
Lecture 5: The Maximal Ideal Space of H∞(D), ∂-equations and Wolff’s
Theorem

Now that we have introduced the multiplier algebra for H2(D) we will start looking at its
maximal ideal space. In doing so, we will connect both analysis and algebra via Carleson’s
Corona Theorem.

1. The Maximal Ideal Space of H∞(D)

We now wish to study the maximal ideals space associated to the algebra H∞(D). But,
before we can do that, we need to review a little about the maximal ideal spaces associated
to a Banach algebra.

Recall that a (commutative) Banach algebra A is a complex (commutative) algebra A
that is also a Banach space under a norm that satisfies

‖fg‖ ≤ ‖f‖ ‖g‖ f, g ∈ A.

We will also assume that there is an identity element 1 ∈ A and that our algebra is commu-
tative. An element f ∈ A is invertible if there exists an element g ∈ A such that fg = 1.
When this happens, we will simply write f−1 for g. We let

A−1 = {f ∈ A : f−1 exists}.

Finally, we need to consider the multiplicative linear functionals on the algebra A. These are
simply the complex homomorphisms m : A → C. Note that we trivially have that m(1) = 1.

The first observation is that the complex homomorphisms are continuous and bounded
with norm at most 1.

Lemma 1.1. Every complex homomorphism from A to C is a continuous linear functional
with norm at most 1. Namely,

‖m‖ = sup
f∈A,‖f‖≤1

|m(f)| ≤ 1.

Proof. If m is unbounded or if ‖m‖ > 1 then we can find an element f ∈ A with ‖f‖ < 1 but
m(f) = 1. Consider the element

∑∞
n=0 f

n ∈ A. This element exists since we have ‖f‖ < 1
and so ∥∥∥∥∥

∞∑
n=0

fn

∥∥∥∥∥ ≤
∞∑
n=0

‖fn‖ ≤
∞∑
n=0

‖f‖n =
1

1− ‖f‖
.

Note that we have (1− f)
∑∞

n=0 f
n = 1. So 1− f ∈ A−1. However,

1 = m(1) = m((1− f)(1− f)−1) = m((1− f)−1)(m(1)−m(f)) = 0

which is a contradiction. �

Exercise 1.2. Prove that mz(f) = f(z) is a multiplicative linear functional on H∞(D).

Next, we will connect the algebraic property of maximal ideals and the function analytic
property of the multiplicative linear functionals.
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Lemma 1.3. Suppose that M is a maximal ideal of A. Then M is the kernel of a multiplica-
tive linear functional m : A → C. Conversely, suppose that m : A → C is a multiplicative
linear functional. Then kerm is a maximal ideal.

Proof. We first show that the maximal ideal M is closed. Note that M ⊂M . If M is proper,
i.e, M 6= A, then M is also an ideal. However, since M is maximal, if M 6= A then we must
have M = M and so M is closed. If g ∈ M then g /∈ A−1 (otherwise we would have 1 ∈ M
and so M = A). Consider the element f = 1 − g, then we have that ‖1− g‖ ≥ 1, and so
1 /∈M and so M is closed.

Now we next show that the quotient algebra B = A/M satisfies

B = C1

where 1 = 1 + M denotes the unit in the quotient algebra. It is obvious that C1 ⊂ B,
and so we need to handle the other inclusion. Once we have shown this, then the quotient
mapping will then define the multiplicative linear functional, and the kernel of this mapping
with then be M .

Since we have M maximal, then we have that B = A/M is a field. Moreover, since M is
closed we have that B is complete in the quotient norm

‖f +M‖ = inf
g∈M
‖f + g‖A .

It is also the case that the norm makes B into a Banach algebra (use the ideal property of
M).

Suppose that f ∈ B \C1. Then, we have that f − λ ∈ B−1 for all λ ∈ C since B is a field.
Choose λ0 and note that on the disc centered at λ0 of radius ‖(f − λ0)−1‖ the series,

∞∑
n=0

(λ− λ0)n((f − λ0)−1)n+1

converges in norm to the element (f − λ)−1 because we have the following identity holding

1

f − λ
=

1

f − λ0

1

1− λ−λ0

(f−λ0)

.

Now f−1 6= 0 and by the Hahn-Banach Theorem, there is a bounded linear functional L on
B such that ‖L‖ = 1 and L(f−1) 6= 0.

Define the function on the disc centered at λ0 of radius ‖(f − λ0)−1‖

F (λ) = L((f − λ)−1) =
∞∑
n=0

(λ− λ0)nL((f − λ0)−1)n+1).

