
Lecture 12: Böe’s Proof of Interpolation for Spaces with the Complete
Nevanlinna-Pick Property

This will be the final lecture of this years Internet Analysis Seminar. The exposition in
this lecture is adapted form the presentation given in the book [5].

The last result that we will need to explore for the Dirichlet space is the question of
interpolation in the space D. In this lecture we will present a proof of the result in the
Hilbert space that works in a general reproducing kernel Hilbert space with the complete
Nevanlinna-Pick property. This in fact covers the Dirichlet space D as well as the Besov-
Sobolev spaces B2

σ(D). There are other proofs of this result that are more constructive,
though we have selected to present an easier proof of this fact and will leave the more
constructive proof as one of the projects for later in the seminar.

Background and Introduction. Suppose H is a Hilbert space of analytic functions with
a complete Nevanlinna-Pick reproducing kernel k (x, y), so that H = Hk. There is a unique
multiplier ψ = ψz0z1 = ϕ0 ∈MH of norm at most one satisfying the interpolation,

ψ (z0) = d (z0, z1) =

√
1− |〈kz0 , kz1〉|

2

‖kz0‖
2 ‖kz1‖

2 and ψ (z1) = 0,

and moreover, we have the explicit formula

ψz0z1 (z) =

(
1− |〈kz0 , kz1〉|

2

‖kz0‖
2 ‖kz1‖

2

)− 1
2 (

1− 〈kz0 , kz1〉 kz1 (z)

〈kz1 , kz1〉 kz0 (z)

)
(0.1)

= d (z0, z1)
−1

(
1− 〈kz0 , kz1〉 kz1 (z)

〈kz1 , kz1〉 kz0 (z)

)
.

We will refer to ψz0z1 as the generalized Blaschke function associated to the pair of points
(z0, z1). It vanishes at z1 and is positive at z0.

More generally, for Z = {zn}∞n=1, we will refer to the infinite product

(0.2) Bz0
Z (z) =

∞∏
n=1

ψz0zn
(z) ,

as the generalized Blaschke product in MH associated to the set Z = {zn}∞n=1 with pole at

z0 /∈ Z. Suppose now that the measure µZ =
∑∞

n=1 ‖kzn‖
−2 δzn associated to Z is a finite

measure. Then we have
∞∑
n=1

|kz0 (zn)|2

‖kz0‖
2 ‖kzn‖

2 =

∫ ∣∣∣k̃z0 (z)
∣∣∣2 dµZ (z) = Cz0 .

It now follows from the right hand inequality in

(0.3) exp

(
−
∞∑
n=1

un

)
≥
∞∏
n=1

(1− un) ≥ exp

(
−2

∞∑
n=1

un

)
,

1
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that

Bz0
Z (z0)

2 =
∞∏
n=1

ψz0zn
(z0)

2 =
∞∏
n=1

(
1− |kz0 (zn)|2

‖kz0‖
2 ‖kzn‖

2

)
=
∞∏
n=1

d (z0, zn)2 > 0.

Here we denote by d (w, z) the metric associated to the kernel k (w, z):

d (w, z) =

√
1− |kw (z)|2

‖kw‖2 ‖kz‖2
.

Thus we see that when µZ is finite, the generalized Blaschke product Bz0
Z (z) is not identically

zero, has norm at most one in the multiplier space MH , vanishes on Z, and is positive at z0.
In fact, using the left hand inequality in (0.3), this argument can be reversed and yields the
following characterization of nontrivial generalized Blaschke products.

Proposition 0.1. Suppose H is a Hilbert space of analytic functions with a complete Nevanlinna-
Pick reproducing kernel k (x, y), so that H = Hk. Fix a sequence Z = {zj}∞j=1 and z0 /∈ Z.

Then Bz0
Z (z) is not identically zero if and only if

Bz0
Z (z0)

2 ≡
∞∏
n=1

d (z0, zn)2 > 0,

if and only if µZ =
∑∞

j=1

∥∥kzj

∥∥−2
δzj

is a finite measure.

We can also consider separation and Carleson embedding for sequences Z using the bound∫ ∣∣∣k̃zm (z)
∣∣∣2 dµZ (z) ≤ ‖µZ‖H−Carleson that is independent of m.

