j.
We now make this question more precise.

Definition 0.1. The sequence Z = {zj} is called an H∞(D)-interpolating sequence if for every
a = {aj} ∈ `∞ there exists a function f ∈ H∞(D) such that

f(zj) = aj ∀j

Note that, as we have seen, the functional f → f(z) is continuous on H2(D) with norm

(1 − |z|2) 1
2 . So, the map f → {f(zj)(1 − |zj|2)

1
2} is bounded from H2(D) to `∞. We now

want to know if it is bounded as a map to a smaller space, `2. This is the content of the
following definition.

Before the next definition, for the sequence Z let `2(µZ) be the space of all sequences
a = {aj} such that

∞∑
j=1

|aj| (1− |zj|2) := ‖a‖2`2(µZ) <∞.

Definition 0.2. The sequence Z = {zj} is called an H2(D)-interpolating sequence if for every
a = {aj} ∈ `2(µZ) there exists a function f ∈ H2(D) such that

f(zj) = aj ∀j.

We first want to show that it if is possible to do the interpolation, then it is possible to
do so with some norm control.

Proposition 0.3. Suppose that Z is a H∞-interpolating sequence. Given a sequence a ∈ `∞
there exists a function f ∈ H∞(D) such that f(zj) = aj and a constant C such that

‖f‖∞ ≤ C ‖a‖`∞ .

Exercise 0.4. Prove this proposition. Hint Use the Open Mapping Theorem applied to the
operator T : H∞ → `∞ given by Tf(j) = f(zj).

We can then let

MZ = sup
‖aj‖∞≤1

inf{‖f‖∞ : f ∈ H∞(D) : f(zj) = aj ∀j}

denote the constant of interpolation for the sequence Z. The characterization of the interpo-
lating sequences Z that we give will show that MZ can be controlled in terms of information
about the sequence Z.

Lemma 0.5. Suppose that Z is an interpolating sequence for H2(D). Then there exists a
constant C such that for every a ∈ `2(µZ) there is an f ∈ H2(D) satisfying

(i) f(zj) = aj;
1
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(ii) ‖f‖H2(D) ≤ C ‖a‖`2(µZ).

The proof is an application of the Closed Graph Theorem.

Proof. Set M := {f ∈ H2(D) : f(zj) = 0 ∀zj ∈ Z}. Then since point evaluations are
continuous M is closed. Thus, we have H2(D) = M ⊕M⊥. Let P⊥ denote the projection of
H2(D) onto M⊥. Then if a ∈ `2(µZ) and fa ∈ H2(D) satisfies fa(zj) = aj then we have that
P⊥fa(zj) = aj with the P⊥fa the unique element in M⊥. Then Λa := P⊥fa defines a linear
map from `2(µZ) to M⊥.

One can then show that the graph of Λ is closed in `2(µZ)×M⊥. If we have (ak,Λak)→
(a, h) ∈ `2(µZ)×M⊥, the for each fixed j as k →∞ we have

akj → aj and Λak(zj)→ h(zj).

However, Λak(zj) = (RP⊥fak)j = akj , and this then shows that h(zj) = aj = Λa(zj) for all

j, and so by uniquness in M⊥ that Λa = h, namely that (a, h) is the the graph of Λ.
Since the graph is closed, and application of the closed graph theorem implies that Λ is

continuous. So, we then take f(z) := Λa(z). This function then proves the Lemma. �

We have thus seen that solving these interpolation problems in either H∞(D) and in H2(D)
is equivalent to solving them with some norm control. The following Theorem of Carleson
is important in our study of these questions.

Theorem 0.6 (Carleson, [1], Shapiro, Shields [3]). The following are equivalent.

