
Lecture 11: The Corona Theorem for the Multiplier Algebra of D

In 1962 Lennart Carleson demonstrated in [4] the absence of a corona in the maximal ideal

space of H∞ (D) by showing that if {gj}Nj=1 is a finite set of functions in H∞ (D) satisfying

(0.1)
N∑
j=1

|gj (z)| ≥ c > 0, z ∈ D,

then there are functions {fj}Nj=1 in H∞ (D) with

(0.2)
N∑
j=1

fj (z) gj (z) = 1, z ∈ D,

While not immediately obvious, the result of Carleson is in fact equivalent to the following
statement about the Hilbert space H2(D). If one is given a finite set of functions {gj}Nj=1 in

H∞(D) satisfying (0.1) and a function h ∈ H2(D), then there are functions {fj}Nj=1 in H2(D)
with

(0.3)
N∑
j=1

fj (z) gj (z) = h(z), z ∈ D,

The key difference between (0.2) and (0.3) is that one is solving the problem in the Hilbert
space setting as opposed to the multiplier algebra, which makes the problem somewhat easier.

In this chapter we discuss the Corona Theorem for the multiplier algebra of the Dirichlet
space. The method of proof will be intimately connected with the resulting statements for
H∞(D) and H2(D). We also will connect this result to a related statement for the Hilbert
space D. One proof will be given by ∂-methods and the connections between weak Carleson
measures for the space D. Another proof will be given by simply proving the Hilbert space
version directly and then applying an abstract operator theory result. Implicit in both
versions are certain solutions to ∂-problems that arise.

This lecture is longer than previous lectures since the Corona problem is a question of
particular interest to the author of the notes. For those readers more interested in function
theory, they can focus more on Section 2 of the notes. While those with an interest should
read both sections.

1. Corona Theorems and Complete Nevanlinna-Pick Kernels

Recall that we have already seen the Nevanlinna-Pick property when we studied the Pick
interpolation question for the Hardy space H2(D). We will see a little later that the Dirichlet
space also has this important property. It turns out that these spaces have a slightly stronger
property of being able to solve the Nevanlinna-Pick interpolation problem, but with matrix
targets or arbitrary size. When a reproducing kernel Hilbert space has this property, then
we will say that it has the complete Nevanlinna-Pick property.

It turns out that for certain function spaces that have a complete Nevanlinna-Pick kernel,
it is possible to solve the Corona problem for the multiplier algebra by solving a relatively
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easier Corona question for the space of analytic functions itself. It is an important fact that
both the kernel for the Hardy space H2(D) and for the Dirichelet space D possess a complete
Nevanlinna-Pick kernel. More generally, for any 0 ≤ σ ≤ 1

2
we have that the the space B2

σ(D)
has a complete Nevanlinna-Pick kernel.

Let X be a Hilbert space of holomorphic functions in an open set Ω in Cn that is a
reproducing kernel Hilbert space with a complete irreducible Nevanlinna-Pick kernel (see [1]
for the definition). The following Toeplitz corona theorem is due to Ball, Trent and Vinnikov
[3] (see also Ambrozie and Timotin [2] and Theorem 8.57 in [1]).

For f = (fα)Nα=1 ∈ ⊕NX and h ∈ X, define Mfh = (fαh)Nα=1 and

‖f‖Mult(X,⊕NX) = ‖Mf‖X→⊕NX = sup
‖h‖X≤1

‖Mfh‖⊕NX .

Note that max1≤α≤N ‖Mfα‖MX
≤ ‖f‖Mult(X,⊕NX) ≤

√∑N
α=1 ‖Mfα‖

2
MX

.

Theorem 1.1 (Toeplitz Corona Theorem). Let X be a Hilbert function space in an open set
Ω in Cn with an irreducible complete Nevanlinna-Pick kernel. Let δ > 0 and N ∈ N. Then
g1, . . . , gN ∈ MX satisfy the following “baby corona property”; for every h ∈ X, there are
f1, . . . , fN ∈ X such that

‖f1‖2X + · · ·+ ‖fN‖2X ≤ 1

δ
‖h‖2X ,(1.1)

g1 (z) f1 (z) + · · ·+ gN (z) fN (z) = h (z) , z ∈ Ω,

if and only if g1, . . . , gN ∈ MX satisfy the following “multiplier corona property”; there are
ϕ1, . . . , ϕN ∈MX such that

‖ϕ‖Mult(X,⊕NX) ≤ 1,(1.2)

g1 (z)ϕ1 (z) + · · ·+ gN (z)ϕN (z) =
√
δ, z ∈ Ω.

The baby corona theorem is said to hold for X if whenever g1, · · · , gN ∈MX satisfy

(1.3) |g1 (z)|2 + · · ·+ |gN (z)|2 ≥ c > 0, z ∈ Ω,

then g1, . . . , gN satisfy the baby corona property (1.1).
More succinctly, (1.1) is equivalent to the operator lower bound

(1.4) MgM∗
g − δIX ≥ 0,

where g ≡ (g1, ...gN),Mg : ⊕NX → X byMgf =
∑N

α=1 gαfα, andM∗
gh =

(
M∗

gαf
)N
α=1

. We

note that (1.3) with c = δ is necessary for (1.4) as can be seen by testing on reproducing
kernels kz.