Proposition 0.2. Suppose H is a Hilbert space of analytic functions with a complete Nevanlinna-
Pick reproducing kernel k (x, y), so that H = Hk. Then a sequence Z = {zj}∞j=1 is separated,
i.e. there is ε > 0 such that

|〈kn, kzm〉|
‖kzn‖ ‖kzm‖

≤ 1− ε,

and µZ =
∑∞

j=1

∥∥kzj

∥∥−2
δzj

is a Carleson measure for H only if

inf
m≥1

Bzm

Z\{zm} (zm)2 ≡ inf
m≥1

∏
n6=m

d (zm, zn)2 > 0.

We recall a theorem of B. Böe [3] (see Theorem 0.4 below) which says that for certain
Hilbert spaces with reproducing kernel, in the presence of the separation condition (which is
necessary for an interpolating sequence, see Ch. 9 of [1]) a necessary and sufficient condition
for a sequence to be interpolating is that the Grammian matrix associated with Z is bounded.
That matrix is built from normalized reproducing kernels; it is

(0.4)

[〈
kzi

‖kzi
‖
,
kzj∥∥kzj

∥∥
〉]∞

i,j=1

.

The spaces to which Böe’s Theorem applies are those where the kernel has the Nevanlinna-
Pick property, and which have the following additional technical property. Whenever we
have a sequence for which the matrix (0.4) is bounded on `2 then the matrix with absolute
values
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[∣∣∣∣∣
〈

kzi

‖kzi
‖
,
kzj∥∥kzj

∥∥
〉∣∣∣∣∣
]∞
i,j=1

is also bounded on `2. This property holds in our case because, for σ in the range of interest,

Re
(

1
1−zj ·zi

)2σ

≈
∣∣∣ 1
1−zj ·zi

∣∣∣2σ which, as noted in [3], insures that the Gramm matrix has the

desired property. Finally, as also pointed out in [3], the boundedness on `2 of the Grammian

matrix is equivalent to µZ =
∑∞

j=1

∥∥kzj

∥∥−2
δzj

=
∑∞

j=1(1 − |zj|
2)2σδzj

being a Carleson
measure.

Remark 0.3. Böe presents his work for the dimension n = 1, but, as he notes, it extends
directly to general n. However, in that context only for values of σ < 1

2
. It is an important

open question to characterize the interpolating sequences for the Drury-Arveson space. The
interested reader should consult [2] for the generalization to higher dimensions of Theorem
0.4.

In order to state Böe’s Theorem, we briefly recall the theory of Hilbert spaces with a
Nevanlinna-Pick kernel k (x, y) in Agler and McCarthy [1], keeping in mind the classical
model of the Szego kernel k (x, y) = 1

1−xy on the unit disk D. Let Ω be an infinite set and

k (x, y) be a positive definite kernel function on Ω, i.e. for all finite subsets {xi}mi=1of Ω,

m∑
i,j=1

aiajk (xi, xj) ≥ 0 with equality ⇔ all ai = 0.

Denote by H = Hk the Hilbert space obtained by completing the space of finite linear
combinations of kxi

’s, where kx (y) = k (x, y), with respect to the inner product〈
m∑
i=1

aikxi
,
m∑
j=1

bjkyj

〉
=

m∑
i,j=1

aibjk (xi, yj) .

Let Z = {zj}Jj=1 be a finite set of points in Ω and consider the Nevanlinna-Pick interpolation

problem: For which sequences of data {ξj}Jj=1 ⊂ C is there ϕ ∈ MH with muliplier norm at
most one satisfying

(0.5) ϕ (zj) = ξj, 1 ≤ j ≤ J?

There is an easy necessary condition for the data in terms of a certain matrix being positive
semidefinite. If ‖Mϕ‖ ≡ ‖ϕ‖MH

≤ 1 then
∥∥M∗

ϕ

∥∥ ≤ 1 and for every choice of scalars

{λj}Jj=1 ⊂ C we have

0 ≤

∥∥∥∥∥
J∑
j=1

λjkzj

∥∥∥∥∥
2

−

∥∥∥∥∥M∗
ϕ

(
J∑
j=1

λjkzj

)∥∥∥∥∥
2

=
J∑

j,m=1

(
1− ξjξm

)
kzj

(zm)λjλm,

which is

(0.6)
[(

1− ξjξm
)
kzj

(zm)
]J
j,m=1

� 0.

