
Lecture 2: Carleson Measures for H2(D)

Our next goal is to prove the following important theorem about certain measures for
H2(D).

Theorem 0.1 (Carleson Embedding Theorem). Let µ be a non-negative Borel measure in
D. Then the following are equivalent:

(i) The embedding operator J : L2(T)→ L2(D, µ), with J (f)(z) = f(z), is bounded.

(ii) C(µ)2 := supz∈D

∥∥∥J k̃z∥∥∥2

L2(µ)
= supz∈D ‖Pz‖L1(µ) < ∞, where k̃z(ξ) = (1−|z|2)1/2

(1−ξz) , the

reproducing kernel for the Hardy space H2(D).
(iii) I(µ) = sup

{
1
r
µ(D

⋂
Q(ξ, r)) : r > 0, ξ ∈ T

}
< ∞, where Q(ξ, r) is a ball measured

with respect to the non-isotropic metric associated to D.

Moreover, the following inequalities hold

C(µ) ≤ ‖J ‖ ≤ 4C(µ)

and
32−1I(µ) ≤ C(µ)2 ≤ 32I(µ)

Here the embedding operator J is given by

J (f)(z) =

∫
T
Pz(ξ)f(ξ)dm(ξ)

where

Pz(ξ) =
1− |z|2

|1− ξz|2
is the Poisson kernel.

We will give two proofs of this fact. One will be based on the tools of harmonic analysis
(maximal functions). The other will take advantage of the special structure of the reproduc-
ing kernel of the space H2(D). We will see that the proof via harmonic analysis will allow
us to study the Dirichlet space, while the proof that exploits the structure of the kernel
unfortunately doesn’t carry over.

First, we say that a non-negative Borel measure µ on D is a H2(D)-Carleson measure if∫
D
|f(z)|2dµ(z) ≤ C(µ)2 ‖f‖2H2(D) ∀f ∈ H2(D).

Observe that this is saying that H2(D) continuously embeds into L2(D;µ). This is nothing
other than condition (i) in Theorem 0.1 when applied to the boundary values of f ∈ H2(D)
and then carried back to the unit disc via harmonic extension.

Note that since we have a natural set of functions by which to test this inequality, namely
the reproducing kernels, {kz}z∈D, we see that a necessary condition is that∫

D
|kz(w)|2 dµ(w) ≤ C(µ)2 ‖kz‖2H2(D) .

Upon rearrangement, this gives condition (ii) from Theorem 0.1.
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Finally, observe that if we restrict the integration to a natural set associated to the kernel
kz then we see that condition (iii) arises naturally. Namely, note that to each point z ∈ D
we can associate an interval in T with center z

|z| and total length (1 − |z|). We let T (I)

denote the “tent” over an interval I,

T (I) = {z = reiθ ∈ D : 0 < 1− r ≤ |I|, θ ∈ I}.
Then it is possible to phrase condition (iii) as

µ (T (I)) ≤ T (µ)|I| ∀I ⊂ T.

0.1. Carleson Measures via Reproducing Kernels. We first give a proof of Theorem
0.1 that uses the reproducing kernel directly. This proof can be found as an exercise in the
book [1].

0.1.1. (i) ⇐⇒ (ii). One direction of this equivalence is immediate, namely (i)⇒(ii). For if
we know that the embedding operator J is bounded then we have∥∥∥J k̃z∥∥∥

L2(µ)
≤ ‖J ‖

∥∥∥k̃z∥∥∥
L2(T)

= ‖J ‖

since the reproducing kernel k̃z is normalized to have L2(T) norm one. This also proves that
C(µ) ≤ ‖J ‖. Finally, we should indicate why the equality

sup
z∈D

∥∥∥J k̃z∥∥∥2

L2(µ)
= sup

z∈D
‖Pz‖L1(µ)

holds. Since k̃z ∈ H2(D) then the Poisson kernel Pw reproduces the function value at w,
namely

k̃z(w) =

∫
T
k̃z(ξ)Pw(ξ)dm(ξ).

This then implies that J (k̃z)(w) = kz(w), and using this we have

∥∥∥J k̃z∥∥∥2

L2(µ)
=

∫
D

∣∣∣J (k̃z)(w)
∣∣∣2 dµ(w)

=

∫
D

∣∣∣k̃z(w)
∣∣∣2 dµ(w)

=

∫
D

∣∣∣∣∣(1− |z|2)1/2

(1− zw)

∣∣∣∣∣
2

dµ(w)

=

∫
D

(1− |z|2)
|1− zw|2

dµ(w)

=

∫
D
Pz(w)dµ(w).

This then shows that
∥∥∥J k̃z∥∥∥2

L2(µ)
= ‖Pz‖L1(µ), and then these suprema over z ∈ D are of

course equal.
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It only remains to prove that (ii)⇒(i). To prove this direction it is enough to show that
the formal adjoint J ∗ : L2(D, µ)→ L2(T) with

J ∗(f)(ξ) =

∫
D
Pz(ξ)f(z)dµ(z),

is bounded. With this in mind we have,

‖J ∗(f)‖2L2(T) =

∫
T
|J ∗(f)(ξ)|2 dm(ξ)

=

∫
T
J ∗(f)(ξ)J ∗(f)(ξ)dm(ξ)

=

∫
T

(∫
D
Pz(ξ)f(z)dµ(z)

)(∫
D
Pz′(ξ)f(z′)dµ(z′)

)
dm(ξ)

=

∫
D

∫
D

(∫
T
Pz(ξ)Pz′(ξ)dm(ξ)

)
f(z)f(z′)dµ(z)dµ(z′).