Since the ‖L‖ = 1 and the series defining (f − λ)−1 is norm convergent this function makes
sense. Because λ0 is arbitrary, we have that F (λ) is an entire function. Suppose that |λ| is
large, then we have that∥∥(f − λ)−1

∥∥ =

∥∥(1− f
λ
)−1
∥∥

|λ|
≤ 1

|λ|

∞∑
n=0

‖f‖n

|λ|n
.

Note that this implies for |λ| large that we have

|F (λ)| ≤ C

|λ|
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which by Louiville’s Theorem implies that F = 0. But, this contradict the existence of the
functional L and hence gives us that B = C1.

For the converse, it is immediate that the kerm is an ideal. The maximality follows since
the codimension of any linear functional is 1. Namely, dim(A \ kerm) = 1. �

Exercise 1.4. Verify that if A is a Banach algebra, and if M is a closed proper maximal
ideal, then A/M is a commutative Banach algebra.

Exercise 1.5. Show that for a linear functional that dim(A \ kerm) = 1.

Given a Banach algebra A, we let MA denote the set of complex homorphisms of A. This
is called the maximal ideal space of the Banach algebra. By the above, we have that MA
is contained in the unit ball of the dual Banach algebra A∗. We now endow MA with the
weak-* topology of A∗. Namely, the basic neighborhood of a m0 ∈ MA is determined by
ε > 0 and by elements f1, . . . , fn ∈ A such that

V = {m ∈ A∗ : ‖m‖ ≤ 1, |m(fj)−m0(fj)| < ε, 1 ≤ j ≤ n}.

Also, note that we have that MA is a weak-* closed subset of the unit ball of A∗. This is
because

MA = {m ∈ A∗ : ‖m‖ ≤ 1, m(fg) = m(f)m(g), f, g ∈ A}.
This topology on MA is called the Gelfand topology. In this topology we have that MA is

a weak-* closed subset of the unit ball of A∗. Now by the Banach-Alaoglu Theorem, we have
that the ball of A∗ is weak-* compact and so we can have that MA is compact Hausdorff
space.

We now turn from these abstractions and focus on a particular case of interestA = H∞(D).
By the exercise above we see that D ⊂MH∞ . Now, we know that the disc D is open, and that
the space M∞

H is compact, so we can not have them being equal. However, it is conceivable
that by taking the closure of the disc D is the Gelfand topology we could have

MH∞ = DGelfand
.

We then define the “Corona” of the algebra H∞(D) to be MH∞ \DGelfand
. We now translate

this question of density to a question about analytic functions.

Theorem 1.6. The open disc D is dense in MH∞ if and only if the following condition
holds: If f1, . . . , fn ∈ H∞(D) and if

max
1≤j≤n

|fj(z)| ≥ δ > 0

then there exists g1, · · · , gn ∈ H∞(D) such that

f1g1 + · · ·+ fngn = 1.

Proof. Suppose that D is dense in MH∞ . Then, by continuity we have that

max
1≤j≤n

|m(fj)| ≥ δ

for all m ∈ MH∞ . This implies that {f1, . . . , fn} is in no proper ideal of H∞(D). Hence
the ideal generated by {f1, . . . , fn} must contain the constant function 1 and so there exists
g1, . . . , gn ∈ H∞(D) such that

1 = f1g1 + · · ·+ fngn.
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Conversely, suppose that D is not dense in MA. Then for some m0 ∈MA has a neighborhood
disjoint from D and this neighborhood has the form

V = ∩nj=1{m : |m(jj)| < δ}
where δ > 0 and f1, . . . , fn ∈ H∞(D) with m0(fj) = 0. Since D ∩ V = ∅ we have that

max
1≤j≤n

|fj(z)| ≥ δ > 0.

But, it is not possible that we have

1 = f1g1 + · · ·+ fngn

since we have that m0(fj) = 0 for all 1 ≤ j ≤ n. �

Exercise 1.7. Let A(D) = {f ∈ Hol(D)∩C(D) : supz∈D |f(z)| <∞} denote the disc algebra.
Show that

MA(D) = D.

2. The Corona Theorem for H∞(D)

Our goal is to prove that that a collection of functions f1, . . . , fn ∈ H∞(D) that don’t
simultaneously vanish as in Theorem 1.6 generate all of H∞(D) as an ideal. This was
originally shown to be true by Carleson, but we will give a proof due to Wolff’s. It turns
out to be easy to solve this problem is we want smooth functions (not necessarily analytic),
and then our task is to modify the smooth solutions to be analytic. This is accomplished by
solving certain inhomogeneous ∂-equations.

2.1. Solving ∂-equations. Recall that a function h is analytic if

∂h = 0

where ∂ = 1
2
(∂x + i∂y). We first begin showing how to solve equations of the form

∂F = G.