We say that the Hilbert space H (more precisely the reproducing kernel of H) has the
Nevanlinna-Pick property if the implication above can be reversed.



4

There is a surprising consequence of the Nevanlinna-Pick property for certain extremal
problems. Let Z = {zj}∞j=1 and z0 /∈ Z. To make the following argument rigorous, we may
take Z finite and then pass to a limit. Let f0 be the unique solution to the extremal problem

(0.7) Ref0 (z0) = {Ref (z0) : f (zj) = 0 for 1 ≤ j <∞ and ‖f‖ ≤ 1} .
Note that the solution exists by a normal families argument, and is unique because for each
real t, the element of minimal norm in the closed convex set

Et = {f ∈ H : Ref (z0) = t, f (zj) = 0 for 1 ≤ j <∞ and ‖f‖ ≤ 1}
is unique. From the definition of f0 we have

|λ0f0 (z0)| =

∣∣∣∣∣
〈
∞∑
j=0

λjkzj
, f0

〉∣∣∣∣∣ ≤
∥∥∥∥∥
∞∑
j=0

λjkzj

∥∥∥∥∥ ,
which in terms of the data ξ0 = |f0(z0)|

‖kz0‖
and ξj = 0 for 1 ≤ j <∞ can be rewritten as

0 ≤

∥∥∥∥∥
∞∑
j=0

λjkzj

∥∥∥∥∥
2

− |λ0f0 (z0)|2 =
∞∑

j,m=0

(
1− ξjξm

)
kzj

(zm)λjλm.

SinceH has the Nevanlinna-Pick property, there is ϕ0 ∈MH with norm at most one satisfying

ϕ0 (z0) = ξ0 =
|f0 (z0)|
‖kz0‖

and ϕ0 (zj) = 0 for 1 ≤ j <∞.

Thus the function ρ (z) ≡ ϕ0 (z)
kz0 (z)

‖kz0‖
satisfies

‖ρ‖ =

∥∥∥∥ϕ0
kz0
‖kz0‖

∥∥∥∥ ≤ ‖Mϕ‖
∥∥∥∥ kz0
‖kz0‖

∥∥∥∥ ≤ 1,

and

Reρ (z0) = Re

(
ϕ0 (z0)

kz0 (z0)

‖kz0‖

)
=
|f0 (z0)|
‖kz0‖

‖kz0‖
2

‖kz0‖
= |f0 (z0)|

and ρ (zj) = 0 for 1 ≤ j < ∞. By the uniqueness of the solution to the extremal problem
(0.7), we obtain the remarkable formula,

(0.8) f0 (z) = ϕ0 (z)
kz0 (z)

‖kz0‖
.

Theorem 0.4 (Böe, [3]). Suppose H is a Hilbert space of analytic functions with a Nevan-
linna - Pick reproducing kernel k (x, y), so that H = Hk. Suppose also that the Grammian
property mentioned above holds: whenever {zj}∞j=1 is a sequence for which the matrix (0.4)

is bounded on `2 then the matrix with absolute values is also bounded on `2. Then a sequence

Z = {zj}∞j=1 is interpolating for H if and only if Z is separated and µZ =
∑∞

j=1

∥∥kzj

∥∥−2
δzj

is a Carleson measure for H.

Remark 0.5. The Grammian matrix (0.4) is bounded on `2 if and only if µZ is a Carleson
measure for H. To see this let T : H → `∞ be the normalized restriction map Tf ={

f(zj)

‖kzj‖

}∞
j=1

. Then µZ is a Carleson measure for H if and only if T is bounded into `2. But
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T ∗ {ξj}∞j=1 =
∑∞

j=1 ξj
kzj

‖kzj‖
and so the matrix representation of TT ∗ relative to the standard

basis {ej}∞j=1 of `2 is the Grammian:

[〈TT ∗ei, ej〉]∞i,j=1 =

[〈
T

(
kzi

‖kzi
‖

)
, ej

〉]∞
i,j=1

=

[〈
kzi

(zj)

‖kzi
‖
∥∥kzj

∥∥
〉]∞

i,j=1

=

[〈
kzi

‖kzi
‖
,
kzj∥∥kzj

∥∥
〉]∞

i,j=1

.

Now use that T is bounded if and only if TT ∗ is bounded.