Remark 1.2. A standard abstract argument applies to show that the absence of a corona
for the multiplier algebra MX , i.e. the density of the linear span of point evaluations in
the maximal ideal space of MX , is equivalent to the following assertion: for each finite set
{gj}Nj=1 ⊂MX such that (1.3) holds for some c > 0, there are {ϕj}Nj=1 ⊂MX and δ > 0 such

that condition (1.2) holds. See for example Lemma 9.2.6 in [6] or the proof of Criterion 3.5
on page 39 of [8].
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Here we recall the proof of the Toeplitz Corona Theorem 1.1 for holomorphic Hilbert
function spaces with a complete Nevanlinna-Pick kernel. First we note the equivalence of
(1.1) and (1.4). To see this note that (1.4) is equivalent to

(1.5) δ 〈h, h〉X ≤
〈
h,MϕM∗

ϕh
〉
X

=
〈
M∗

ϕh,M∗
ϕh
〉
⊕NX .

From functional analysis, we obtain that the bounded map Mϕ : ⊕NX → X is onto. If

N = kerMϕ, then M̂ϕ : N⊥ → X is invertible. Now (1.5) implies that M̂ϕ

∗
: X → N⊥

is invertible and that

∥∥∥∥(M̂ϕ

∗)−1
∥∥∥∥ ≤ 1√

δ
. By duality we then have

∥∥∥∥(M̂ϕ

)−1
∥∥∥∥ ≤ 1√

δ
. Thus

given h ∈ X, there is f ∈ N⊥ satisfying Mϕf = h and

‖f‖2⊕NX =

∥∥∥∥(M̂ϕ

)−1

h

∥∥∥∥2

⊕NX
≤ 1

δ
‖h‖2X ,

which is (1.1). Conversely, using (1.1) we compute that∥∥M∗
ϕh
∥∥
⊕NX = sup

‖g‖⊕NX≤1

∣∣∣〈g,M∗
ϕh
〉
⊕NX

∣∣∣ = sup
‖g‖⊕NX≤1

∣∣〈Mϕg, h〉X
∣∣(1.6)

≥

∣∣∣∣∣
〈
Mϕ

f

‖f‖⊕NX
, h

〉
X

∣∣∣∣∣ =
‖h‖2X
‖f‖⊕NX

≥
√
δ ‖h‖X ,

which is (1.5), and hence (1.4).
Next we note that (1.3) with c = δ is necessary for (1.4) as can be seen by testing (1.5)

on reproducing kernels kz:

δ 〈kz, kz〉 ≤
〈
M∗

ϕkz,M∗
ϕkz
〉
⊕NX = |ϕ (z)|2 〈kz, kz〉

since M∗
ϕkz =

(
ϕα (z)kz

)N
α=1

.

1.1. Calculus of kernel functions and proof of the Toeplitz Corona Theorem. A
crucial theme for the proof of the Toeplitz Corona Theorem is that operator bounds for
Hilbert function spaces, such asMϕM∗

ϕ − δIX ≥ 0 for X in (1.4), can be recast in terms of
kernel functions, namely

(1.7) {〈ϕ (ζ) , ϕ (λ)〉CN − δ} k (ζ, λ) � 0.

Indeed, if we let h =
∑J

i=1 ξikxi in (1.5) we obtain

δ
J∑

i,j=1

ξiξjk (xj, xi) = δ

J∑
i,j=1

ξiξj
〈
kxi , kxj

〉
≤

N∑
α=1

〈
J∑
i=1

ξiϕα (xi)kxi ,
J∑
j=1

ξjϕα (xj)kxj

〉
X

=
J∑

i,j=1

ξiξj

{
N∑
α=1

ϕα (xi)ϕα (xj)

}
k (xj, xi) ,
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which is (1.7). A similar calculation shows that the operator upper bound IX−MfM∗
f ≥ 0,

which is equivalent to ‖Mf‖⊕NX→X ≤ 1, is recast in terms of kernel functions as

(1.8) {1− 〈f (ζ) , f (λ)〉CN} k (ζ, λ) � 0.

In order to recast the multiplier bound in the first line of (1.2) in terms of kernel functions,
we must consider N × N matrix-valued kernel functions. Recall that Mf : X → ⊕NX by

Mfh = (fαh)Nα=1 (compare with Mf : ⊕NX → X by Mfg =
∑N

α=1 fαgα). Then for
g ∈ ⊕NMX ,

〈Mfh, g〉⊕NX =
N∑
α=1

〈fαh, gα〉X =

〈
h,

N∑
α=1

M∗
fαgα

〉
X

,

and so M∗fg =
∑N

α=1M∗
fα
gα. Thus the first line in (1.2) is equivalent to

∥∥M∗f∥∥2

⊕NX→X ≤ 1,

hence to

0 ≤
N∑
α=1

‖gα‖2X −

∥∥∥∥∥
N∑
α=1

M∗
fαgα

∥∥∥∥∥
2

X

= 〈g, g〉⊕NX −
〈
M∗fg,M∗fg

〉
X

(1.9)

=
〈(
I⊕NX −MfM∗f

)
g, g
〉
⊕NX ,

which is the operator bound

(1.10) I⊕NX −MfM∗f ≥ 0.

