
Lecture 10: Carleson Measures for the Dirichlet Space

We now turn to characterizing the Carleson measures for the Dirichlet space D. Recall
that we defined a non-negative measure µ to be D-Carleson if the following embedding holds∫

D
|f(z)|2 dµ(z) ≤ C(µ) ‖f‖2

D ∀f ∈ D.

Again we want to characterize these measures in a geometric fashion via some testing condi-
tions. Our tool this time will be to use harmonic analysis to understand the characterization,
and the method of proof will be very similar to how we understood the Carleson measures
for H2(D).

This proof will be more at the level of a detailed sketch of the exact argument. Part of
the reason for this is that the proof depends heavily on capacity theory and would require a
full lecture to develop the correct machinery to handle everything correctly. Instead, we will
accept many of the facts needed in capacity theory as just given, and these will be stated in
the lecture notes when needed.

It turns out that our method of proof will work to characterize the the Carleson measures
for the Besov-Sobolev spaces B2

σ(D) for 0 ≤ σ < 1
2
. Recall that these spaces were defined as

the space of holomorphic functions on the disc such that

|f(0)|2 +

∫
D
|f ′(z)|2 (1− |z|2)2σdA(z) := ‖f‖2

B2
σ(D) <∞.

Recall also that we had an equivalent norm on functions f ∈ B2
σ(D) given by

‖f‖2
B2
σ(D) ≈

∞∑
n=0

(n+ 1)1−2σ |an|2 ≈
∞∑
n=0

(n2 + 1)
1
2
−σ |an|2 .

A simple computation shows that these are reproducing kernel Hilbert spaces with the re-
producing kernel given by

kσλ(z) =
1

(1− λz)σ
.

As above, we define a non-negative measure µ to be B2
σ(D)-Carleson if for all f ∈ B2

σ(D) we
have ∫

D
|f(z)|2 dµ(z) ≤ C(µ) ‖f‖2

B2
σ(D) .

Since kσλ ∈ B2
σ(D) we have an obvious necessary condition for a measure µ to be B2

σ(D)-
Carleson. Indeed, simply testing on the family of reproducing kernels gives the following
geometric condition.

Lemma 0.1. Let 0 ≤ σ ≤ 1
2
. Suppose that µ is a B2

σ(D)-Carleson measure. Then µ must
satisfy

µ (T (I)) ≤ C(µ) |I|2σ .
Here

T (I) = {z = reiθ ∈ D : 0 < 1− r ≤ |I|, θ ∈ I}.
is the “tent” over the interval I.
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Proof. We handle the case when 0 < σ < 1
2

and leave the case σ = 0 as an exercise. Testing
on the kernel kσλ(z) we see that the following must hold∫

D

1∣∣1− λz∣∣4σ dµ(z) ≤ C(µ)
1

(1− |λ|2)2σ

So now observe that if λ, z ∈ T (I) then we have that∣∣1− λz∣∣ ≈ |I|
and

1− |λ|2 ≈ |I|
The second estimate clearly follows from the first. While the first follows from obvious
geometric estimates (simply draw the picture for T (I) and estimate).

Using this we see that
µ (T (I)) ≤ C(µ) |I|2σ .

�

Exercise 0.2. Carry out the similar computations necessary to prove that same Lemma for
the case of the Dirichlet space D. In this case we have that a necessary condition for a
measure µ to be D-Carleson is that for any I ⊂ T we have

µ (T (I)) ≤ C
1

log 1
|I|
.

Note that we have seen this computation and idea before when studying the Carleson
measures for H2(D). However, for the space H2(D) this condition is also sufficient. Lets give
a reason now why this condition can not be sufficient for the space B2

σ(D). Suppose we had
an interval I and the corresponding tent T (I). Then we know that the measure must satisfy

µ(T (I)) ≤ C |I|2σ .
However, if we were to split I into n disjoint pieces Ij then estimating

µ (∪jT (Ij)) ≤
n∑
j=1

|Ij|2σ ≤ n1−2σ

(
n∑
j=1

|Ij|

)2σ

= n1−2σ |I|2σ .