The following lemma will be used to prove that J ∗ is bounded.

Lemma 0.2 (Vinogradov-Senichkin Test). Let Z be a measurable space and k a non-negative
measurable function on Z × Z. If∫

Z
k(s, t)k(s, x)ds ≤ C(k(t, x) + k(x, t))

for a.e. (t, x) ∈ Z × Z, then

Q :=

∫∫
Z×Z

k(s, t)g(s)g(t)dsdt ≤ 2C

for any non-negative function g with ‖g‖L2(Z) ≤ 1 and Q <∞.

Exercise 0.3. Prove the Vinogradov-Senichkin Test.

We want to apply the Vinogradov-Senichkin Test, so we define the integral operator Tk :
L2(D, µ)→ L2(D, µ) with kernel k(z′, z) = Pz(z

′) by

Tk(g)(z) :=

∫
D
k(z′, z)g(z′)dµ(z′) ∀g ∈ L2(D, µ).

Then we have that

‖J ∗(f)‖2L2(T) ≤
∫

D

∫
D
Pz(z

′) |f(z)| |f(z′)| dµ(z)dµ(z′)

= (Tk |f | , |f |).

Now, we make the following claim:

Proposition 0.4. Let z, z′, w ∈ D then

Pz(z
′)Pw(z′) ≤ 8 (Pz(w)Pw(z′) + Pw(z)Pz(z

′))
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Proof. Begin by noting that the following inequality holds

a−1 := |1− zw|1/2 ≤
∣∣1− zz′∣∣1/2 + |1− z′w|1/2 := b−1 + c−1.

Exercise 0.5. Prove this. Hint: This is the triangle inequality for a certain metric.

Using this inequality we have that

bc ≤ a(b+ c),

which in turn implies that

b4c4 ≤ a4(b+ c)4 ≤ 23a4(b4 + c4).

Using this inequality, but with the appropriate substitutions for a,b, and c and using the
numerators for Pz(z

′) and Pw(z′) we find that

Pz(z
′)Pw(z′) ≤ 23

|1− zw|2
(1− |z|2)(1− |w|2)

(
1∣∣1− zz′∣∣2 +

1

|1− z′w|2

)

= 23

[
(1− |z|2)
|1− zw|2

(1− |w|2)∣∣1− zz′∣∣2 +
(1− |z|2)
|1− z′w|2

(1− |w|2)
|1− zw|2

]
= 23(Pw(z)Pz(z

′) + Pz(w)Pw(z′)).

�

Since we want to apply the Vinogradov-Senichkin Test we need to know that the kernel
k(z′, z) = Pz(z

′) satisfies the hypothesis of the lemma. To this end we need to estimate∫
D
k(z′, z)k(z′, w)dµ(z′).

Using the estimate we found for the product of two Poisson kernels that we illustrated
above, we have∫

D
k(z′, z)k(z′, w)dµ(z′) =

∫
D
Pz(z

′)Pw(z′)dµ(z′)

≤ 23

∫
D
Pz(w)Pw(z′) + Pw(z)Pz(z

′)dµ(z′)

= 23

[
Pz(w)

∫
D
Pw(z′)dµ(z′) + Pw(z)

∫
D
Pz(z

′)dµ(z′)

]
≤ 23C(µ)2(Pz(w) + Pw(z)).

The last inequality holds because we are trying to prove that (ii)⇒(i). So the kernel
satisfies the Vinogradov-Senichkin Test, thus we have

‖J ∗(f)‖2L2(T) ≤ (Tk |f | , |f |)

≤ 2 · (23C(µ)2) ‖f‖2L2(µ)

= 24C(µ)2 ‖f‖2L2(µ) .

A duality argument then gives that ‖J ‖ ≤ 4C(µ), proving that J is bounded and giving
the relationship between ‖J ‖ and C(µ).
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0.1.2. (ii)⇐⇒ (iii). To finish the proof of this theorem we only need to dispose of the final
equivalence. Again, we have an easy implication and a harder implication. We begin by
showing that (ii)⇒(iii). Under the hypothesis of (ii) we have

C(µ)2 ≥
∫

D
Pz(z

′)dµ(z′) =

∫
D

(1− |z|2)∣∣1− zz′∣∣2dµ(z′).

Now take ξ ∈ T and 0 < r < 2, and set z = (1− r
2
)ξ. Now consider the non-isotropic ball

Q(ξ, r). A simple calculation shows that z ∈ Q(ξ, r). Then we have

C(µ)2 ≥
∫

D

(1− |z|2)∣∣1− zz′∣∣2dµ(z′)

≥
∫

D
T
Q(ξ,r)

(1− |z|2)∣∣1− zz′∣∣2dµ(z′)

≥ 16−1r−2(1− |z|)
∫

D
T
Q(ξ,r)

dµ(z′)

= 16−1r−2(1− |z|)µ
(
D
⋂

Q(ξ, r)
)
.

