
Lecture 1: The Hardy Space on the Disc

In this first lecture we will focus on the Hardy space H2(D). We will have a “crash course”
on the necessary theory for the Hardy space. Part of the reason for first introducing this
space before the Dirichlet space, is that many of the ideas and results from this space serve
as motivation and guide us when studying other spaces of holomorphic functions.

The following texts were instrumental in preparing the lectures on this. The interested
student can consult them for more information.
[1] Jim Agler and John E. McCarthy, Pick interpolation and Hilbert function spaces, Graduate Studies in

Mathematics, vol. 44, American Mathematical Society, Providence, RI, 2002.
[2] John B. Garnett, Bounded analytic functions, 1st ed., Graduate Texts in Mathematics, vol. 236, Springer,

New York, 2007.
[3] Nikolai K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1, Mathematical Surveys

and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002. Hardy, Hankel, and
Toeplitz; Translated from the French by Andreas Hartmann.

[4] N. K. Nikol′skĭı, Treatise on the shift operator, Grundlehren der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function
theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the
Russian by Jaak Peetre.

[5] Eric T. Sawyer, Function theory: interpolation and corona problems, Fields Institute Monographs, vol. 25,
American Mathematical Society, Providence, RI, 2009.

[6] Kristian Seip, Interpolation and sampling in spaces of analytic functions, University Lecture Series,
vol. 33, American Mathematical Society, Providence, RI, 2004.

[7] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Prince-
ton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance
of Timothy S. Murphy; Monographs in Harmonic Analysis, III.

1. Basic Definitions

We now introduce the space H2(D). Let f ∈ Hol(D), then we say that f ∈ H2(D) if

(1.1) sup
0<r<1

∫
T
|f(reiθ)|2dm(θ) := ‖f‖2H2(D) <∞.

A related space that will play a distinguished role in our space is the Hardy space H∞(D)

(1.2) sup
z∈D
|f(z)| := ‖f‖H∞(D) <∞.

We will see that with the norms we have introduced, the space H2(D) is a Hilbert space,
while the space H∞(D) is a Banach space.

Exercise 1.1. Show that it is possible to replace the sup0<r<1 by limr→1 in the definition of
H2(D).

We now show other norms that can be used to study the functions in H2(D). First, recall
that the Fourier transform of a function f ∈ L2(T) is given by

f̂(n) =

∫
T
f(eiθ)e−inθdm(θ).

Then, a simple computation shows that∫
T
ei(n−m)θdm(θ) =

{
1 : n = m
0 : n 6= m

1
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Using this, we see that for f(z) =
∑∞

n=0 anz
n that

‖f‖2H2(D) = sup
0<r<1

∫
T
|f(reiθ)|2dm(θ)

= sup
0<r<1

∫
T

∣∣∣∣∣
∞∑
n=0

anr
neinθ

∣∣∣∣∣
2

dm(θ)

= sup
0<r<1

∞∑
n,m=0

anamr
nrm

∫
T
ei(n−m)θdm(θ)

=
∞∑
n=0

|an|2 = ‖f‖2H2(D) .

Note that this norm says that it is possible to study the behavior of the functions in H2(D)
via their Fourier coefficients.

For 0 < r < 1 and z ∈ D let fr(z) = f(rz). Then the computations done above, prove
that the following proposition.

Proposition 1.2. Suppose that f ∈ H2(D). Then, the sequence {fr} is Cauchy in L2(T).

Proof. Using the computations from above, and obvious modifications, we see

‖fr − fs‖2L2(T) =

∫
T

∣∣∣∣∣
∞∑
n=0

an(rn − sn)einθ

∣∣∣∣∣
2

dm(θ)

=
∞∑
n=0

|(rn − sn)|2|an|2.

But, as r, s → 1 and the dominated convergence theorem, since
∑∞

n=0 |an|2 < ∞, we can
conclude that this last summand goes to zero. �

Now note that since L2(T) is a complete space, then we have an element f ∗ ∈ L2(T) given
by f ∗ = limr→1 fr also in L2(T). Since f ∗ ∈ L2(T) we can compute the Fourier coefficients
to be

f̂ ∗(n) =

∫
T
f ∗(eiθ)e−inθdm(θ)

= lim
r→1

∫
T
fr(e

iθ)e−inθdm(θ)

=

{
an : n ≥ 0
0 : n < 0

.

Note that the computations we have done thus far proves the following proposition.

Proposition 1.3. Suppose that f ∈ H2(D) and f ∗(eiθ) = limr→1 f(reiθ) then

‖f‖2H2(D) =
∞∑
n=0

|an|2 = ‖f ∗‖2L2(T) .
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The only fact that remains to complete the proof of this proposition is that
∞∑
n=0

|an|2 = ‖f ∗‖2L2(T)

which holds by Parseval’s Theorem.
This also shows that the inner product on H2(D) will satisfy

〈f, g〉H2(D) =

∫
T
f ∗(eiθ)g∗(eiθ)dm(θ) =

∞∑
n=0

anbn

where we have f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n.