(a) The sequence Z is H2(D)-interpolating;
(b) The sequence Z is H∞(D)-interpolating;
(c) The sequence Z is separated in the pseudo-hyperbolic metric and generates a H2-

Carleson measure. In particular,
∑

zj∈Z(1 − |zj|2)δzj
is a H2(D) Carleson measure

and

inf
j 6=k

∣∣∣∣ zj − zk1− zkzj

∣∣∣∣ ≥ δ > 0

(d) The sequence Z is strongly separated, namely there exists a constant δ > 0 such that

inf
j

∣∣∣∣∣∏
j 6=k

zj − zk
1− zkzj

∣∣∣∣∣ ≥ δ > 0

We remark that some of these conditions were not explicitly pointed out in the paper
by Carleson. Additionally, the result about H2-Interpolation was obtained by Shapiro and
Shields, [3]

In the interest of seeing all the connections that hold, and the resulting situation when we
change to the Dirichlet space, we will show as many of these connections as possible.

Equivalence between (d) and (c). First, suppose that (d) holds. Since each factor∣∣∣∣ zj − zk1− zkzj

∣∣∣∣ ≤ 1 j 6= k

clearly we have that (d) implies

inf
j 6=k

∣∣∣∣ zj − zk1− zkzj

∣∣∣∣ ≥ δ > 0.
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Next observe that we have

2 log δ ≤ log

∣∣∣∣∣∏
j 6=k

zj − zk
1− zkzj

∣∣∣∣∣
=

∑
zj 6=zk

log

∣∣∣∣ zj − zk1− zkzj

∣∣∣∣2

=
∑
zj 6=zk

log

(
1− (1− |zj|2)(1− |zk|2)

|1− zkzj|2

)

≤ −
∑
zj 6=zk

(1− |zj|2)(1− |zk|2)
|1− zkzj|2

.

This estimate gives that ∑
zj 6=zk

(1− |zj|2)(1− |zk|2)
|1− zkzj|2

≤ log
1

δ2

and so
∞∑
j=1

(1− |zj|2)(1− |zk|2)
|1− zkzj|2

≤
(

1 + log
1

δ2

)
.

However, by our proof of the Carleson Embedding Theorem, we thus have that for all
f ∈ H2(D) that

∞∑
j=1

|f(zj)|2 (1− |zj|2) .
(

1 + log
1

δ2

)
‖f‖2H2(D) .

(Note that the proof of the Carleson embedding theorem that we actually gave showed
that µ is a H2(D)-Carleson measure if and only if∫

D
|kλ(z)|2 dµ(z) ≤ C ‖kλ‖2H2(D) ∀λ ∈ suppµ.

See Theorem 0.1 from Lecture 2.)
Thus we have shown that (d) implies (c). We now turn to showing that (c) implies (d).

Note that by the Carleson measure hypothesis of (c) we have that

C ≥
∞∑
j=1

(1− |zj|2)(1− |zk|2)
|1− zjzk|2

≥
∑
zj 6=zk

(1− |zj|2)(1− |zk|2)
|1− zjzk|2

.

Now, we apply the following trivial inequality for a2 < t < 1 that

− log t ≤ −2 log a

1− a2
(1− t) ≤

(
1 + 2 log

1

a

)
(1− t).

Since we have that the sequence Z is separated we have that

inf
j 6=k

∣∣∣∣ zj − zk1− zkzj

∣∣∣∣ ≥ δ
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we apply the trivial inequality with t =
∣∣∣ zj−zk

1−zkzj

∣∣∣2 and a = δ to obtain

C

(
1 + 2 log

1

δ

)
≥

(
1 + 2 log

1

δ

) ∑
zj 6=zk

(1− |zj|2)(1− |zk|2)
|1− zjzk|2

=

(
1 + 2 log

1

δ

) ∑
zj 6=zk

(
1−

∣∣∣∣ zj − zk1− zkzj

∣∣∣∣2
)

≥
∑
zj 6=zk

log

∣∣∣∣ zj − zk1− zkzj

∣∣∣∣2

= − log

∣∣∣∣∣∏
j 6=k

zj − zk
1− zkzj

∣∣∣∣∣
This then can be rearranged to give

inf
j

∣∣∣∣∣∏
j 6=k

zj − zk
1− zkzj

∣∣∣∣∣ ≥ C(δ) > 0.