To obtain an equivalent kernel estimate, let

g = (gα)Nα=1 =

(
J∑
i=1

ξαi kxαi

)N

α=1

,

so that

M∗fg =
N∑
α=1

M∗
fαgα =

N∑
α=1

J∑
i=1

ξαi fα (xαi )kxαi .

If we substitute this in (1.9) we obtain

N∑
α,β=1

J∑
i,j=1

ξαi ξ
β
j fα (xαi )fβ

(
xβj

)
k
(
xβj , x

α
i

)
=

〈
M∗fg,M∗fg

〉
X

≤ 〈g, g〉⊕NX =
N∑

α,β=1

δαβ

J∑
i,j=1

ξαi ξ
β
j k
(
xβj , x

α
i

)
,

or
N∑

α,β=1

J∑
i,j=1

ξαi ξ
β
j

[{
δαβ − fα (xαi )fβ

(
xβj

)}
k
(
xβj , x

α
i

)]
≥ 0.

If we view f (ζ) ∈ B
(
C,CN

)
we can rewrite this last expression as

(1.11) {ICN − f (ζ) f (λ)∗} k (ζ, λ) � 0,

which is the required matrix-valued kernel equivalence of the multiplier bound in (1.2).
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Now we turn to the proof of Theorem 1.1. To see that (1.2) implies (1.1) just multiply

Mϕf =
√
δ by h√

δ
to get Mϕ

fh√
δ

= h where∥∥∥∥ fh√δ
∥∥∥∥2

⊕NX
=

1

δ

(
‖f1h‖2X + ...+ ‖fNh‖2X

)
≤ 1

δ

(
‖f1‖2MX

+ ...+ ‖fN‖2MX

)
‖h‖2X ≤

1

δ
‖h‖2X .

The computation (1.6) above then shows that (1.4) holds for the same δ > 0.
However, we can give another short proof, but using the language of positive semidef-

inite kernel functions to characterize operator boundedness. This will afford us our first
opportunity to use the ”calculus” of positive semidefinite forms. If (1.2) holds then

ϕ (ζ)
∗
f (ζ) =Mϕf =

√
δ,

and (1.11) holds:
{ICN − f (ζ) f (λ)∗} k (ζ, λ) � 0.

These two relations imply the positivity of the kernel function,

{〈ϕ (ζ) , ϕ (λ)〉CN − δ} k (ζ, λ)

=
{
〈ϕ (ζ) , ϕ (λ)〉CN −

√
δ
√
δ
}
k (ζ, λ)

=
{
〈ϕ (ζ) , ϕ (λ)〉CN − ϕ (ζ)

∗
f (ζ) f (λ)∗ ϕ (λ)

}
k (ζ, λ)

= ϕ (ζ)
∗

[{ICN − f (ζ) f (λ)∗} k (ζ, λ)]ϕ (λ) � 0.

By (1.7) this is equivalent to (1.5), and hence to (1.4).

Conversely, normalize k at a fixed point λ0 ∈ Ω so that kλ0 ≡ 1. Since k is an irreducible
complete Nevanlinna-Pick kernel, we can find a Hilbert space K and a map b : Ω→ K with
b (λ0) = 0 and such that

(1.12) k (ζ, λ) =
1

1− 〈b (ζ) , b (λ)〉K
.

This theorem has a long history and is not easy to prove (Theorem 7.31 in [1]). In fact, one
can take K to be the Drury-Arveson Hardy space H2

m for some cardinal number m (Theorem
8.2 in [1]), but we will not need this. From (1.4) we now obtain (1.7):

K (ζ, λ) ≡ {〈ϕ (ζ) , ϕ (λ)〉CN − δ} k (ζ, λ) � 0.

By a kernel-valued version of the Lax-Milgram Theorem, we can factor the left hand side
K (ζ, λ) as 〈G (ζ) , G (λ)〉H where G : Ω → H for some auxiliary space H. Indeed, define
F : Ω→ XK by F (ζ) = Kζ so that

K (ζ, λ) = 〈Kλ, Kζ〉XK = 〈F (λ) , F (ζ)〉XK .
Now fix an orthonormal basis {eα}α for XK and define a conjugate linear operator Γ by

Γ

(∑
α

cαeα

)
=
∑
α

cαeα.

Then G = Γ ◦ F satisfies

K (ζ, λ) = 〈F (λ) , F (ζ)〉XK = 〈Γ ◦ F (ζ) ,Γ ◦ F (λ)〉XK = 〈G (ζ) , G (λ)〉XK ,
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with H = XK as required. Hence

〈ϕ (ζ) , ϕ (λ)〉CN − δ = [1− 〈b (ζ) , b (λ)〉K] 〈G (ζ) , G (λ)〉H ,

or equivalently,

(1.13) 〈ϕ (ζ) , ϕ (λ)〉CN + 〈b (ζ) , b (λ)〉K 〈G (ζ) , G (λ)〉H = δ + 〈G (ζ) , G (λ)〉H .