The last inequality follows since z ∈ D and we are considering z, z′ ∈ Q(ξ, r). Because if
we have two points z, z′ ∈ Q(ξ, r) then by the triangle inequality for the non-isotropic metric
we have

∣∣1− zz′∣∣1/2 ≤ ∣∣1− zξ∣∣1/2 +
∣∣1− z′ξ∣∣1/2 .

Squaring this last inequality gives∣∣1− zz′∣∣ ≤ 2
(∣∣1− zξ∣∣+

∣∣1− ξz′∣∣) ≤ 4r.

This then gives
∣∣1− zz′∣∣−2 ≥ 2−4r−2. We also have that

1− |z| = r

2
.

Combining these estimates gives,

C(µ)2 ≥ 16−1r−2(1− |z|)µ
(
D
⋂

Q(ξ, r)
)

≥ 16−12−1rr−2µ
(
D
⋂

Q(ξ, r)
)
.

Taking the supremum over 0 < r < 2 then gives

32−1I(µ) ≤ C(µ)2.

It only remains to prove that (iii)⇒(ii). We will break this part up into two different cases.
First, consider the case where |z| ≤ 3

4
. Now we have the following inequality holding for the

Poisson kernel.
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Pz(ξ) =
(1− |z|2)∣∣1− zξ∣∣2

≤ (1− |z|2)
(1− |z|)2

=
(1 + |z|)2

(1− |z|2)

≤ 22

(1− |z|2)
.

Then if |z| ≤ 3
4

we have that∫
D
Pz(w)dµ(w) ≤ 4

16

7
µ(D)

=
26

7
2µ(D

⋂
Q(ξ, 2))

≤ 27

7
I(µ)

≤ 20I(µ).

So we only need to deal with the case when |z| > 3
4
. Let z̃ = z

|z| and define the following
sets

Qk := D
⋂

Q
(
z̃, 2k+1(1− |z|2)

)
∀k ∈ N.

Then for w ∈ Qk+1 \Qk we have ∣∣1− wz̃∣∣ ≥ 2k+1(1− |z|2).
By the triangle inequality for the non-isotropic metric we have

∣∣1− wz̃∣∣1/2 ≤ |1− wz|1/2 +
∣∣1− zz̃∣∣1/2

= |1− wz|1/2 + (1− |z|)1/2

≤ |1− wz|1/2 + (1− |z|2)1/2,

with the last inequality following since z ∈ D. Squaring this last inequality gives,∣∣1− wz̃∣∣ ≤ 2
(
|1− wz|+ (1− |z|2)

)
.

Now using this we can conclude that

|1− wz| ≥ 2−1
∣∣1− wz̃∣∣− (1− |z|2)

≥ 2k(1− |z|2)− (1− |z|2)
≥ 2k−1(1− |z|2).

But this last inequality implies that

|1− wz|−2 ≤ 2−2(k−1)(1− |z|2)−2
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when w ∈ Qk+1 \Qk. Now using this we have

∫
D
Pz(w)dµ(w) =

∫
Q1

Pz(w)dµ(w) +
∞∑
k=1

∫
Qk+1\Qk

Pz(w)dµ(w)

≤
∫
Q1

22

(1− |z|2)
dµ(w) +

∞∑
k=1

∫
Qk+1\Qk

(1− |z|2)
4k−1(1− |z|2)2

dµ(w)

≤ 4
µ(Q1)

(1− |z|2)
+
∞∑
k=1

(
1

4

)k−1
µ(Qk+1)

(1− |z|2)
.

Now we need to recall how I(µ) was defined and how each of the Qk was defined. Doing
this we have

∫
D
Pz(w)dµ(w) ≤ 16

µ(Q1)

(22(1− |z|2))
+
∞∑
k=1

(4−1)k−1(2k+2)
µ(Qk+1)

(2k+2(1− |z|2))

≤ 16I(µ) + 24I(µ)
∞∑
k=1

(2−1)k

≤ 25I(µ).

Combining the estimates if |z| ≤ 3
4

and if |z| > 3
4
, we have that∫

D
Pz(w)dµ(w) ≤ 25I(µ),

then taking the supremum over z ∈ D proves the theorem.
The careful reader will have noticed that this proof can actually be used to show the

following theorem.

Theorem 0.6 (Carleson Embedding Theorem). Let µ be a non-negative Borel measure in
D. Then the following are equivalent:

(i) The embedding operator J : L2(T)→ L2(D, µ), with J (f)(z) = f(z), is bounded.

(ii) C(µ)2 := supz∈suppµ

∥∥∥J k̃z∥∥∥2

L2(µ)
= supz∈suppµ ‖Pz‖L1(µ) <∞, where k̃z(ξ) = (1−|z|2)1/2

(1−ξz) ,

the reproducing kernel for the Hardy space H2(D).
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