�

(a) implies (d) (implies (c)). First, lets see that we can easily obtain one half of the condi-
tion appearing in (c). If Z is an interpolating sequence for H2(D), then by Lemma 0.5 we
know that there is a solution to the interpolation problem f(zj) = aj satisfying

‖f‖2H2(D) ≤ C
∞∑
j=1

|aj|2 (1− |zj|2)

with C independent of the sequence {aj}. Fix j and let aj := δj,l. Then we can find
f ∈ H2(D) such that f(zj) = δl,j and

‖f‖2H2(D) ≤
C

kzj
(zj)

.

Next observe that for any constant α we have〈
f, kzj

− αkzl

〉
H2(D)

= 1.

An application of Cauchy–Schwarz and the reproducing kernel property implies that

1 ≤ C

kzj
(zj)

(
kzj

(zj)− 2Re(αkzl
(zj)) + |α|2 kzl

(zl)
)
.

Now choose α =
|kzl

(zj)|√kzj (zj)

kzl
(zj)
√
kzl

(zl)
. Simple algebra then produces that

|kzl
(zj)|2

kzl
(zl)kzj

(zj)
=

(1− |zj|2)(1− |zk|2)
|1− zjzk|2

≤
(

1− 1

2C

)2

.

This then gives that ∣∣∣∣ zj − zk1− zkzj

∣∣∣∣2 = 1− (1− |zj|2)(1− |zk|2)
|1− zjzk|2

≥ C
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and so the sequence Z is separated as claimed.
We now will modify this slightly so that we give the proof that (a) implies (d). Let aj = δj,k

and choose a function f that interpolates this sequence. We also know that we have norm
control on the solution

‖f‖H2(D) ≤ C(1− |zk|2)
1
2 .

Again, let Bk denote the Blaschke product with zeros at {zj}j 6=k and consider the function

g(z) = f(z)
Bk(z)

. Then it is a fact that ‖f‖H2 = ‖g‖H2 and so

1

|Bk(zk)|
=

∣∣∣∣ f(zk)

Bk(zk)

∣∣∣∣ = |g(zk)| =
∣∣∣〈g, kzk

〉H2(D)

∣∣∣
≤ ‖g‖H2 ‖kzk

‖H2 = ‖f‖H2 ‖kzk
‖H2 ≤ C.

�

(b) implies (d) (implies (c)). Fix the point zk and let f ∈ H∞(D) interpolate the values
δk,j. Let Bk be the Blaschke product with zeros at {zj}j 6=k. Then we have that f = Bkg
with g ∈ H∞(D) and ‖g‖∞ ≤M . But,

1 = |f(zk)| = |Bk(zk)| |g(zk)| ≤M |Bk(zk)| .

This then gives

|Bk(zk)| ≥
1

M
and since zk was arbitrary that

inf
j

∣∣∣∣∣∏
j 6=k

zj − zk
1− zkzj

∣∣∣∣∣ ≥ δ > 0.

Since we now have that (a) implies (d), then by the computations above, we have shown
that (a) also implies (c).

�

(d) implies (b). We will prove the result in the upper half plane H since the ideas are easier
there. As a reduction to the problem, we are allowed to suppose that the sequence Z is
finite as long as any estimates we obtain are independent on the number of elements in the
sequence Z. A normal families argument then will complete the proof.

First, we need to translate the condition (d) into the appropriate language. In this setting,
a Blaschke product takes the form

B(z) =
n∏
j=1

z − zj
z − zj

.

So

Bj(z) =
z − zj
z − zj

B(z)

and a simple computation gives that

B′(zj) =
Bj(zj)

zj − zj
.
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In our case then the hypothesis is that

inf
j
|Bj(zj)| ≥ δ > 0.

Since the sequence Z is finite, it is very easy to construct a function which solves f(zj) = aj,
though this frequently will not have good norm estimates. Here is a very simple way to
construct such a function

fn(z) =
n∑
j=1

aj
Bj(z)

Bj(zj)
=

n∑
j=1

aj

z−zj

z−zj
B(z)

B′(zj)(zj − zj)
=

n∑
j=1

aj
B(z)

B′(zj)(z − zj)
z − zj
zj − zj

.