Now we rewrite (1.13) in terms of inner products of direct sums of Hilbert spaces,

〈ϕ (ζ) , ϕ (λ)〉CN + 〈b (ζ)⊗G (ζ) , b (λ)⊗G (λ)〉K⊗H
=
〈√

δ,
√
δ
〉

C
+ 〈G (ζ) , G (λ)〉H ,

so that it can be interpreted as saying that the map from N1 to N2 that sends the element

(1.14) (ϕ (λ)u, b (λ)⊗G (λ)u) ∈ CN ⊕ (K ⊗H)

with u ∈ C to the element

(1.15)
(√

δu,G (λ)u
)
∈ C⊕H

is an isometry ! Here the spaces N1 and N2 are given by

N1 = Span

{(
ϕ (λ)

b (λ)⊗G (λ)

)
u : u ∈ C, λ ∈ Ω

}
⊂ CN ⊕ (K ⊗H) ,

N2 = Span

{( √
δ

G (λ)

)
u : u ∈ C, λ ∈ Ω

}
⊂ C⊕H.

Thus using (1.4) we have obtained (1.13) that defines a linear isometry V ′ from the linear
span N1 of the elements ϕ (λ)u ⊕ (b (λ)⊗G (λ))u in the direct sum CN ⊕ (K ⊗H) onto a
subspace N2 of the direct sum C ⊕H: the element in (1.14) goes to the element in (1.15).
Now extend this isometry V ′ to an isometry V from all of CN ⊕ (K ⊗H) onto C ⊕ H,
where we add an infinite-dimensional summand to H if necessary. Indeed, V ′ extends by
continuity to an isometry from N1 onto N2, and provided the orthogonal complements of
N1 and N2 have the same dimension, we can then trivially extend the isometry from all of
CN ⊕ (K ⊗H) onto C⊕H. But the dimensions of the complements can be made equal by
adding an infinite-dimensional summand to H.

Decompose the extended isometry V as a block matrix

(1.16) V =

[
A B
C D

]
:

[
CN

K ⊗H

]
→
[

C
H

]
.

Since V is an onto isometry we obtain the formulas,[
A∗A+ C∗C A∗B + C∗D
B∗A+D∗C B∗B +D∗D

]
=

[
A∗ C∗

B∗ D∗

] [
A B
C D

]
(1.17)

= V ∗V = ICN⊕(K⊗H) =

[
ICN 0
0 IK⊗H

]
.

Then (1.16) on the subspace N1 becomes

Aϕ (λ) +B [b (λ)⊗G (λ)] =
√
δ,(1.18)

Cϕ (λ) +D [b (λ)⊗G (λ)] = G (λ) .
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Now define f : Ω→ B
(
C,CN

)
(which is of course isomorphic to CN) by

(1.19) f (λ)
∗

= A+B
{
b (λ)⊗

(
I −DEb(λ)

)−1
C
}
,

where Eb is the map Eb : H → K⊗H given by

(1.20) Ebv = b⊗ v, v ∈ H.

Note that this formula for f (λ)
∗

is obtained by solving the second line in (1.18) for G (λ) =(
I −DEb(λ)

)−1
Cϕ (λ), and then substituting this in the first line and dropping ϕ (λ). Ob-

serve that E∗b (c⊗ w) = 〈c, b〉K w, so that

(1.21) E∗bEc = 〈c, b〉K IH.

From this we conclude that I−DEb(λ) is invertible. Indeed, (1.12) shows that 〈b, b〉K < 1 and
(1.21) then implies that Eb(λ) is a strict contraction. From the equation B∗B+D∗D = IK⊗H

in (1.17) we see that D is a contraction, which altogether implies
∥∥DEb(λ)

∥∥ < 1. Thus f (λ)
∗

satisfies

f (λ)
∗
ϕ (λ) = Aϕ (λ) +B

[
b (λ)⊗

(
I −DEb(λ)

)−1
Cϕ (λ)

]
(1.22)

= Aϕ (λ) +B [b (λ)⊗G (λ)]

=
√
δ,

which is the second line in (1.2).
To see that the first line in (1.2) holds, we must show that f (λ) is a contractive multiplier,

i.e. that (1.11) holds:

(1.23) {ICN − f (ζ) f (λ)∗} k (ζ, λ) � 0.