These estimates highlight the problem that we need to over come.
Before we state the characterization of Carleson measures for B2

σ(D), we recall some nec-

essary background. For 0 < σ < 1
2
. Let kσ(θ) = |θ|−

1
2
−σ for |θ| ≤ π and then extend by

periodicity to the whole real line.
Then we have that the Fourier coefficients k̂σ(n) are of the form an(1 + n2)−

1
4

+σ
2 with

0 ≤ δ ≤ an < δ−1. Recall that we showed that a function f ∈ H2(D) was determined by its
Taylor (Fourier) coefficients and could be recovered by the harmonic extension of its L2(T)
boundary values. The harmonic extension of a function f ∈ L2(T) was given by the Poisson
integral of the function,

P (f)(z) =

∫
T
f(ξ)

1− |z|2∣∣1− ξz∣∣2dm(ξ) =
∞∑

n=−∞

f̂(n)r|n|einθ.

The last equality follows by a simple computation.

Exercise 0.3. Show that the Fourier coefficients of kσ have the claimed form.
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Using this we have an isomorphism between H2(D) and B2
σ(D) given by sending f the

harmonic extension of f ∗ kσ
Lemma 0.4. A function g ∈ B2

σ(D) for 0 < σ < 1
2

if and only if g = P (f∗kσ) for f ∈ H2(D).
Moreover, the ‖g‖B2

σ(D) is comparable to ‖f‖H2(D).

Proof. Let f =
∑∞

n=0 bnz
n. Then we have that

P (f ∗ kσ)(z) =
∞∑
n=0

anbn(1 + n2)−
1
4

+σ
2 .

This computation uses that Fourier coefficients of f are supported only on the non-negative
integers and that the Fourier coefficient of the convolution is the product of the Fourier
coefficients.

Then, we have

δ2 ‖f‖2
H2 ≤

∞∑
n=0

(1 + n2)
1
2
−σ
∣∣∣anbn(1 + n2)−

1
4

+σ
∣∣∣2 ≤ δ−2 ‖f‖H2

which shows the isomorphism property. Also note that the middle term is comparable to
‖g‖B2

σ(D).

The other direction is also as easy. Given g ∈ B2
σ(D) with g(z) =

∑∞
n=0 cnz

n then we
simply set

f(z) =
∞∑
n=0

cn
an

(1 + n2)
1
4
−σzn.

Then the same computations as above show that g = P (f ∗ kσ)(z) and that f ∈ H2(D) with

‖f‖H2(D) ≈ ‖g‖B2
σ(D) .

�

We next give a lemma that is useful in understanding the Carleson measures for B2
σ(D)

given this new equivalent norm we have.

Lemma 0.5. A non-negative measure µ is a B2
σ(D) Carleson measure for 0 < σ < 1

2
if and

only if ∫
D
|P (f ∗ kσ)(z)|2 dµ(z) ≤ C(µ) ‖f‖2

L2(T)

for all f ∈ L2(T) such that f ≥ 0.

Proof. First suppose that the embedding condition holds. Then since the Poisson kernel and
the kernel kσ are both positive we can have the same result (with possibly a worse constant)
for all f ∈ L2(T). So in particular the embedding condition holds for all f ∈ H2(D), i.e, for
any f ∈ H2(D) we have ∫

D
|P (f ∗ kσ)(z)|2 dµ(z) ≤ C(µ) ‖f‖2

H2(D) .

However, by the previous Lemma, we have that the integrand recovers all g ∈ B2
σ(D) and

the norm on the right hand side is equivalent to the norm of g ∈ B2
σ(D). Thus, we have that∫

D
|g(z)|2 dµ(z) ≤ C(µ) ‖g‖2

B2
σ(D)



4

and so µ is a B2
σ(D) Carleson measure.

Conversely, suppose that µ is a B2
σ(D) Carleson measure. Again, by the previous lemma,

we have that for all f ∈ H2(D) that∫
D
|P (f ∗ kσ)(z)|2 dµ(z) ≤ C(µ) ‖f‖2

H2(D) .

However, a general function f ∈ L2(T) can be written as f = f1 + f2 with f1, f2 ∈ H2(D),
f2(0) = 0 and ‖f‖2

L2 = ‖f1‖2
H2 + ‖f2‖2

H2 . Using this decomposition it is trivial to see that
for all f ∈ L2(T) we have∫

D
|P (f ∗ kσ)(z)|2 dµ(z) ≤ C(µ) ‖f‖2

L2(T) .