So we also have that

g(z) =
n∑
j=1

aj
B(z)

B′(zj)(z − zj)

also solves g(zj) = aj. Now note that any other solution to the problem can be obtained by
looking at

g +Bh

where h ∈ H∞(H) is arbitrary. So the function which solves the problem and has minimal
norm is given by

inf
h∈H∞

‖g +Bh‖∞ = inf
h∈H∞

∥∥∥∥∥B(z)

(
n∑
j=1

aj
1

B′(zj)(z − zj)
+ h(z)

)∥∥∥∥∥
L∞(R)

= inf
h∈H∞

∥∥∥∥∥
n∑
j=1

aj
1

B′(zj)(z − zj)
+ h(z)

∥∥∥∥∥
L∞(R)

= sup
f∈H1(H)

∣∣∣∣∣
n∑
j=1

∫
R

ajf(x)

B′(zj)(x− zj)
dx

∣∣∣∣∣ .
Here the last line follows since for andy Banach space X with closed subspace Y we have
that Y ∗ ' X∗

Y ⊥
, and

inf{‖x∗ + k‖ : k ∈ Y ⊥} = sup{|〈x∗, y〉| : y ∈ Y, ‖y‖ ≤ 1}.

and applying this with X = L1, and Y = H1, and so Y ⊥ = H∞. An application of Cauchy’s
Theorem then gives that

inf
h∈H∞

‖g +Bh‖∞ = 2π sup
f∈H1(H)

∣∣∣∣∣
n∑
j=1

ajf(zj)

B′(zj)

∣∣∣∣∣
= 4π sup

f∈H1(H)

∣∣∣∣∣
n∑
j=1

ajyjf(zj)

Bj(zj)

∣∣∣∣∣
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Now recalling how we defined the constant of interpolation MZ we have

MZ = sup
a∈`∞

4π sup
f∈H1(H)

∣∣∣∣∣
n∑
j=1

ajyjf(zj)

Bj(zj)

∣∣∣∣∣
= 4π sup

f∈H1(H)

n∑
j=1

yj |f(zj)|
|Bj(zj)|

Now set νZ to be the measure

νZ =
n∑
j=1

yj
|Bj(zj)|

δzj

then we see that MZ is the norm of the embedding operator H1(H) ⊂ L1(H; dνZ). We then
use the fact that H1(H) = H2(H) ·H2(H) with equality of norms. Namely, given f ∈ H1(H)
there exists a g, h ∈ H2(H) such that f = gh and ‖f‖1 = ‖g‖2 ‖h‖2. We compute the norm
of this embedding operator∫

H
|f(z)| dνZ ≤

(∫
H
|g(z)|2 dνZ(z)

) 1
2
(∫

H
|h(z)|2 dνZ(z)

) 1
2

≤ ‖νZ‖2H2−Carl ‖g‖2 ‖h‖2 = ‖f‖1 ‖νZ‖
2
H2−Carl .

So we have that ‖νZ‖H1−Carl ≤ ‖νZ‖H2−Carl and we are left computing this norm. However,
(at least in the case of the disc) we have already done this.

Consider the measure

dνZ =
n∑
j=1

yj
|Bj(zj)|

δzj
.

If we were to translate this measure to an equivalent measure on the disc, it would take the
form

dν̃Z =
n∑
j=1

(1− |zj|2)
|Bj(zj)|

δzj
.

Note that by the strong separation condition, the denominator of the terms above is bounded
below by δ. This observation, and our previous argument shows that this is a Carleson
measure with

‖dν̃Z‖H2−Carl .

√
1

δ

(
1 + log

1

δ2

)
.

The proof in the case of the upper half plane is identical (modulo writing things appropri-
ately). �

Exercise 0.7. Show that the Carleson norm of the measure

dνZ =
n∑
j=1

yj
|Bj(zj)|

δzj

on H is controlled by
1

δ

(
1 + log

1

δ2

)
.
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We briefly illustrate why we are saying that the sequence Z is separated if the condition

inf
j 6=k

∣∣∣∣ zj − zk1− zkzj

∣∣∣∣ ≥ δ > 0

holds. This is a geometric condition on the sequence of points, and it can be interpreted as
the the points are far away from each other in the hyperbolic metric.