For this we use (1.17). We compute with

f (λ)
∗

= A+BEb(λ)

(
I −DEb(λ)

)−1
C,

f (ζ) = A∗ + C∗
(
I − E∗b(ζ)D∗

)−1
E∗b(ζ)B

∗,

that

ICN − f (ζ) f (λ)∗ = I −
[
A∗ + C∗

(
I − E∗b(ζ)D∗

)−1
E∗b(ζ)B

∗
]

×
[
A+BEb(λ)

(
I −DEb(λ)

)−1
C
]

= I − A∗A− A∗BEb(λ)

(
I −DEb(λ)

)−1
C

−C∗
(
I − E∗b(ζ)D∗

)−1
E∗b(ζ)B

∗A

−C∗
(
I − E∗b(ζ)D∗

)−1
E∗b(ζ)B

∗BEb(λ)

(
I −DEb(λ)

)−1
C,



8

and then using (1.17) we obtain

ICN − f (ζ) f (λ)∗(1.24)

= C∗C + C∗DEb(λ)

(
I −DEb(λ)

)−1
C

+C∗
(
I − E∗b(ζ)D∗

)−1
E∗b(ζ)D

∗C

+C∗
(
I − E∗b(ζ)D∗

)−1
E∗b(ζ) (D∗D − I)Eb(λ)

(
I −DEb(λ)

)−1
C

= C∗
(
I − E∗b(ζ)D∗

)−1

×
{(
I − E∗b(ζ)D∗

) (
I −DEb(λ)

)
+
(
I − E∗b(ζ)D∗

)
DEb(λ)

+E∗b(ζ)D
∗ (I −DEb(λ)

)
− E∗b(ζ)Eb(λ) + E∗b(ζ)D

∗DEb(λ)

}
×
(
I −DEb(λ)

)−1
C

= C∗
(
I − E∗b(ζ)D∗

)−1 (
I − E∗b(ζ)Eb(λ)

) (
I −DEb(λ)

)−1
C

=
(

1− 〈b (ζ) , b (λ)〉K
)
C∗
(
I − E∗b(ζ)D∗

)−1 (
I −DEb(λ)

)−1
C,

where the last line follows from (1.21). Thus using (1.12) the left side of (1.23), which is an
N ×N matix-valued kernel function, has its complex conjugate equal to

C∗
(
I − E∗b(ζ)D∗

)−1 (
I −DEb(λ)

)−1
C

=
〈(
I −DEb(λ)

)−1
C,
(
I −DEb(ζ)

)−1
C
〉
H
,

which is an N ×N matix-valued Grammian, hence a positive kernel as required.

2. The ∂-equation in the Dirichlet Space

As is well-known there is an intimate connection between the Corona Theorem and ∂-
problems. In our context, a ∂-problem will be to solve the following differential equation

(2.1) ∂b = µ

where µ is a Carleson measure for the space D and b is some unknown function. Now solving
this problem is an easy application of Cauchy’s formula, however we will need to obtain
estimates of the solutions. Tho obtain these estimates, we will provide a different solution
operator to the ∂-problem more appropriately suited to our contexts.

In [11] Xiao’s constructed a non-linear solution operator for (2.1) that is well adapted to
solve (2.1) and obtain estimates. We note that in the case of H∞(D) that this result was
first obtained by P. Jones, [5]. First, note that

F (z) =
1

2πi

∫
D

dµ (ζ)

ζ − z
dA(ζ)

satisfies ∂F = µ in the sense of distribution.

Exercise 2.1. Prove this claim.

The difficulty with this solution kernel is that it does not allow for one to obtain good
estimates on the solution. To rectify this, following Jones [5], we are now going to define a
new non-linear kernel that will overcome this difficulty.
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Theorem 2.2 (Jones, [5]). Let µ be a complex H2(D) Carleson measure on D. Then with
S (µ) (z) given by

(2.2) S (µ) (z) =

∫
D
K (σ, z, ζ) dµ (ζ)

where σ = |µ|
‖µ‖CM(H2)

and

K (σ, z, ζ) ≡ 2i

π

1− |ζ|2

(z − ζ)
(
1− ζz

) exp

{∫
|ω|≥|ζ|

(
−1 + ωz

1− ωz
+

1 + ωζ

1− ωζ

)
dσ (ω)

}
,

we have that:

(1) S (µ) ∈ L1
loc (D).

(2) ∂S (µ) = µ in the sense of distributions.

(3)
∫

D

∣∣∣K ( |µ|
‖µ‖CM(H2)

, x, ζ
)∣∣∣ d |µ| (ζ) . ‖µ‖CM(H2) for all x ∈ T = ∂D,

so ‖S (µ)‖L∞(T) . ‖µ‖CM(H2).

With this set-up, we now prove the follow theorem due to Xiao, extending Theorem 2.2,
about estimates for ∂-problems in the Dirichlet space.

Theorem 2.3 (Xiao, [11]). If |g(z)|2 dA(z) is a D-Carleson measure then there is a function
f such that ∂f = g and

‖f‖MW1/2(T)
. ‖ |g(z)|2 dA(z)‖CM(D).

Proof. First note that the measure µ = |g|dA satisfies the the following estimate(∫
S(I)

dµ(z)

)2

≤
∫
S(I)

|g(z)|2 dA(z)

∫
S(I)

dA(z)

. |I|2,

so the measure dµ is a H2(D) Carleson measure. Thus, by Theorem 2.2, we have a solution
given by

S(µ)(z)

that satisfies ∂S(µ) = g for all z ∈ D and ‖S (µ)‖L∞(T) . ‖|g|2dA‖CM(D).