So in particular the embedding result holds for all f ∈ L2(T) such that f ≥ 0. �

Based on the observation that the “single-box” condition µ(T (I)) . |I|2σ fails to char-
acterize the B2

σ(D) Carleson measures, we need a finer geometric method by which we can
measure the size of an interval or set in T. This requires us to introduce the notion of
capacity.

Let E ⊂ T then let τ(E) denote the identification of the corresponding subset of [−π, π]
on the real line R. For 0 ≤ σ < 1

2
let

Capσ(E) = inf
{
‖f‖2

L2(T) : f ≥ 0, kσ ∗ f ≥ 1 on τ(E)
}
.

Recalling the harmonic analysis proof of the characterization of Hp(D) Carleson mea-
sures, one can anticipate that a lemma of the following type will be necessary to obtain the
characterization.

We now give some necessary facts about capacity that we will use in the proof of Lemma
0.6. These facts can be found in the book by Adams and Hedberg, [1]. In the interest of
not deviating too far from the intended goal, we will just take these results and facts more
or less as a black box. The results being stated below have been translated to the special
case at hand. There is a much more general theory of capacities that follows much of the
same constructions given below. We additionally are focusing on the case when p = 2 since
much of the arguments become a little easier. The interested reader can attempt to extend
the concepts below to p 6= 2.

We are given a kernel g(x, y) on R×R and a measure ν and will now define two potentials
that will play a role in what we are studing. Let µ be a non-negative Borel measure, (and
we denote the class of all such measures by M+(R)) and let f be a ν-measurable function.
The potentials are then

Gf(x) =

∫
R
g(x, y)f(y)dν(y);

Ǧµ(y) =

∫
R
g(x, y)dµ(x).

Based on these two potentials, we also can define the mutual energy by

Eg(f, µ) =

∫
R
Gf(x)dµ(x) =

∫
R
Ǧµ(y)f(y)dν(y) =

∫
R

∫
R
g(x, y)f(y)dµ(x)dν(y).

For the physics minded, this notion of energy and potential is exactly what appears when
studying the potential energy associated to a charge on a object.
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As a definition, we take the capacity of a set with respect to the kernel g to be

capg(E) = inf
{
‖f‖2

L2(ν) : Gf(x) ≥ 1 on E
}
.

It turns out that based just on this definition and then using standard measure theory
arguments one can prove the capacity is subadditive and monotone. One can further extend
this definition to more general sets (much as in standard measure theory where one first
defines Lebesgue measure for “nice” sets and then extends to more general sets). Another
important fact is that there is a unique function fE such that f ∈ Lp(ν) and GfE(x) ≥ 1 on
E (technically up to a set of capacity zero) and∫

R
(fE)2 = capg(E).

This unique function is usually called the capacitary function.
A deeper fact that we will need, is that it is possible to compute the capacity of a set via

a dual definition. In particular, for compact sets K ⊂ R we will have

capg(K)
1
2 = sup

{
µ(K) : µ ∈M+(K),

∥∥Ǧµ∥∥
L2(ν)

≤ 1
}

One direction is trivial, namely it is easy to show that µ (K) ≤ capg(K)
1
2 just using the

definitions and Hölder’s Inequality. The other direction then uses von Neumann’s minimax
theorem applied to the mutual energy functional. Similarly to the existence of the capacitary
function, there is a capacitary measure which plays an important role. For any K ⊂ R
compact we have a measure µK such that fK = ǦµK and

µK(K) =

∫
R
(ǦµK)2dν =

∫
R
GfKdµK = capg(K).

Notice that we are now in the setting where we are considering g(x, y) = |x− y|−σ−
1
2 and

dν = dx.

Lemma 0.6 (Strong Capacitary Inequality). Let f ∈ L2(T) then

2

∫ ∞
0

λCapσ ({ξ ∈ T : kσ ∗ f(ξ) > λ}) dλ ≤ C ‖f‖2
L2(T) .

This inequality is called the strong capacitary inequality and will play the role of the
distribution function that appeared when we were studying Carleson measures for H2(D).