Recall that the hyperbolic metric between two points z, w ∈ D is given by

ρ(z, w) = log
1 + |bw(z)|
1− |bw(z)|

where bz(w) = z−w
1−wz .

Exercise 0.8. Show that ρ(z, w) is a metric on D. Hint: To check the triangle inequality,
first show that the metric ρ(z, w) is conformally invariant, i.e.,

ρ(bλ(z), bλ(w)) = ρ(z, w).

Then the condition

inf
j 6=k

∣∣∣∣ zj − zk1− zkzj

∣∣∣∣ ≥ δ > 0

is equivalent to the condition that the hyperbolic discs{
w : ρ(zj, w) < log

1 + δ

1− δ

}
are disjoint. The proof of this fact is just a simple computation.

Exercise 0.9. Show that the condition

inf
j 6=k

∣∣∣∣ zj − zk1− zkzj

∣∣∣∣ ≥ δ > 0

can also be interpreted as saying that Euclidean discs centered about the points zj with radius
a multiple (depending on δ) of (1− |zj|) must also be disjoint.

0.1. Peter Jones’ Constructive Proof of Interpolation. We now give another proof
of this Carleson’s Interpolation Theorem, but will give an explicit formula that solves the
interpolation problem. This construction is very similar to the constructive solution of the
∂-problem.

First, some notation. We are again given a sequence Z = {zj} ⊂ D and we let

Bj(z) =
∏
k 6=j

bzk
(z) =

∏
k 6=j

z − zk
1− zkz

denote the infinite Blaschke factor that vanishes on the set of points Z \ {zj}. We also set

δj := |Bj(zj)| =
∏
k 6=j

∣∣∣∣ zj − zk1− zkzj

∣∣∣∣ .
Finally, `∞ will denote the collection of sequences {ak} such that

‖a‖`∞ := sup
n
|an| <∞.
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Theorem 0.10 (Jones, [2]). Suppose that the sequence Z satisfies

inf
j

∣∣∣∣∣∏
j 6=k

zj − zk
1− zkzj

∣∣∣∣∣ ≥ δ > 0.

Let C(δ) denote the best constant for the Carleson measure

µZ =
∞∑
j=1

(1− |zj|2)δzj
.

Define

fj(z) :=
Bj(z)

Bj(zj)

(
1− |zj|2

1− zjz

)2

exp

− 1

2C(δ)

∑
|zm|≥|zj |

(
1 + zmz

1− zmz
− 1 + zmzj

1− zmzj

)
(1− |zm|2)

 .

Then for any a ∈ `∞ we have

f(z) =
∞∑
j=1

ajfj(z) ∈ H∞(D)

with f(zj) = aj and

|f(z)| ≤ ‖a‖`∞
∞∑
j=1

|fj(z)| ≤ C(δ) ‖a‖`∞ .

The proof of this Theorem is related to the constructive solution of the the ∂ problem,
but in a discrete setting. The construction of the function was done by Jones in [2].

Proof. First, some simple observations. We have that δj ≥ δ for all j. We have also seen
that under the hypothesis that

inf
j
|Bj(zj)| ≥ δ

that the following embedding condition holds

∞∑
j=1

|f(zj)|2 (1− |zj|2) ≤ C(δ) ‖f‖2H2(D) .

