
Lecture 6: ∂-equations and The Corona Theorem

In the last lecture we studied the problem

∂u = v

and gave a solution operator of the form

u(z) =
1

2πi

∫
D

v(w)

w − z
dA(w).

We then wanted to study the bounded of the solution u in terms of boundedness properties
of the right hand side v. We finished the last lecture by showing that if the right hand
side has some Carleson measure estimates, then we always have a bounded solution to this
problem.

In this lecture we will return to studying the ∂-problem when the right hand side is a
Carleson measure. We will show that in this case, it is possible to give a constructive
solution to this problem. This is a very clever construction due to Peter Jones. Finally, in
this lecture we will use the results from last week to complete the proof of Carleson’s Corona
Theorem.

1. Peter Jones’ Constructive Solution to ∂

We now give another method to solve the ∂ problem that is more constructive. The proof
this time is based on the extremely clever solution operator constructed by Peter Jones, [3].

The starting point of the construction is the following observation. We have seen from
above, that to solve the equation ∂F = G we can set

F =
1

2πi

∫
D
G(ξ)

1

z − ξ
dξ ∧ dξ.

However, we can also use another kernel to accomplish this. Choose a function K(z, ξ) that
is analytic in z, K(z, z) = 1 and that is smooth, then we will also have that

F =
1

2πi

∫
D
K(z, ξ)G(ξ)

1

z − ξ
dξ ∧ dξ.

solves ∂F = G.

Exercise 1.1. Show that this is true. Hint: K(z, ξ) = 1+(z−ξ)K̃(z, ξ) and argue as before.

This then gives us lots of freedom by which kernel we choose to solve the problem. The
construction by Jones makes a very clever and judicious choice of the kernel so that one can
obtain the solutions directly.

Theorem 1.2 (Jones, [3]). Let µ be a complex H2(D) Carleson measure on D. Then with
S (µ) (z) given by

(1.1) S (µ) (z) =

∫
D
K (σ, z, ζ) dµ (ζ)

1



2

where σ = |µ|
‖µ‖CM(H2)

and

K (σ, z, ζ) ≡ 2i

π

1− |ζ|2

(z − ζ)
(
1− ζz

) exp

{∫
|ω|≥|ζ|

(
−1 + ωz

1− ωz
+

1 + ωζ

1− ωζ

)
dσ (ω)

}
,

we have that:

(1) S (µ) ∈ L1
loc (D).

(2) ∂S (µ) = µ in the sense of distributions.

(3)
∫

D

∣∣∣K ( |µ|
‖µ‖CM(H2)

, x, ζ
)∣∣∣ d |µ| (ζ) . ‖µ‖CM(H2) for all x ∈ T = ∂D,

so ‖S (µ)‖L∞(T) . ‖µ‖CM(H2).

Note that the kernel K(σ, z, ξ) is analytic in z,

K(σ, z, ξ) =
2i

π

1

z − ξ
K̃(σ, z, ξ)

and K̃(σ, z, ξ) is smooth with

K̃(σ, z, z) =
1− |z|2

1− |z|2
exp

{∫
|ω|≥|z|

(
−1 + ωz

1− ωz
+

1 + ωz

1− ωz

)
dσ(ω)

}
= 1.

So (2) follows the argument above. While (1) follows from (3). We now turn to proving that
(3) holds (though in the course of the proof we will address (1) and (3) at the same time).

Proof. Observe that if we prove
∫

D

∣∣∣K ( |µ|
‖µ‖CM(H2)

, x, ζ
)∣∣∣ d |µ| (ζ) . ‖µ‖CM(H2) for all x ∈ T =

∂D, then we have

|S(µ)(z)| ≤
∫

D

∣∣∣∣∣K
(

|µ|
‖µ‖CM(H2)

, z, ζ

)∣∣∣∣∣ d |µ| (ζ) . ‖µ‖CM(H2) .