We must now also show that S (µ) |T∈ X
1
2
2 (T), i.e. that

dµS(µ) ≡ |∇S (µ) (z)|2 dA(z)

is also a D-Carleson measure. Of course, since ∂S (µ) = g in D and we obtain immediately

that
∣∣ ∂
∂z
S (µ) (z)

∣∣2 dA(z) = |g(z)|2dA(z) is a D-Carleson measure. It is possible to take the
derivative ∂ of S(µ)(z) and then use the theory of singular integral operators and the singular
Beurling transform to estimate ∂S (µ).

We will instead use the following clever device of Xiao that greatly ameliorates the singu-
larity. We introduce the function

S̃ (µ) (z) =

∫
D
K̃ (σ, z, ζ) dν (ζ)
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where

K̃ (σ, z, ζ) ≡ 2i

π

1− |ζ|2∣∣1− ζz∣∣2 exp

{∫
|ω|≥|ζ|

(
−1 + ωz

1− ωz
+

1 + ωζ

1− ωζ

)
dσ (ω)

}
.

Now, observe that

K̃ (σ, z, ζ)

K (σ, z, ζ)
=

z − ζ
1− zζ

= ϕz (ζ)

is the autormorphism of the disk that interchanges 0 and z, and moreover, ϕz (ζ) = z(1−zζ)
1−zζ =

z for z ∈ T. Using this we see that S̃ (µ) (z) = zS (µ) (z) for z ∈ T and so it suffices to show

instead that
∣∣∣∇S̃ (µ) (z)

∣∣∣2 dA(z) is a D-Carleson measure. The advantage is that K̃ (σ, z, ζ)

has a much milder singularity than K (σ, z, ζ).

We next show that the operator S̃(µ) still provides a solution to the problem ∂b = µ. We
sketch the details for this, and the interested reader can fill in the pieces. Observe that for

w ∈ D, the function fw(z) = 1−|w|2
(1−wz)2 belongs to H1(D) with norm independent of w ∈ D.

Indeed, we have that

fw(z) =

(
(1− |w|2)1/2

1− zw

)2

∈ H2(D) ·H2(D) = H1(D)

with ‖fw‖H1(D) ≤
∥∥∥ (1−|w|2)1/2

1−zw

∥∥∥2

H2(D)
= 1.

Also, since the Carleson measures for H2(D) coincide with the Carleson measures for
H1(D), if µ is a H1(D) Carleson measure, then we have

(2.3)

∫
D
|fw(z)| dµ(z) . ‖fw‖H1(D) ‖µ‖CM(H2) .

This estimate then allows us to conclude

Re

(∫
|w|≥|ζ|

(
1 + wζ

1− wζ

)
|g(w)|dA(w)

)
=

∫
|w|≥|ζ|

Re

(
1 + wζ

1− wζ

)
|g(w)|dA(w)

≤ 2

∫
D

1− |ξ|2

|1− wξ|2
|g(ξ)|dA(ξ)

≤ 2 ‖fw‖H1(D) = 2.

Using the computations above, it can then be shown that

(2.4)

∫
D

1− |zξ|2

|1− zξ|2
exp

(
−
∫
|w|≥|ξ|

1− |zw|2

|1− zw|2
|g(w)|dA(w)

)
|g(ξ)|dA(ξ) ≤ 1.

Using these estimates and computations we arrive at the condition that∣∣∣∇S̃(µ)(z)
∣∣∣ . ∫

D

|g(w)|
|1− wz|2

dA(w).

Finally, we then apply the transformation of Carleson measure result of Rochberg and Wu,
see Lemma 6 in [7], to conclude that∣∣∣∇S̃(µ)(z)

∣∣∣2 dA(z)
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is a D-Carleson measure. We now state a result of Rochberg-Wu that shows it is possible to
transform Carleson measures to Carleson measures via positive operators.

For α ∈ (−∞, 1
2
] we let

Bα(D) =

{
f ∈ Hol : |f(0)|2 +

∫
D
|f ′(z)|2 (1− |z|2)1−2αdA(z) <∞

}
.

Note that this is just a relabeling of the space Bσ(D) with σ = 1− 2α.

Lemma 2.4 (Rochberg-Wu, [7]). Let α ∈ (−∞, 1
2
] and β > max{−1,−1 − 2α} and b >

max{β+3
2
, β+3

2
− α}. Also, let

Tf(z) =

∫
D

f(w)

|1− wz|b
(1− |w|2)b−2dA(w).

If |f(z)|2 (1− |z|2)βdA(z) is an Bα-Carleson measure, then |Tf(z)|2 (1− |z|2)βdA(z) is also
an Bα-Carleson measure.

Since |g(z)|2dA(z) is a D-Carleson measure, this then follows from Lemma 2.4. �

Exercise 2.5. Show that the same result as Theorem 2.3 remains true when 0 ≤ σ < 1
2
.

Exercise 2.6. Show that |∂S(µ)(z)|2 dA(z) is a D-Carleson measure by appealing to the
theory of singular integral operators. Hint: By computing the derivative of S(µ) you are
arriving at the Beurling Transform. Then one needs to observe that (1 − |w|2)b is a A2

weight for certain values of b.