Proof of Theorem 0.4. If Z is interpolating for H, standard arguments show that Z is
separated and that µZ is a Carleson measure for H.

Conversely, Remark 0.5 shows that the Grammian matrix (0.4) is bounded on `2. To

show that Z is interpolating for H it suffices by Bari’s Theorem 0.7 to show that
{
k̃zi

}∞
j=1

is a Riesz basis, where k̃zi
=

kzi

‖kzi‖
is the normalized reproducing kernel for H. Let {fj}∞j=1

be the biorthogonal functions defined as the unique minimal norm solutions of

fn (zm)

‖kzm‖
=
〈
fn, k̃zm

〉
= δnm.

If P denotes projection onto the closed linear span ∨∞j=1kzj
of the kzj

, then
〈
Pfn, k̃zm

〉
=〈

fn, k̃zm

〉
= δnm and so fn = Pfn ∈ ∨∞j=1kzj

. By Bari’s Theorem 0.7 again,
{
k̃zi

}∞
j=1

is a

Riesz basis if and only if both
[〈
k̃zn , k̃zm

〉]∞
m,n=1

and [〈fn, fm〉]∞m,n=1 are bounded matrices

on `2. We already know that
[〈
k̃zn , k̃zm

〉]∞
m,n=1

is bounded, so it remains to show that

[〈fn, fm〉]∞m,n=1 is also.

0.0.1. Calculations that hold in an arbitrary Hilbert function space. For A ⊂ Z = {zj}∞j=1

let HA = {f ∈ H : f (a) = 0 for a ∈ A}. If kAw (z) is the reproducing kernel for HA, then∥∥kAw∥∥2
= kAw (w) and

kAw (w) = sup
{
|f (w)| : f ∈ HA with ‖f‖ =

∥∥kAw∥∥} .
It follows that with Zn = Z \ {zn}, we have

fn (z) =
‖kzn‖∥∥kZn
zn

∥∥2k
Zn
zn

(z) , n ≥ 1.

Note in particular that

‖fn‖ =
‖kzn‖∥∥kZn
zn

∥∥ and
kZn
zn

(zm)∥∥kZn
zn

∥∥ ‖kzm‖
=

fn (zm)

‖kzm‖ ‖fn‖
=

δnm
‖fn‖

.
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We now compute the entries 〈fn, fm〉 in the biorthogonal Grammian [〈fn, fm〉]∞m,n=1 in

terms of the corresponding entries
〈
k̃zn , k̃zm

〉
in the Grammian

[〈
k̃zn , k̃zm

〉]∞
m,n=1

. We have

(0.9) 〈fn, fm〉 =
‖kzn‖ ‖kzm‖∥∥kZn
zn

∥∥2 ∥∥kZm
zm

∥∥2

〈
kZn
zn
, kZm

zm

〉
.

Now we use that the reproducing kernels k
A∪{a}
w for HA∪{a} are given in terms of those kAw

for HA by the formula

kA∪{a}w (z) = kAw (z)− kAa (z) kAw (a)

kAa (a)
.

Indeed, the right hand side is in HA∪{a} and its inner product with f ∈ HA∪{a} is f (w).
If we set

Zm,n = Z \ {m,n} = Zn \ {m} = Zm \ {n} ,

we thus obtain

(0.10) kZn
zn

(z) = kZm,n
zn

(z)− k
Zm,n
zm (z) k

Zm,n
zn (zm)

k
Zm,n
zm (zm)

,

and the same formula with m and n interchanged. Then we have from the interchanged
formula,

〈
kZn
zn
, kZm

zm

〉
=

〈
kZn
zn
, kZm,n

zm
− k

Zm,n
zn k

Zm,n
zm (zn)

k
Zm,n
zn (zn)

〉

=
〈
kZn
zn
, kZm,n

zm

〉
− k

Zm,n
zm (zn)

k
Zm,n
zn (zn)

〈
kZn
zn
, kZm,n

zn

〉
= kZn

zn
(zm)− k

Zm,n
zm (zn)

k
Zm,n
zn (zn)

kZn
zn

(zn) .