Equations of this type will arise naturally in the proof of the Corona Theorem. Suppose
that G is smooth with compact support. Then we have the following Theorem

Theorem 2.1. Suppose that G is a smooth compactly supported function in D. Then

F (z) =
1

2πi

∫
D
G(ξ)

1

z − ξ
dξ ∧ dξ

solves
∂F = G.

Before we prove this theorem, since we will apply Stokes Theorem, we briefly recall the
theory of differential forms in this context. Recall that Stokes Theorem can (roughly) be
stated as ∫

∂Ω

ω =

∫
Ω

dω.

Here Ω is a nice domain, ∂Ω is the boundary of Ω, ω is a differential form, and d is the
exterior differential.

In two variables, for a smooth function we have that

df = ∂xdx+ ∂ydy
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Recall also that dx ∧ dy = −dy ∧ dx and that dx ∧ dx = dy ∧ dy = 0. Since we are working
with complex variables it is more conducive to write this in the variables z and z. In this
notation we have

df = ∂fdz + ∂fdz

where

dz = dx+ idy dz = dx− idy ∂ =
1

2
(∂x + i∂y) ∂ =

1

2
(∂x − i∂y) dz ∧ dz = −2idx ∧ dy.

To apply Stokes Theorem, we will have to integrate 2-forms, i.e. expressions like ω(ξ)dξ∧dξ
over the domain Ω. And we will have to integrate 1-forms, i.e., expressions of the form
ω(z)dz + σ(z)dz. With these notions out of the way, we can turn to the proof

Proof of Theorem 2.1. Fix ε > 0 and z ∈ D let Dε(z) = {ξ ∈ D : |z − ξ| ≥ ε}. Note that
∂Dε = T ∪ {ξ : |ξ − z| = ε}. Suppose that ϕ is a smooth compactly supported function in
D. Then, we have

1

2πi

∫
Dε

∂ϕ(ξ)
1

ξ − z
dξ ∧ dξ = − 1

2πi

∫
Dε

∂

(
ϕ(ξ)

ξ − z

)
dξ ∧ dξ

=
1

2πi

∫
|ξ−z|=ε

ϕ(ξ)

ξ − z
dξ +

∫
T

ϕ(ξ)

ξ − z
dξ

=
1

2πi

∫
|ξ−z|=ε

ϕ(ξ)

ξ − z
dξ.

Here we have used the fact that the support of ϕ ⊂ D to conclude that the last integral is 0.
We have also used the following computation

d

(
ϕ(ξ)

ξ − z

)
dξ = ∂

(
ϕ(ξ)

ξ − z

)
dξ ∧ dξ + ∂

(
ϕ(ξ)

ξ − z

)
dξ ∧ dξ

Now note that as ε→ 0 we have that

1

2πi

∫
|ξ−z|=ε

ϕ(ξ)

ξ − z
dξ → ϕ(z).

This says that
1

2πi

∫
D
∂ϕ(ξ)

1

ξ − z
dξ ∧ dξ = ϕ(z).

So, if we have a solution to the problem ∂F = G then one solution should be given by

F (z) =
1

2πi

∫
D
G(ξ)

1

ξ − z
dξ ∧ dξ.

Note that this solution is continuous in the complex plane and smooth in the disc since it is
the convolution of a continuous function and a bounded function. We now show that we do
indeed have ∂F = G. First, note that∫

D
F∂ϕdz ∧ dz +

∫
D
∂Fϕdz ∧ dz =

∫
D
∂(Fϕ)dz ∧ dz

=

∫
T
Fϕdz = 0.
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Here again we have used the support of ϕ and the analogous computations from above. This
then implies ∫

D
F∂ϕdz ∧ dz = −

∫
D
∂Fϕdz ∧ dz.

Using these computations we see that∫
D
∂Fϕdz ∧ dz = −

∫
D
F∂ϕdz ∧ dz

= −
∫

D

(
1

2πi

∫
D
G(ξ)

1

ξ − z
dξ ∧ dξ

)
∂ϕdz ∧ dz

= −
∫

D
G

(
1

2πi

∫
D
∂ϕ

1

ξ − z
dz ∧ dz

)
dξ ∧ dξ

=

∫
D
Gϕdξ ∧ dξ.

Since this is true for all smooth compactly supported ϕ in D we have that

∂F = G

as claimed. �

This Theorem demonstrates that it is possible to solve equations for the form ∂F = G.
However, we will want to solve the equation with some norm control, in particular we want
to solve the equation and obtain estimates on ‖F‖∞ in terms of information from G. To
accomplish this, we will assume the the function G “generates” Carleson measures for H2(D).
We now prove a result of Wolff that gives the desired estimates.