Assuming that we have proved the estimate claimed in the Theorem, it is then clear that
this function is holomoprhic and moreover that fj(zk) = δjk and so f(zj) = aj. The proof
of analyticity is a normal families argument. Then, again assuming the claimed estimate,
given {aj} ∈ `∞ and having

f(z) =
∞∑
j=1

ajfj(z)

gives

|f(z)| ≤ ‖a‖`∞
∞∑
j=1

|fj(z)| ≤ C(δ) ‖a‖`∞ .
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Since we want to show that the function f ∈ H∞(D) we can suppose that z ∈ T, and then
if we can show that the above sum converges, by the maximum principle we will have the

same result in D. Now, letting αj =
(1−|zj |2)2

|1−zjz|2
it is easy to see that we have

|fj(z)| ≤ αj exp

− 1

2C(δ)
Re

∑
|zm|≥|zj |

(
1 + zmz

1− zmz
− 1 + zmzj

1− zmzj

)
(1− |zm|2)


≤ αj exp

− 1

2C(δ)

∑
|zm|≥|zj |

αm

 exp

 1

C(δ)

∑
|zm|≥|zj |

1− |zj|2

|1− zmzj|2
(1− |zm|2)

 .

Here in the computations we used the fact that |z| = 1, the simple fact that

Re

(
1 + u

1− u

)
=

1− |u|2

|1− u|2

and obvious estimates. Now, note that we have by the hypothesis on the sequence Z that

exp

 1

C(δ)

∑
|zm|≥|zj |

1− |zj|2

|1− zmzj|2
(1− |zm|2)

 ≤ e.

This follows from using the Carleson measure condition on the reproducing kernel. Using
this estimate, and setting βj =

αj

2C(δ)
we see that

∞∑
j=1

|fj(z)| ≤ 2eC ′(δ)
∞∑
j=1

βj exp

− ∑
|zm|≥|zj |

βm

 .

However, it is easy to see that this last sum is a lower Riemann sum for the integral∫∞
0
e−tdt = 1. So, we have proven that

|f(z)| ≤ 2eC ′(δ) ‖a‖`∞ .
�

We remark that being careful and recalling what the constants C(δ) looks like, the proof
of this theorem shows that the norm of the operator of interpolation is controlled by an
absolute constant times

1

δ

(
1 + log

1

δ2

)
which also appeared in the other proof we gave characterizing the interpolating sequences.

We also can use this result to prove the following result. We will say that a sequence Z is
interpolating for Hp(D) if given any a ∈ `p(N) there exists a f ∈ Hp(D) such that

f(zj) = aj(1− |zj|2)−
1
p .

Theorem 0.11. Let 1 ≤ p ≤ ∞. Suppose that the sequence Z is strongly separated, i.e.,

inf
j

∣∣∣∣∣∏
j 6=k

zj − zk
1− zkzj

∣∣∣∣∣ ≥ δ > 0.

Then Z is Hp(D) interpolating, and we have norm control on the solution function.
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Proof. The proof can be given via an interpolation argument. By Theorem 0.10 we have the
result being true when p =∞. We then focus on the case of p = 1. Given a sequence a ∈ `1
we need a function f ∈ H1(D) such that

f(zj) = aj(1− |zj|2)−1.

Based on Theorem 0.10, we set

f(z) =
∞∑
j=1

aj(1− |zj|2)−1fj(z)

where fj are the functions defined in the statement of Theorem 0.10. This function clearly
has that

f(zj) = aj(1− |zj|2)−1

Then, we compute that

‖f‖H1(D) ≤
∞∑
j=1

|aj| (1− |zj|2)−1 ‖fj‖H1(D) .

Now since fj ∈ H∞(D) we definitely have that fj ∈ H1(D), but if we use the coarse estimate
that

‖f‖H1(D) ≤ ‖fj‖∞
then we unfortunately won’t prove the result. Instead, we need to show that

‖fj‖H1(D) ≤ C(δ)(1− |zj|2).
Using this estimate, then we immediately have that

‖f‖H1(D) ≤
∞∑
j=1

|aj| .

The estimate on the H1(D) norm is an easy computation we leave as an exercise.
The case of general 1 < p <∞ then follows by a standard interpolation argument. �

This proof gives another proof of the result of Shapiro and Shields [4].

Exercise 0.12. Prove that
‖fj‖H1(D) ≤ C(δ)(1− |zj|2).

Hint: Compute the norm of H1(D) by integrating fj(z) over the boundary T. Then think
about harmonic functions.

Exercise 0.13. Complete the proof by supplying the details of the interpolation argument.
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