Now from (0.10) we have

kZn
zn

(zn) = kZm,n
zn

(zn)− k
Zm,n
zm (zn) k

Zm,n
zn (zm)

k
Zm,n
zm (zm)

= σnmk
Zm,n
zn

(zn) ,

where σnm satisfies two equalities:

(0.11) σnm =
kZn
zn

(zn)

k
Zm,n
zn (zn)

=

∥∥kZn
zn

∥∥2∥∥∥kZm,n
zn

∥∥∥2 = 1− k
Zm,n
zm (zn) k

Zm,n
zn (zm)

k
Zm,n
zn (zn) k

Zm,n
zm (zm)

,

and is at most 1 since
∥∥kZn

zn

∥∥ ≤ ∥∥∥kZm,n
zn

∥∥∥ or

∣∣kZm,n
zm

(zn)
∣∣ =

∣∣〈kZm,n
zm

, kZm,n
zn

〉∣∣ ≤ ∥∥kZm,n
zm

∥∥∥∥kZm,n
zn

∥∥ =

√
k
Zm,n
zm (zm) k

Zm,n
zn (zn)
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by Cauchy-Schwarz. Note that
∥∥kZn

zn

∥∥2
= σnm

∥∥∥kZm,n
zn

∥∥∥2

. Combining equalities yields

〈
kZn
zn
, kZm

zm

〉
= kZn

zn
(zm)− k

Zm,n
zm (zn)

k
Zm,n
zn (zn)

kZn
zn

(zn)(0.12)

= kZn
zn

(zm)− k
Zm,n
zm (zn)

k
Zm,n
zn (zn)

σnmk
Zm,n
zn

(zn)

= kZn
zn

(zm)− σnmk
Zm,n
zm (zn),

and

(0.13) ‖fn‖ =
‖kzn‖∥∥kZn
zn

∥∥ and σnm =

∥∥kZn
zn

∥∥2∥∥∥kZm,n
zn

∥∥∥2 .

Note that k
Zm,n
zm (zn) = k

Zm,n
zn (zm) and that kZn

zn
(zm) = 0 for m 6= n.

Calculations that use the Nevanlinna-Pick property. From the solution (0.8) to the extremal
problem (0.7) with Zm,n in place of Z, and zm in place of z0, we obtain after renormalizing
ϕ0,

(0.14)
k
Zm,n
zm (z)∥∥∥kZm,n
zm

∥∥∥2 = ϕmn (z)
kzm (z)

‖kzm‖
2 ,

where ϕmn ∈MH is the unique extremal solution to

CMH
(m,n) = inf

{
‖ϕ‖MH

: ϕ (zm) = 1 and ϕ (zj) = 0 for j ∈ Zm,n
}
.

Indeed, (0.8) with ϕ0 denoted by ϕm,n0 yields

k
Zm,n
zm (z)∥∥∥kZm,n
zm

∥∥∥ = ϕm,n0 (z)
kzm (z)

‖kzm‖
,

and with

ϕmn (z) =
ϕm,n0 (z)

ϕm,n0 (zm)
,

we obtain (0.14). The connection with the multiplier ϕ0 = ϕm,n0 in (0.8) is

ϕmn (z)

CMH
(m,n)

= ϕm,n0 (z) .

Calculations that use separation and the Carleson condition. Moreover, we have the inequal-
ity

(0.15) CMH
(m,n) ≤ C, m, n ≥ 1.
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Indeed, from Proposition 23 of [4] (see [6] for the initial theorem on the Dirichlet space) we
have

CMH
(m,n) ≤

∏
j /∈{m,n}

(
1−

∣∣〈kzj
, kzm

〉∣∣2∥∥kzj

∥∥2 ‖kzm‖
2

)−1

≤ sup
m≥1

∏
j 6=m

(
1−

∣∣〈kzj
, kzm

〉∣∣2∥∥kzj

∥∥2 ‖kzm‖
2

)−1

.

By the Carleson condition applied to k̃zm = kzm

‖kzm‖
, we obtain

C = C
∥∥∥k̃zm

∥∥∥2

≥
∫ ∣∣∣k̃zm (z)

∣∣∣2 dµZ (z) =
∞∑
j=1

|kzm (zj)|2

‖kzm‖
2
∥∥kzj

∥∥2 .