Proof. Note that it suffices to prove that∑
k∈Z

22kCapσ
(
{ξ ∈ T : kσ ∗ f(ξ) > 2k}

)
≤ C ‖f‖2

L2(T) .

Without loss of generality, we may suppose that f is a non-negative, smooth compactly
supported function. Set

Ek = {ξ : kσ ∗ f(ξ) ≥ 2k}
The hypotheses on f imply that Ek is compact and empty for k sufficiently large. Define

J :=
∑
k∈Z

22kCapσ
(
{ξ ∈ T : kσ ∗ f(ξ) > 2k}

)
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and let µk be the extremal measure for Ek which exists by the discussion above. Then we
have

J =
∞∑

k=−∞

22k

∫
dµk

≤
∞∑

k=−∞

2k
∫
kσ ∗ fdµk

=
∞∑

k=−∞

2k
∫
f(kσ ∗ µk)dx

≤ ‖f‖L2

∥∥∥∥∥
∞∑

k=−∞

2kkσ ∗ µk

∥∥∥∥∥
L2

.

We will set

L :=

∥∥∥∥∥
∞∑

k=−∞

22k−1kσ ∗ µk

∥∥∥∥∥
2

L2

and show that L . J , which would then give the result of the Lemma.
To see that L . J , first, set

Λ(x) =
∞∑

k=−∞

2kkσ ∗ µk(x)

and

Λj(x) =
∞∑
k=j

2kkσ ∗ µk(x).

Clearly we have that Λj ∈ L2 (because of the assumptions on f) and Λj → Λ. Now, notice
that

Λ(x)2 = lim
n→−∞

Λn(x)2 = lim
n→−∞

∞∑
j=n

(
Λj(x)2 − Λj+1(x)2

)
≤ 2

∞∑
j=−∞

Λj(x) (Λj(x)− Λj−1(x))

= 2
∞∑

j=−∞

Λj(x)2jkσ ∗ µj(x).
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Using this we see that

L ≤ 2

∫ ∑
j

2jΛj(x)(kσ ∗ µj(x))dx

= 2
∑
j

∑
k≥j

2k2j
∫
kσ ∗ µk(x)kσ ∗ µj(x)dx

= 2
∑
j

∑
k≥j

2k2j
∫

(ǦµK)2dx

=
∑
j

∑
k≥j

2k2j Capσ(Ek)

=
∑
k

22k Capσ(Ek) = J.

�

There is a minor issue here in that we had defined the capacity we were interested in via
the periodization of the kernel kσ. While, the proof we gave is technically correct for the case
when the capacity is defined on the whole real line R, it would require some modifications
to work in the case at hand. In the interest of not making these notes to much longer and
deviating too far from the goal, we will point the reader to the paper by Stegenga for the
necessary changes, [3].

There are more general versions of this result for different potentials, different kernels, and
different Lp spaces. The interested reader should consult the books [2] and [1].

With these preliminaries out of the way, we then have the following characterization of
the Carleson measures for B2

σ(D) obtained by Stegenga.

Theorem 0.7 (Stegenga, [3]). Suppose that 0 ≤ σ < 1
2

and let µ be a non-negative Borel
measure in the disc D. Then the following are equivalent:

(i) The embedding

B2
σ(D)→ L2(D, µ)

is bounded;
(ii) There exists a constant C(µ) such that for all f ∈ B2

σ(D) we have∫
D
|f(z)|2 dµ(z) ≤ C(µ) ‖f‖2

B2
σ(D) ;

(iii) There is a constant C > 0 such that for all families {Ij} of disjoint intervals in T we
have

µ (∪jT (Ij)) ≤ C Capσ (∪jIj)
where

T (I) = {z = reiθ ∈ D : 0 < 1− r ≤ |I|, θ ∈ I}.
Moreover the constants in (ii) and (iii) are comparable.

In either case we will call such a measure a B2
σ(D)-Carleson measure. It is important to

note that in this case that the reproducing kernel thesis does not hold. Namely, there exist
measures µ such that (iii) holds for a single interval (as opposed to the family), but that (i)
and (ii) fail.
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Another way to view condition (iii) is that for any open set Ω ⊂ T we have that

µ (T (Ω)) ≤ C Capσ (Ω) .