We turn now to the proof of this remaining fact. Note that for the measure σ = µ
‖µ‖CM(H2)

we have

Re

(∫
|w|≥|ζ|

(
1 + wζ

1− wζ

)
dσ(w)

)
=

∫
|w|≥|ζ|

Re

(
1 + wζ

1− wζ

)
dσ(w)

≤ 2

∫
D

1− |ζ|2

|1− wζ|2
dσ(w)

≤ 2
∥∥∥k̃ζ∥∥∥2

H2(D)
= 2,

where k̃ζ(z) = (1−|ζ|2)
1
2

1−ζz is the normalized reproducing kernel and clearly has H2(D) norm

equal to 1. Next, observe that it will suffice to control the boundary values of the function
S(µ), and so we can take z ∈ T. We then see, using the estimate from above and that z ∈ T
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that we have

|K(σ, z, ξ)| =
2

π

1− |ξ|2∣∣1− ξz∣∣2
∣∣∣∣exp

{∫
|ω|≥|ξ|

(
−1 + ωz

1− ωz
+

1 + ωξ

1− ωξ

)
dσ(ω)

}∣∣∣∣
=

2

π

1− |ξ|2∣∣1− ξz∣∣2 exp

{
Re

∫
|ω|≥|ξ|

−1 + ωz

1− ωz
dσ(ω)

}
exp

{
Re

∫
|ω|≥|ξ|

1 + ωz

1− ωz
dσ(ω)

}

≤ 2

π
e2

1− |ξ|2∣∣1− ξz∣∣2 exp

{
−
∫
|ω|≥|ξ|

1− |ω|2

|1− ωz|2
dσ(ω)

}
We can then use this estimate on the kernel K(σ, z, ζ) to give

|S (µ) (z)| =

∣∣∣∣∫
D
K (σ, z, ζ) dµ (ζ)

∣∣∣∣
≤ ‖µ‖CM(H2)

∫
D
|K (σ, z, ζ)| dσ(ζ)

≤ e2 ‖µ‖CM(H2)

2

π

∫
D

1− |ζ|2∣∣1− ζz∣∣2 exp

{
−
∫
|ω|≥|ζ|

1− |ω|2

|1− ωz|2
dσ(ω)

}
dσ(ζ).

It remains to show that∫
D

1− |ζ|2∣∣1− ζz∣∣2 exp

{
−
∫
|ω|≥|ζ|

1− |ω|2

|1− ωz|2
dσ(ω)

}
dσ(ζ) ≤ 1.

First, suppose that we have dσ =
∑N

j=1 ajδζj with |ζj| ≤ |ζj+1|. Further, set βj = aj
1−|ζj |2

|1−ζjz|2
and

tj =
N∑
k=j

βk, and so βj = tj − tj−1.

If we evaluate the above integral for this measure and use the resulting notation, we see that
the integral becomes

N∑
j=1

(tj − tj−1)e
−tj ≤

∫ ∞
0

e−tdt = 1.

A standard measure theory argument then finishes the proof that∫
D

1− |ζ|2∣∣1− ζz∣∣2 exp

{
−
∫
|ω|≥|ζ|

1− |ω|2

|1− ωz|2
dσ(ω)

}
dσ(ζ) ≤ 1.

This then completes the proof of the Theorem. �

The original proof that Jones gave was for the upper half-plane H. The idea is identical,
but requires certain modifications.

Exercise 1.3. State and give the proof of Jones’ Theorem in the case of the upper half plane
H.
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2. Wolff’s Proof of the Corona Theorem

Recall that in the last lecture we finished by proving the following Theorem of Wolff.

Theorem 2.1 (Wolff, [2]). Suppose that G(z) is bounded and smooth on the disc D. Further,
assume that the measures

|G|2 log
1

|z|
dA(z) and |∂G| log

1

|z|
dA(z)

are H2(D)-Carleson measures. Then there exists a continuous function b(z) on D, smooth
on D such that

∂b = G

and there exists constants C1 and C2 such that

‖b‖L∞(D) ≤ C1

∥∥∥∥|G|2 log
1

|z|
dA(z)

∥∥∥∥
H2(D)−Carl

+ C2

∥∥∥∥|∂G| log
1

|z|
dA(z)

∥∥∥∥2

H2(D)−Carl

With this tool, we are now is a place to prove the following important Theorem due to
Carleson. The proof we give, will exploit the Theorem above due to Wolff.

Theorem 2.2 (Carleson, [1]). Suppose that f1, . . . , fn ∈ H∞(D) and there exists a δ > 0
such that

1 ≥ max
1≤j≤n

{|fj(z)|} ≥ δ > 0.