Exercise 2.7. The function S̃ (µ) (z) behaves essentially like the holomorphic projection
Γ1µ (z) where,

Γsg (z) ≡
∫

D

g (w)
(
1− |w|2

)s
(1− w · z)1+s dA(w).

One can see that if µ = |g|dA is a D-Carleson measure, then |∇Γ1µ|2dA(z) is also a D-

Carleson measure. Using this idea and Lemma 2.4 show that
∣∣∣∇S̃ (µ) (z)

∣∣∣2 dA(z) is a D-

Carleson measure.

2.1. The Case of the Dirichlet Space. This general set-up applies to our setting with
X = D and MD the multiplier algebra for the Dirichlet space. The Toeplitz corona theorem
thus provides a useful tool for reducing the multiplier corona property (1.2) to the more
tractable, but still very difficult, baby corona property (1.1) for the multiplier algebras MD.

We now state a simple proposition that will be useful in understanding the relationships
between the Corona problems for D and MD.

Proposition 2.8. Suppose that g1, . . . , gN ∈MD. Define the map

M(g1,...,gn)(f1, . . . , fn) :=
N∑
k=1

gk(z)fk(z).

Then the following are equivalent

(i) M(g1,...,gn) : MD × · · · ×MD 7→MD is onto;
(ii) M(g1,...,gn) : D × · · · × D 7→ D is onto;
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(iii) There exists a δ > 0 such that for all z ∈ D we have

N∑
k=1

|gk(z)|2 ≥ δ > 0.

It is easy to see that both (i) and (ii) each individually imply (iii). We will show that
condition (iii) implies both (i) and (ii). Note that by the Toeplitz Corona Theorem 1.1 it
would suffice to prove that (iii) implies (ii) since the result then lifts to give the statement
in (i). However, we feel that it is instructive to prove the theorems separately.

The equivalence between the conditions in Proposition 2.8 were originally proved by
Tolokonnikov [9]. Below, we will give an alternate proof of this due to Xiao [11] of the
corona theorem for the multiplier algebra MD and for the Dirichlet space D. An alternate
proof for the case of the Dirichlet space D, and then for MD via the Toeplitz Corona Theorem
was given by Trent [10]. The proof of Trent is of a different nature than what we present
here.

Exercise 2.9. Prove that (i) and (ii) each individually imply (iii).

Exercise 2.10. Show that if (i) or (ii) holds, then there are in fact estimates to the Corona
problem as well.

Exercise 2.11. Show that the above Theorem is also true for the multiplier algebra of B2
σ(D)

as well.

2.2. The Corona Theorem for the Algebra MD(D). Here we prove the implication that
(iii) implies (i) in Proposition 2.8

Proof of (iii) implies (i) in Proposition 2.8. Note that is suffices to prove that there exists
f1, . . . , fn ∈MD such that

1 =
N∑
j=1

fj(z)gj(z) ∀z ∈ D.

Once we have found the {fj}Nj=1 then simply multiplying through by the desired function h
proves the implication. For j = 1, . . . , N , define

ϕj(z) =
gj(z)

|g(z)|2
,

where

|g(z)|2 =
N∑
j=1

|gj(z)|2.

Then we have that

1 =
N∑
j=1

gj(z)ϕj(z).

Suppose that we can find functions bjk such that

(i) ∂bjk = ϕj∂ϕk;
(ii) ‖bjk‖MD . 1.
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If we can find such functions, then we define

fj(z) = ϕj(z) +
N∑
k=1

(bjk(z)− bkj(z)) gk(z),

then the functions are analytic since,

∂fj = ∂ϕj +
N∑
k=1

(
∂bjk − ∂bkj

)
gk

= ∂ϕj +
N∑
k=1

(
ϕj∂ϕk − ϕk∂ϕj

)
gk

= ∂ϕj −

(
N∑
k=1

ϕkgk

)
∂ϕj + ϕj∂

(
N∑
k=1

gkϕk

)
= ∂ϕj − ∂ϕj + ϕj∂1 = 0.

Moreover, because of the estimate bjk it is clear that the functions gj ∈ MD. Finally, with
these functions we have

N∑
j=1

fj(z)gj(z) =
N∑
j=1

gj(z)ϕj(z) +
N∑
j=1

N∑
k=1

(bjk(z)− bkj(z)) gk(z)gj(z)

= 1 + 0 = 1

which solves the problem.
The only issue that remains is to demonstrate that it is in fact possible to find such

solutions bjk, and to do so, it suffices to demonstrate that the functions ϕj∂ϕk are in fact
Carleson measures for the Dirichlet space D. We accomplish this by first noting that

ϕj∂ϕk =
gj
|g|2

∑
l gl
(
glg′k − gkg′l

)
|g|4

.

This then implies that ∣∣ϕj∂ϕk∣∣2 . 1

|g|6
N∑
l=1

|g′l|2 .
N∑
l=1

|g′l|2.