Proof. As we have seen, the equivalence between (i) and (ii) is immediate. We now focus
on showing that (ii) and (iii) are equivalent. So, first suppose that µ is a B2

σ(D) Carleson
measure. Let E = ∪nj=1Ij. Now select a test function for the capacity, namely competitor

f ∈ L2(T) for the infimum such that f ≥ 0 and f ∗ kσ ≥ 1 on τ(E). Now, a simple
computation shows that P (χIj)(z) ≥ 1

4
for z ∈ T (Ij). So, we further have that

P (f ∗ kσ)(z) ≥ 1

4
∀z ∈

n⋃
j=1

T (Ij).

Thus, by Lemma 0.5 we have that

µ

(
n⋃
j=1

T (Ij)

)
.

∫
D
|P (f ∗ kσ)(z)|2 dµ(z)

. ‖f‖2
L2(T)

Since f was arbitrary, this implies that for any competitor for the infimum that we have

µ

(
n⋃
j=1

T (Ij)

)
. ‖f‖2

L2(T) .

So in particular we have that

µ

(
n⋃
j=1

T (Ij)

)
. Capσ (∪jIj) .

Conversely, suppose that for all disjoint collections of intervals Ij ⊂ T that we have

µ

(
n⋃
j=1

T (Ij)

)
. Capσ (∪jIj) .

We need to show that for all f ∈ B2
σ(D) that we have∫

D
|f(z)|2 dµ(z) . ‖f‖2

B2
σ(D) .

Equivalently, via Lemma 0.5 it suffices to show that∫
D
|P (f ∗ kσ)(z)|2 dµ(z) . ‖f‖2

L2(T) .

Set u(z) = P (f ∗ kσ)(z). Recall that we defined the nontangential maximal function by

u∗(ξ) = sup
z∈Γa(ξ)

|u(z)|

Now, observe the following. First, the set

{t : u∗(t) > λ}
is an open set, and so is a disjoint union of open intervals {Ij} with centers cj. Let T (Ij)
denote the corresponding tent over Ij. By analogous computations from before, we have
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that if it is the case that |u(z)| > λ, then on the a sub-interval of Ij depending only on the
information from Ij that u∗(t) > λ.

So by the computations above, it is the case that

{z ∈ D : |u(z)| > λ} ⊂
⋃
j

T (Ij)

Thus, we have

µ ({z ∈ D : |u(z)| > λ}) ≤ µ

(
n⋃
j=1

T (Ij)

)

≤ C(µ) Capσ

(
n⋃
j=1

Ij

)
= C(µ) Capσ ({t ∈ R : u∗(t) > λ}) .

We now apply all these observations with u = P (f ∗ kσ). Doing so we see that∫
D
|P (f ∗ kσ)(z)|2 dµ(z) = 2

∫ ∞
0

λµ ({z : |P (f ∗ kσ)(z)| > λ}) dλ

.
∫ ∞

0

λCapσ ({P (f ∗ kσ)∗(ξ) > λ}) dλ

.
∫ ∞

0

λCapσ ({M(f ∗ kσ)(ξ) > λ}) dλ

.
∫ ∞

0

λCapσ ({Mf ∗ kσ(ξ) > λ}) dλ

. ‖Mf‖2
L2(T)

. ‖f‖2
L2(T) .

Here in the second to last inequality we used Lemma 0.6. Then applying Lemma 0.5 gives
that µ is a B2

σ(D) Carleson measure. �

Stegenga further goes to show that the one-box condition is not sufficient for the charac-
terization of Carleson measures.

Theorem 0.8 (Stegenga, [3]). There exists a function f ∈ H∞(D) such that∫
T (I)

|f ′(z)|2 dA(z) .
1

log 1
|I|

but is not a multiplier of D.

Exercise 0.9. Look up the counterexample constructed by Stegenga and work through it.

We can combine the observations from this lecture with the previous lecture to obtain a
more geometric characterization of the multipliers for the space B2

σ(D).

Theorem 0.10 (Stegenga, [3]). The following are equivalent

(i) The function f ∈MB2
σ(D);
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(ii) The function f ∈ H∞(D) and∫
∪nj=1Ij

|f ′(z)|2 (1− |z|2)2σdA(z) . Capσ

(
n⋃
j=1

Ij

)
for all disjoint collections of intervals {Ij} ⊂ T.
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