Then there exists g1, . . . , gn ∈ H∞(D) such that

1 = f1(z)g1(z) + · · ·+ fn(z)gn(z) ∀z ∈ D
and

‖gj‖H∞(D) ≤ C(δ, n) ∀j = 1, . . . , n.

An obvious remark is that the condition on the functions f is clearly necessary. We can’t
have all the functions simultaneously vanish if they can generate the function 1.

Before we prove this Theorem, we first consider the case of two functions so that we can see
the connections between this problem and the ∂-problem we initially studied. Suppose we
have two functions f1, f2 ∈ H∞(D) such that max(|f1(z)| , |f2(z)|) ≥ δ. Define the following
functions

ϕ1(z) =
f1(z)

|f1(z)|2 + |f2(z)|2
ϕ2(z) =

f2(z)

|f1(z)|2 + |f2(z)|2
.

The hypotheses on f1 and f2 imply that the functions ϕ1 and ϕ2 are in fact bounded and
smooth on D. Note that we have that

1 = f1(z)ϕ1(z) + f2(z)ϕ2(z) ∀z ∈ D
but the functions ϕ1 and ϕ2 are in general not analytic. Now, observe for any function r we
have that the functions

g1 = ϕ1 + rf2 g2 = ϕ2 − rf1

also solve the problem
f1g1 + f2g2 = 1.

Our goal is to select a good choice of function r so that the resulting choice will make g1 and
g2 be analytic and bounded. Now, we have that g1 is analytic if and only if

0 = ∂g1 = ∂ϕ1 + f2∂r.
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Similarly, g2 is analytic if and only if

0 = ∂g2 = ∂ϕ2 − f1∂r.

Using these two equations and the condition that f1ϕ1 + f2ϕ2 = 1 gives that the function r
must satisfy the equation

∂r = ϕ1∂ϕ2 − ϕ2∂ϕ1.

Thus, we need to solve for the choice of r that will give a bounded solution. Here we will use
the fact that when we express what appears on the right hand side of the above equation,
we have certain Carleson measures appearing.

Proof. With out lose of generality, we may assume that the functions are analytic in a
neighborhood of the closed disc D. Define the functions

ϕj(z) =
fj(z)∑n

j=1 |fj(z)|2
∀z ∈ D.

Then by the hypotheses on the functions fj we clearly have that |ϕj(z)| ≤ C(n, δ). These
functions are in general not analytic, and so we must correct them to be so. We thus, will
set

gj(z) = ϕj(z) +
n∑
k=1

aj,k(z)fk(z)

where the functions aj,k(z) are to be determined. However, we will require that aj,k(z) =
−ak,j(z). Note that this alternating condition implies that

n∑
j=1

fj(z)gj(z) =
n∑
j=1

fj(z)ϕj(z) +
n∑
j=1

n∑
k=1

aj,k(z)fj(z)fk(z) = 1.

To have the alternating characterisitic of aj,k we set aj,k = bj,k(z) − bk,j(z) for some yet to

be determined functions. We will chose the functions bj,k to be solutions to the follow ∂
problem:

∂bj,k = ϕj∂ϕk := Gj,k.

Using this, we see that

∂gj = ∂ϕj +
n∑
k=1

fk∂aj,k

= ∂ϕj +
n∑
k=1

fk
(
∂bj,k − ∂bk,j

)
= ∂ϕj +

n∑
k=1

fk
(
ϕj∂ϕk − ϕk∂ϕj

)
= ∂ϕj + ϕj∂

(
n∑
k=1

fkϕk

)
− ∂ϕj

n∑
k=1

fkϕk

= ∂ϕj + ϕj∂1− ∂ϕj1 = 0.
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So the functions gj are analytic. Suppose that we prove the functions bj,k are bounded by
C(n, δ), then similarly we have that aj,k are bounded, and so

|gj(z)| ≤ C(n, δ).

We are thus left with proving that the functions bj,k are bounded. With this in mind, and
having the result of Wolff at our disposal, we must show that the measures

|Gj,k|2 log
1

|z|
dA(z) and |∂Gj,k| log

1

|z|
dA(z)

are H2(D)-Carleson measures. We claim that each of these measures can be dominated (up
to a constant C(n, δ)) by the following measure

n∑
j=1

∣∣f ′j(z)
∣∣2 log

1

|z|
dA(z).