Exercise 1.4. Let H2
0 denote the collection of functions in H2(D) such that f(0) = 0. Show

that L2(T) = H2(D)⊕H2
0 (D). Hint: This follows easily from the Fourier coefficients.

1.1. The Reproducing Kernel for H2(D). The Hardy space H2(D) also has an additional
property of being a reproducing kernel Hilbert space. This means that for each point z ∈ D
there is a special function kz ∈ D such that

〈f, kz〉H2(D) = f(z)

We now turn to determining what this function is.

Proposition 1.5. Let z ∈ D, then

|f(z)| ≤ ‖f‖H2(D)

1√
1− |z|2

.

Proof. Note that we have via taking limits in Cauchy’s formula that

f(z) = lim
r→1

fr(z)

=
1

2πi

∫
T

f ∗(w)

w − z
dw

=
1

2πi

∫
T

f ∗(eiθ)

eiθ − z
ieiθdθ

=

∫
T

f ∗(eiθ)

1− ze−iθ
dm(θ).

This then implies by an application of Cauchy-Schwarz and then computing that∫
T

1

|1− ze−iθ|2
dm(θ) =

1

1− |z|2
.

|f(z)| ≤ ‖f ∗‖L2(T)

1√
1− |z|2

= ‖f‖H2(D)

1√
1− |z|2

.

�

With this proposition proved, we see that pointwise evaluation of functions f ∈ H2(D)
is a bounded operator. So, by the Riesz representation theorem, we know that there is a
unique function kz ∈ H2(D) such that

f(z) = 〈f, kz〉H2(D) .
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We now turn to determining what this function in fact is. Observe that the following
property holds since the functions kz ∈ H2(D)

kλ(ξ) = 〈kλ, kξ〉H2(D) .

We now collect a general fact about reproducing kernel Hilbert spaces. Good references
for the facts presented here are [1–3]. These are Hilbert spaces H of functions over some
domain X. For each point λ ∈ X we have that point evaluation of the functions f ∈ H is a
continuous operation. Therefore, we have a special function kλ ∈ H such that

f(λ) = 〈f, kλ〉 ∀f ∈ H.
This vector kλ is called the reproducing kernel for the space H. We also have the following
property holding:

kλ(ξ) = k(λ, ξ) = 〈kλ, kξ〉 .
This function is called the kernel function for the Hilbert space H.

A simple fact is then the following.

Proposition 1.6. Let H be a Hilbert function space on X and let {ei} be an orthonormal
basis for H. Then

kλ(ξ) =
∑
i

ei(λ)ei(ξ)

The proof of this fact is just an application of Parseval’s Identity in a general Hilbert
space, and two applications of the reproducing kernel property for H. When we specialize
to the case H2(D), then one can show that the functions {zk} are an orthonormal system of
functions in H2(D). Thus, appropriately normalizing we have that

kλ(ξ) =
∞∑
k=0

λ
k
ξk.

Using this formula, we see that the function

kz(w) =
1

1− zw
is the reproducing kernel for the Hardy space H2(D).

Exercise 1.7. Determine the norm of the function kz ∈ H2(D).

Exercise 1.8. Using Proposition 1.5 determine the reproducing kernel for H2(D).

Exercise 1.9. Show that ∫
T

1

|1− ze−iθ|2
dm(θ) =

1

1− |z|2
.

Exercise 1.10. Let A2(D) denote the Bergman space of functions,

A2(D) :=

{
f ∈ Hol(D) : ‖f‖2A2(D) :=

∫
D
|f(z)|2 dA(z) <∞

}
.

Show that the reproducing kernel for the Bergman space is given by

kλ(z) =
1

(1− λz)2
.
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2. Littlewood-Paley Identities and H2(D)

We now show how it is possible to obtain another norm on H2(D) using information about
the function on the disc D. This equivalent norm will prove useful when we study the space
of Carleson measures for H2(D) since it will allow us to generate a natural family of examples
of functions which generate Carleson measures. Also, this new norm will allow us to place
the Hardy space in a scale of Besov-Sobolev spaces.

First, we begin by recalling Green’s formula in the case of the unit disc D and its boundary
T. Then Green’s formula takes the form:∫

T
u(ξ)dm(ξ)− u(0) =

∫
D

∆u(z) log
1

|z|
dA(z)

Note that we can move the point 0 to any other point z ∈ D by a Möbius map of the form
ϕz(w) = w−z

1−zw .

Exercise 2.1. Work out Green’s formula for the point z ∈ D.

We will begin with a function g ∈ L1(T) and, as usual, let g(z) denote the Poisson
extension of the function g. The gradient of a function g is given by ∇g = (∂xg, ∂yg) and we
have

|∇g(z)|2 = |∂xg(x, y)|2 + |∂yg(x, y)|2 .
In the case when g happens to be an analytic function we have that

|∇g(z)|2 = |∂g(z)|2 = |g′(z)|2 .

Lemma 2.2 (Littlewood-Paley Identity). Suppose that g ∈ L1(T) and if g(0) =
∫

T gdm then

2

∫
D
|∇g(z)|2 log

1

|z|
dA(z) =

∫
T
|g − g(0)|2 dm =

∫
T
|g|2 dm− |g(0)|2 .