Theorem 2.2 (Wolff, [1]). Suppose that G(z) is bounded and smooth on the disc D. Further,
assume that the measures

|G|2 log
1

|z|
dA(z) and |∂G| log

1

|z|
dA(z)

are H2(D)-Carleson measures. Then there exists a continuous function b(z) on D, smooth
on D such that

∂b = G

and there exists constants C1 and C2 such that

‖b‖L∞(D) ≤ C1

∥∥∥∥|G|2 log
1

|z|
dA(z)

∥∥∥∥
H2(D)−Carl

+ C2

∥∥∥∥|∂G| log
1

|z|
dA(z)

∥∥∥∥2

H2(D)−Carl

The proof of this Theorem is a clever application of Green’s Theorem and using the
conditions on the measures appropriately.

Proof. By Theorem 2.1 above, we clearly have one solution to the problem

∂b = G.

Note now that we can obtain lots of solutions by adding functions that are in the kernel of
the operator ∂ and any function h in the disc algebra A(D) allows us to have that b+ h also
satisfies that ∂(b+ h) = G. The goal is to select a good choice of the function h that allows
us to obtain the estimates we seek.
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A duality argument show that

inf
{
‖b‖∞ : ∂b = G

}
= sup

{∣∣∣∣∫
T
Fk1k2dm

∣∣∣∣ : k1 ∈ H2(D), k2 ∈ H2
0 (D)

}
.

Here we have that the function F is defined as in the Theorem 2.1. Now since we are
supposing that G is bounded and smooth, we have that F is smooth on the D and continuous
on D. A density argument lets us further assume that the functions k1 and k2 are smooth
across the boundary of D (just consider dilates of the functions fr(z) = f(rz) and apply a
normal family argument). Without loss of generality, we can also assume that ‖k1‖2 ≤ 1
and ‖k1‖2 ≤ 1.

Now, we apply Green’s Theorem to the function Fk1k2. First, we compute the Laplacian
of the function Fk1k2 since it will appear in Green’s Theorem. Doing so, we find

∆(Fk1k2) = 4∂
(
∂Fk1k2 + F∂(k1k2)

)
= 4

(
∂Gk1k2 +G

(
k′1k2 + k1k′2

))
.

Here we have used that ∂F = G and that k1k2 is anti-holomorphic.
Substituting in this information we find:∫

T
Fk1k2dm = F (0)k1(0)k2(0) +

∫
D

∆(Fk1k2) log
1

|z|
dA

= 2

∫
D
∂Gk1k2 log

1

|z|
dA(z) + 2

∫
D
G
(
k′1k2 + k1k′2

)
log

1

|z|
dA(z)

= I + II.

We estimate each of these integrals separately. First, consider the integral corresponding to
I. Making obvious estimates, we have∣∣∣∣∫

D
∂Gk1k2 log

1

|z|
dA(z)

∣∣∣∣ ≤ ∫
D
|k1| |k2| |∂G| log

1

|z|
dA(z)

≤
(∫

D
|k1|2 |∂G| log

1

|z|
dA(z)

) 1
2
(∫

D
|k2|2 |∂G| log

1

|z|
dA(z)

) 1
2

≤
∥∥∥∥|∂G| log

1

|z|
dA(z)

∥∥∥∥2

H2(D)−Carl
‖k1‖H2(D) ‖k2‖H2(D) .

Next, turning to term II, one easily sees that it suffices to handle the term k′1k2 since the
other will follow by symmetry. So, consider the following,∣∣∣∣∫

D
Gk′1k2 log

1

|z|
dA(z)

∣∣∣∣ ≤ ∫
D

∣∣Gk′1k2

∣∣ log
1

|z|
dA(z)

≤
(∫

D
|k′1|

2
log

1

|z|
dA(z)

) 1
2
(∫

D
|k2|2 |G|2 log

1

|z|
dA(z)

) 1
2

≤
∥∥∥∥|G|2 log

1

|z|

∥∥∥∥
H2(D)−Carl

‖k1‖H2(D) ‖k2‖H2(D)

Thus, we see that we have the following estimate for term II∫
D
G
(
k′1k2 + k1k′2

)
log

1

|z|
dA(z) ≤ C

∥∥∥∥|G|2 log
1

|z|

∥∥∥∥
H2(D)−Carl

‖k1‖H2(D) ‖k2‖H2(D) .
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Putting the estimates for terms I and II together gives us that∣∣∣∣∫
T
Fk1k2dm

∣∣∣∣ ≤ C1

∥∥∥∥|G|2 log
1

|z|

∥∥∥∥
H2(D)−Carl

‖k1‖H2(D) ‖k2‖H2(D)

+C2

∥∥∥∥|∂G| log
1

|z|
dA(z)

∥∥∥∥2

H2(D)−Carl
‖k1‖H2(D) ‖k2‖H2(D) ,

which then proves the claim. �
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