To see that this is a H2(D)-Carleson measure, it suffices to show that for f ∈ H∞(D) that
we have |f ′(z)|2 log 1

|z|dA(z) is a H2(D)-Carleson measure, which follows easily from the

alternate norm on H2(D) we previous defined (see the exercise below).
Consider the expression |Gj,k|2. Note that by the hypotheses on fj we have that |ϕj| ≤

C(n, δ) and so,

|Gj,k|2 ≤ C(n, δ)
∣∣∂ϕk∣∣2 .

Now, if we compute we see that

∂ϕk =
f ′k∑n

j=1 |fj|
2 −

fk
∑n

j=1 fjf
′
j(∑n

j=1 |fj|
2
)2

=

∑n
j=1 fj(fjf

′
k − fkf ′j)(∑n

j=1 |fj|
2
)2 .

Using this, we see that∣∣∂ϕk∣∣2 ≤ C

∑n
j=1 |fj|

2∑n
j=1

∣∣f ′j∣∣2(∑n
j=1 |fj|

2
)2 ≤ C(n, δ)

n∑
j=1

∣∣f ′j∣∣2
which proves that

|Gj,k|2 log
1

|z|
≤ C(n, δ)

n∑
j=1

∣∣f ′j∣∣2 log
1

|z|
dA(z).

We now turn to showing that |∂Gj,k| log 1
|z|dA(z) is dominated appropriately. First, observe

that

∂Gj,k = ∂ϕj∂ϕk + ϕj∂∂ϕk

By the computations above, we have that

∂ϕk =

∑n
j=1 fj(fjf

′
k − fkf ′j)(∑n

j=1 |fj|
2
)2 .
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Direct computation also gives, that

∂ϕj = − fj
∑n

l=1 f
′
lfl(∑n

j=1 |fj|
2
)2 .

Finally, we have that

∂∂ϕk =

∑n
j=1 f

′
j(fjf

′
k − fkf ′j)(∑n

j=1 |fj|
2
)2 − 2

(∑n
l=1 f

′
lfl
) (∑n

l=1

(
flf ′k − fkf ′l

))(∑n
j=1 |fj|

2
)3 .

Now consider the term
∣∣∂ϕj∂ϕk∣∣. It is obvious that we can dominate this expression by

C(n, δ)
∑
j,k

∣∣f ′j∣∣ |f ′k| ≤ C(n, δ)
n∑
k=1

|f ′k|
2
.

Similarly, we have that
∣∣ϕj∂∂ϕk∣∣ can be dominated by an identical expression. Altogether

this then gives that

|∂Gj,k| log
1

|z|
dA(z) ≤ C(n, δ)

n∑
k=1

|f ′k|
2

log
1

|z|
dA(z).

�

Exercise 2.3. Show that for f ∈ H∞(D) that we have |f ′(z)|2 log 1
|z|dA(z) is a H2(D)-

Carleson measure. Hint: Use the alternate norm for H2(D) and think about the product rule
for derivatives.

Exercise 2.4. Suppose that f1, . . . , fn, g ∈ H∞(D) such that

|g(z)| ≤
n∑
j=1

|fj(z)| .

Show that there exists g1, . . . , gn ∈ H∞(D) such that

g3 =
n∑
j=1

fjgj.

Hint: Mimic Wolff’s proof of the Corona Theorem but start with ψj = gϕj, with ϕj as defined
above.

We state one more theorem, closely related to Carleson’s Corona Theorem.

Theorem 2.5. Suppose that f1, . . . , fn ∈ H∞(D) and there exists a δ > 0 such that

1 ≥ max
1≤j≤n

{|fj(z)|} ≥ δ > 0.

Let h ∈ H2(D). Then there exists g1, . . . , gn ∈ H2(D) such that

h(z) = f1(z)g1(z) + · · ·+ fn(z)gn(z) ∀z ∈ D

and

‖gj‖H2(D) ≤ C(δ, n) ‖h‖H2(D) ∀j = 1, . . . , n.
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It is clear that Carleson’s Corona Theorem implies this result. What isn’t immediately
obvious though, is that knowing this result, one can deduce Carleson’s Corona Theorem.
This is connected to deeper facts about operator theory and will play a role in later lectures.

Exercise 2.6. Give a proof of the above Theorem without appealing to Carleson’s Theorem
directly, but instead appealing to the proof of the Theorem.
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