Here we have used the properties that 0 < δ ≤
∑

l |gl(z)|. Note also that the implied
constants here depend upon the parameter δ and the number of generators N . However,
since the functions gl ∈MD we have that

|g′l|2dA(z)

are D-Carleson measures, and thus an application of Theorem 2.3 provides the solutions bjk
with estimates that we seek. �

We next turn to proving that (iii) implies (ii). The method of proof will be similar to
what appears above, however, we can resort to the simpler solution operator to conclude the
result.
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Proof of (iii) implies (ii) in Proposition 2.8. In the proof of this implication, we must show
directly that given an f ∈ D it is possible to find f1, . . . , fN ∈ D such that

N∑
j=1

fj(z)gj(z) = f(z) ∀z ∈ D,

under the hypothesis that {gj}Nj=1 satisfies (iii). Again, define the functions

ϕj(z) =
gj(z)

|g(z)|2

where |g(z)|2 =
∑N

j=1 |gj(z)|2. As we saw above in the proof that (iii) implies (i), it will
suffice to find functions bj,k such that

(i) ∂bjk = fϕj∂ϕk;
(ii) ‖bjk‖D . 1.

If we can find such functions, then we define

fk(z) = f(z)ϕk(z) +
N∑
j=1

(bjk(z)− bkj(z)) gk(z).

A similar computation to what appears above shows that we have

∂fk = 0 ∀1 ≤ k ≤ N

and that

N∑
k=1

fk(z)gk(z) = f(z) ∀z ∈ D and ‖fk‖D . 1.

These three properties follow from the properties of the solution bjk and the properties of
{gj}Nj=1.

We now show how to find solutions bjk satisfying the desired properties. Set

bjk(z) =
1

2πi

∫
D
f(w)

ϕj(w)∂ϕk(w)

z − w
dA(w).

Then we clearly have that bjk are smooth solutions on D that satisfy ∂bjk = fϕj∂ϕk, and
need only establish the estimates. First, note that

∫
D

∣∣∂bjk∣∣2 dA(z) . ‖f‖2D .(2.5)
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Indeed, we have∫
D

∣∣∂bjk∣∣2 dA(z) =

∫
D

∣∣∂fϕj∂ϕk∣∣2 dA(z)

.
N∑
j=1

∫
D

∣∣f(z)g′j(z)
∣∣2 dA(z)

.
N∑
j=1

∫
D
|(f(z)gj(z))|2 dA(z) +

N∑
j=1

∫
D
|f ′(z)gj(z)|2 dA(z)

. ‖f‖2D .

Here we used that gj ∈MD and so gjf ∈ D for all j. We next need to show that the following
estimate holds: ∫

D
|∂bjk|2 dA(z) . ‖f‖2D .(2.6)

Once we have established (2.6), then this combined with (2.5) implies that we have

‖bjk‖W1/2(T) . ‖f‖D .

To accomplish this, we consider a related solution operator that moves the singularity outside
the disk. Let ϕz (ζ) = z−ζ

1−zζ and consider the anti-analytic function

b̃jk (z) = − 1

2πi

∫
D

f(ζ)ϕj(ζ)∂ϕk(ζ)

ζ − z
ϕz (ζ) dA(ζ)

=
1

2πi

∫
D

f(ζ)ϕj(ζ)∂ϕk(ζ)

1− zζ
dA(ζ).

For z ∈ T we have ϕz (ζ) = z(1−zζ)
1−zζ = z so that

(2.7) bjk (z) = −zb̃jk (z) , z ∈ T.

It is easy to see that the operator of multiplication by z, which is the backward shift
operator on Fourier coefficients, is a bounded operator on W 1

2 (T). Thus by (2.7) and the

fact that b̃jk (z) is analytic, it suffices to establish that

(2.8)

∫
D

∣∣∣∂ b̃jk (z)
∣∣∣2 dA(z) .

∫
D

∣∣f(z)ϕj(z)∂ϕk(z)
∣∣2 dA(z)

since as we saw above the right hand side of the above expression is bounded by ‖f‖2D. For
this we compute∣∣∣∣ ∂∂z b̃jk (z)

∣∣∣∣ =

∣∣∣∣ 1

2πi

∫
D

f (ζ)ϕj(ζ)∂ϕk(ζ)

(1− zζ)2 ζdA(ζ)

∣∣∣∣ ≤ ∫
D
K (z, ζ)

∣∣f (ζ)ϕj(ζ)∂ϕk(ζ)
∣∣ dA(ζ),

where K (z, ζ) = 1
π|1−zζ|2 . Using the estimate

∫
D

(
1− |w|2

)− 1
2

|1− wz|2
dA(w) ≈

(
1− |z|2

)− 1
2
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we obtain that the “Schur function” h (ζ) =
(
1− |ζ|2

)− 1
2 satisfies∫

D
K (z, ζ)h (ζ) dA(ζ) . h (z) .

A simple case of Schur’s test now yields (2.8). �

Exercise 2.12. Give an alternate proof of the estimate (2.6) by using the theory of singular
integral operators, in particular the Beurling transform.

Exercise 2.13. Assuming that (ii) holds in Proposition 2.8 use the Toeplitz Corona Theorem
to give an alternate proof of (iii) implies (i).
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