This together with separation,
|kzm (zj)|2

‖kzm‖
2‖kzj‖

2 ≤ 1− ε for some ε > 0, and (0.3) yields

∏
j 6=m

(
1−

∣∣〈kzj
, kzm

〉∣∣2∥∥kzj

∥∥2 ‖kzm‖
2

)
≥ c > 0, m ≥ 1,

and hence (0.15).

Calculation of the off-diagonal terms in the biorthogonal Grammian. For m 6= n we have
kZn
zn

(zm) = 0, and hence from (0.9), (0.12), (0.14) and (0.11) we obtain

〈fn, fm〉 =
‖kzn‖ ‖kzm‖∥∥kZn
zn

∥∥2 ∥∥kZm
zm

∥∥2

{
−σnmk

Zm,n
zm (zn)

}
= − ‖kzn‖ ‖kzm‖∥∥kZn

zn

∥∥2 ∥∥kZm
zm

∥∥2σ
n
m

∥∥kZm,n
zm

∥∥2
ϕmn (zn)

kzm (zn)

‖kzm‖
2

= −‖fn‖2
σnm
σmn

ϕmn (zn)
kzm (zn)

‖kzm‖ ‖kzn‖

= −‖fn‖2 ϕmn (zn)
〈
k̃zm , k̃zn

〉
,

since ‖fn‖2 = ‖kzn‖
2

‖kZn
zn ‖2

and σnm =
‖kZn

zn ‖2‚‚‚kZm,n
zn

‚‚‚2 = σmn by (0.11). Taking complex conjugates we can

write this as

〈fm, fn〉 = −‖fn‖2 ϕmn (zn)
〈
k̃zm , k̃zn

〉
.

At this point we use (0.15) to conclude that |〈fm, fn〉| ≤ C
∣∣∣〈k̃zm , k̃zn

〉∣∣∣ for all m,n. Our

hypothesis on the Grammian
[〈
k̃zm , k̃zn

〉]∞
m,n=1

shows that
[∣∣∣〈k̃zm , k̃zn

〉∣∣∣]∞
m,n=1

is bounded

on `2, and thus so is [|〈fm, fn〉|]∞m,n=1, hence [〈fm, fn〉]∞m,n=1. This completes the proof of
Theorem 0.4.
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The Hardy Space H2(D). The above proof just fails to capture the classical Hardy space

H2 (D) on the disk since we no longer have |kw (ζ)| =
∣∣∣ 1
1−wζ

∣∣∣ ≈ Re 1
1−wζ = Rekw (ζ), despite

the nonnegativity of Rekw. However, if BW (z) =
∏
w∈W

w−z
1−wz

|w|
w

denotes the Blaschke product

with zeroes W ⊂ D, then it is known that the extremal functions fn and ϕmn are given by
Blaschke products, namely

fn (z) =
BZn (z)

BZn (zn)

kzn (z)

‖kzn‖
and ϕmn (z) =

BZm,n (z)

BZm,n (zm)
,

so that

‖fn‖2 =

∥∥∥∥ BZn (z)

BZn (zn)

kzn (z)

‖kzn‖

∥∥∥∥2

=
1

|BZn (zn)|2

and

ϕmn (zn) =
BZm,n (zn)

BZm,n (zm)
=

∏
j /∈{m,n}

(
zj−zn

1−zjzn

|zj |
zj

)
∏

j /∈{m,n}

(
zj−zm

1−zjzm

|zj |
zj

)

=

(
zn−zm

1−znzm

|zn|
zn

) ∏
j /∈{n}

(
zj−zn

1−zjzn

|zj |
zj

)
(
zm−zn

1−zmzn

|zm|
zm

) ∏
j /∈{m}

(
zj−zm

1−zjzm

|zj |
zj

)

= −

(
1

1−znzm

|zn|
zn

)
(

1
1−zmzn

|zm|
zm

) BZn (zn)

BZm (zm)
.

Altogether we then have

(0.16) − ‖fn‖2 ϕmn (zn) =
1− zmzn
1− znzm

|zn|
zn

zm
|zm|

1

BZm (zm)BZn (zn)
.

Now we use

1− zmzn
1− znzm

〈
k̃zm , k̃zn

〉
=

1− zmzn
1− znzm

kzm (zn)

‖kzn‖ ‖kzm‖

=
kzn (zm)

‖kzn‖ ‖kzm‖
=
〈
k̃zn , k̃zm

〉
,

to obtain that

〈fm, fn〉 = −‖fn‖2 ϕmn (zn)
〈
k̃zm , k̃zn

〉
=

(
zn

|zn|BZn (zn)

)(
zm

|zm|BZm (zm)

)〈
k̃zn , k̃zm

〉
.