Proof. With out loss of generality we may assume that g(0) = 0, since we can reduce to this
case by considering the function g̃ = g − g(0). We will apply Green’s Theorem with the
function u = |g|2. Since g(0) = 0 we have that u(0) = |g(0)|2 = 0. Now observe that

∂∂ |g(z)|2 = ∂
(
∂gg + g∂g

)
= ∂∂gg + g∂∂g + ∂g∂g + ∂g∂g

= ∂g∂g + ∂g∂g = |∂g|2 +
∣∣∂g∣∣2

=
1

2
|∇g(z)|2 .

Here the last equality follows from the definitions of the operators ∂ and ∂. Using this we
see that

∆ |g(z)|2 = 2 |∇g(z)|2 .
Substituting into Green’s formula we have∫

T
|g(ξ)|2 dm =

∫
D

∆(|g(z)|2) log
1

|z|
dA(z) = 2

∫
D
|∇g(z)|2 log

1

|z|
dA(z)

proving the Lemma. �

Using this lemma, we have another way to compute the norm of a function in H2(D).
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Proposition 2.3. Suppose that g ∈ H2(D) then we have

‖g‖2H2(D) = |g(0)|2 + 2

∫
D
|g′(z)|2 log

1

|z|
dA(z).

The proof of this follows by simple rearrangement of the above Lemma.
We give a slightly different way to see the resulting norm that in some cases is easier to

use. More importantly for us, it will allow us to place the Hardy space in a scale of analytic
function spaces that are very interesting.

Lemma 2.4. If g ∈ L1(T) then∫
D
|∇g(z)|2 (1− |z|2)dA(z) ≤ 2

∫
D
|∇g(z)|2 log

1

|z|
dA(z) ≤ C

∫
D
|∇g(z)|2 (1− |z|2)dA(z).

Proof. First note that 1− t ≤ 2 log 1
t

if 0 ≤ t < 1. So we have that∫
D
|∇g(z)|2 (1− |z|2)dA(z) ≤ 2

∫
D
|∇g(z)|2 log

1

|z|
dA(z).

To prove the alternate inequality, first, suppose that the integral on the right hand side is
finite and then normalize it so that∫

D
|∇g(z)|2 (1− |z|2)dA(z) = 1.

Now, if |z| > 1
4

then we have that log 1
|z| ≤ C(1− |z|2), and so we then have that∫

1
4
≤|z|≤1

|∇g(z)|2 log
1

|z|
dA(z) ≤ C

∫
D
|∇g(z)|2 (1− |z|2)dA(z).

In the case when |z| < 1
4

we exploit the subharmonicity of |∇g(z)|. By subharmonicity we
have that

|∇g(z)|2 ≤ 16

∫
|ξ−z|< 1

4

|∇g(ξ)|2 dA(ξ)

≤ 32

∫
|ξ|< 1

2

|∇g(ξ)|2 (1− |ξ|2)dA(ξ) = 32

For the last inequality, we have used that for |z| < 1
4

and |ξ − z| < 1
4

that |ξ| < 1
2
. We then

use the fact that when |ξ| < 1
2

that 1− |ξ|2 ≥ 3
4
≥ 1

2
. Using this, we see that∫

|z|< 1
4

|∇g(z)|2 log
1

|z|
dA(z) ≤ C

∫
|z|< 1

4

log
1

|z|
dA(z) = C.

Combining the estimates we have obtained when |z| ≥ 1
4

and when |z| ≤ 1
4

then gives that

2

∫
D
|∇g(z)|2 log

1

|z|
dA(z) ≤ C

∫
D
|∇g(z)|2 (1− |z|2)dA(z).

�

Again, by rearrangement of the above Lemma we have another equivalent norm on the
space H2(D)

|g(0)|2 +

∫
D
|g′(z)|2 (1− |z|2)dA(z) ≤ ‖g‖2H2(D) ≤ C

(
|g(0)|2 +

∫
D
|g′(z)|2 (1− |z|2)dA(z)

)
.
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Exercise 2.5. Give an alternate proof of the above equivalent norm on H2(D) using Fourier
series. Doing this, you can obtain a better (in fact sharp) estimate of the constant C.

2.1. Besov-Sobolev Spaces. We now (briefly) introduce the Besov-Sobolev spaces on the
unit disc D. We fix a parameter 0 ≤ σ ≤ 1

2
and define the Besov-Sobolev space B2

σ(D) as
the collection of analytic functions on the disc such that

‖f‖2B2
σ(D) = |f(0)|2 +

∫
D
|f ′(z)|2 (1− |z|2)2σdA(z) <∞.

Based on the Lemmas above, we have that when σ = 1
2

that H2(D) = B2
1
2

(D), with equivalent

norms. When σ = 0, then we are looking at the functions that are analytic on D and such
that its derivative is square integrable. This is nothing other than the Dirichlet space which
we will study later on.

Exercise 2.6. Show that an equivalent norm on the space B2
σ(D) is given by

∞∑
n=0

n1−2σ |an|2

where f(z) =
∑∞

n=0 anz
n.
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