It is now clear that [〈fm, fn〉]∞m,n=1 is bounded on `2 if
[〈
k̃zn , k̃zm

〉]∞
m,n=1

is bounded on `2

since the factors zn

|zn|BZn (zn)
satisfy

1 ≤
∣∣∣∣ zn
|zn|BZn (zn)

∣∣∣∣ ≤ C, n ≥ 1.
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Note that this argument provides a purely Hilbert space proof of Carleson’s Theorem.

Bari’s characterization of Riesz bases.

Definition 0.6. A set X = {xα}α∈A in a Hilbert space is a Riesz basis for H if there is
a linear isomorphism U : H → K onto another Hilbert space K (i.e. U and its inverse
U−1 are linear and bounded, but do not necessarily preserve the inner products) such that
UX = {Uxα}α∈A is an orthonormal set in K. The operator U is called an orthogonalizer of
X . More generally, we say that X is a Riesz basis if it is a Riesz basis for its closed linear
span ∨X .

If X = {xα}α∈A is a Riesz basis, then every x ∈ ∨X can be expanded in a Fourier series
relative to X :

x = U−1Ux = U−1
∑
α∈A

〈Ux, Uxα〉Uxα =
∑
α∈A

〈x, U∗Uxα〉xα.

Now let H be a Hilbert space and let X = {xα}α∈A be a Riesz basis for H. Denote by

X ′ = {x′α}α∈A the biorthogonal system defined by the relations
〈
xα, x

′
β

〉
= δαβ . Define JXx

to be the sequence {〈x, x′α〉}α∈A on A. Bari’s Theorem characterizes Riesz bases in a number
of ways.

Theorem 0.7. (Bari’s Theorem) Let H be a Hilbert space and suppose that X = {xα}α∈A is
a subset of H that satisfies xα /∈ ∨ (X \ {α}) for each α ∈ A. Then the following statements
are equivalent:

(1) X = {xα}α∈A is a Riesz basis for H.
(2) ∨X = H and JXH = `2 (A).
(3) ∨X = H and JXH ⊂ `2 (A) and JX ′H ⊂ `2 (A).
(4) ∨X = H and the Gram matrices ΓX = [〈xα, xβ〉]α,β∈A and ΓX ′ =

[〈
x′α, x

′
β

〉]
α,β∈A are

bounded on `2 (A).
(5) ∨X = H and the Gram matrix ΓX = [〈xα, xβ〉]α,β∈A defines a continuous and invert-

ible linear map in `2 (A).

Proof : 1 implies 2 is obvious. If 2 holds, then JX is continuous by the closed graph
theorem, and invertible by the open mapping theorem. Thus 1 holds with orthogonalizer
JX since JXX is the standard basis {eα}α∈A in `2 (A). 1 implies 3 is obvious. To prove
the remaining assertions 3 =⇒ 4 =⇒ 5 =⇒ 1, we use the following two identities for the
operator VX defined by VXa =

∑
α∈A aαxα for a = {aα}α∈A ∈ `2 (A):

‖VXa‖2 =

〈∑
α∈A

aαxα,
∑
α∈A

aαxα

〉
=
∑
α∈A

aαaβ 〈xα, xβ〉 = 〈ΓXa, a〉 ,(0.17)

〈VXa, b〉 =

〈∑
α∈A

aαxα, b

〉
=
∑
α∈A

aα〈b, xα〉 = 〈a, JX ′b〉 .

Now 3 implies 4 because JX ′ is continuous by the closed graph theorem, then VX is
continuous by the second identity in (0.17), and finally ΓX is continuous by the first identity
in (0.17). Similarly for ΓX ′ . We see that 4 implies 5 because by the first identity in (0.17),
ΓX is invertible if and only if VX is invertible; then JXVX = I and VXJX = I where once
more by the identities in (0.17), continuity of ΓX ′ implies that of VX ′ implies that of JX .
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Finally, 5 implies 1 because VX is an isomorphism, which follows from the first identity in
(0.17) and the relation VX `

2 (A) = ∨X = H.
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