RECTIFIABILITY OF MEASURES WITH BOUNDED
RIESZ TRANSFORM OPERATOR: FROM SINGULAR
OPERATORS TO GEOMETRIC MEASURE THEORY

ALEXANDER VOLBERG

1. LECTURE 8: THE ESTIMATE FROM BELOW FOR EACH FLAT
LAYER CONTRIBUTION AND THE END OF THE PROOF OF
DAVID—SEMMES CONJECTURE IN CO-DIMENSION 1

Recall that we claimed to have built the following vector function v
with the following properties, where (R7)*(ym) = (R 4m) = n and
all claims below are satisfied (m := mgy1):

® Y = > poy ¥y, suppy C S, dist(suppy, L) > AUQ) =

S0(Q).
e ¢, is supported in the 2¢(P’)-neighborhood of P" and satisfies

C C
— < —_ .
/¢P, — O; ||¢P/||Loo X 6€(P/)7 ||¢P,||Llp 62€(P/)

o [|¢ldm < C5~'u(Q).
o (R™)*(¢ym) =n.
. ||T*(¢m)||LOO (suppy) S < Cad2e73473,

o R (lm)],u,, < COV/i(@Q).

Let us prove some of these claims. First,

[1wldn =5 [1o,ldm<c S 6P m(B,.00P))
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To get the uniform estimate for 7*(1)m), note that

[T ()l ()] = '/<RH(90* =), 1) dm| < CoH|RM (27 —)

K(P/)dﬂ —2 A —d—1 ﬂ(P/)
M) < Cas?A
Qe <0 w(Q)

for every x € suppr (we remind the reader that /(P") < 2a0~1(Q)).
Adding up and recalling our choice A = &3:

HLip(S)

. E(P’)dﬂ < C(S_IA_d_l

P
* < —2_-3d-3 Z 1 < ~2,-3d-3

The bound of || RY (|¢)| dm)|| 12(,)- First we estimate || R¥ (|¢| dm) 22 ()
And then use our transfer estimates modifying the measure p to v as
it has been already done many times before.

Recall that for every P’ € ', we have [ |, |dm < Co~'(P).
Hence, we can choose constants b, € (0,C671) so that W Im —
b, X p it is a balanced signed measure, i.e.,

[1eplan=b, [, du.

f= Z bpXpr

Prep!

Let

Our goal is to first prove a pointwise estimate
(1) R (dm)] < O IRl + 3 Xy B O i)
Presp’

where for each P’ € ', denote by V(P') the set of all points z € R*+?
such that dist(z, P") < dist(x, P") for all P" € 3.

This estimate of | R (J1h|m)| above now gives

1B (o |m)

2

HLQ(#Q) h

<SC2u@ +£17,,  + 16X o II2 <C?p(Q)

~ lj’ 2 P’XP/ 2 ~ /L I
L=(w) Proyy L*(n)

which we wanted. To get the pointwise estimate (1) we write for x €
V(P):
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(2) [R*([¢lm = fu)](w) = [R™ (|t [m)](x) = [R7 (b, x o)) (2)
+ Z []/%H(|¢P// |m - bP,,XP,,M)](l’) :

P// e{;3/7p//?ép/

If x € V(P') and cells are Vitali disjoint, then dist(x, P") > cf(P")
and so

‘RH(|¢P,,|TI’L - bP,,XP,,M)](ZL‘)‘ = ‘/KH(‘T - ) d(|¢]3//|m - bp//XPu:u)‘

= ‘/[KH(x — ) = K@=z, ) d([¢,,[m = b, X i)

2K (o =) = Ko = 2oy [ 16l

CoP")
S Qist(z, P7)dH

g(P//) d+1
((P") + dist(x, P”)} ’
and the same for R (z* — y). Hence all this huge sum in (2) is <

6 h(x) < C/6 by the Marcinkiewicz choice of ', see Lecture 7 under
the title “A collection of P’s (inside )) of non-BAUP layer

mk_l'_l.”

Note also that

s (P <Ot [

1R (¢, )] o < CO7F

(this is just the trivial bound C?(P’) for the integral of the absolute
value of the kernel over a set of diameter 12¢(P’) multiplied by the
bound % for the maximum of [, [). Therefore,

IRH (Jwo|m) < 0672u(Q)

2
”LQ(#Q)

is proved, and then we (non-trivially, but habitually) transfer this into

IR ()2, < C377u(@)

by using (as we did several times before) Lemmas 1, 2 of Lecture 5.

Qualitative step: smearing of the measure v without the
estimate of its density We replace the measure v by a compactly
supported measure v that has a bounded density with respect to the
(d+1)-dimensional Lebesgue measure m in R*!. We use the notations
from Lecture 7 under the title “Stage 2. The next measure mod-
ification. Reflection trick.” We want just “thicken” the support of



4 ALEXANDER VOLBERG

measure v to make it (d + 1)-dimensional “thickening” of the actual
d-dimensional support of v.

For every s > 0, we will construct a measure v with the following
properties:
e 1 is absolutely continuous and has bounded density with respect
to m.
e suppr C S and dist(suppr, L) > AL(Q).
o v(5) = v(5) < u(Q).
e [ndv > [ndv— s
o [IRE(glm)2dv < [|R™(Joo]m)|* dv + ».
o [|RHD2dy < [|RFV| dv + ».

Here is how v is constructed. It is important to note that this step
will be purely qualitative. The boundedness of the density % will
be used to show the existence of a minimizer in a certain extremal
problem and the continuity of the corresponding Riesz potential but
the supremum bound of % itself will not enter any final estimates.

Fix some radial non-negative C'*°-function ¢; with suppy; C B(0, 1)
and [ 1 dm = 1. For 0 < s < 1, define

ps(2) = s~ pi(s7 )

and
Vg =V % Q.

Clearly, all the supports of the measures v, are contained in some
compact set and v, converge to v weakly as s — 0+. If s is much
less than A/(Q), we have supprs C S and dist(suppws, L) > AL(Q).
Also, the total mass of v, is the same as the total mass of v for all s.

Note that both n and |R¥([1)|m)|? are continuous functions in S, so
the weak convergence is enough to establish the convergence of the
corresponding integrals. What is less obvious is that the integrals
[ |R"v,|* dvg also converge to the integral [ |R¥v|*>dv because for-
mally it is a trilinear form in the measure argument with a singular
kernel. _

Note, however, that for every finite measure o, we have R¥o =
RH(c — 0*) where o* is the reflection of the measure o about the
boundary hyperplane L of S, i.e., 0*(E) = o(E*) where E* = {z* :
r € E}. Moreover, R commutes with shifts and, since ¢, is radial (all
we really need is the symmetry about H), we have (v * ;)" = v* * ps.

Hence,

éHl/s:RH[y*@s—y**%] :RH[(I/—U*)*gos] = [RH(V—Z/*)]*QOS.
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Lemma 1. Suppose that f is a C? smooth compactly supported function
on L. Then the functions RE (f m, ) converge to some limit RE(f m, )
uniformly on the entire space R4 as 6 — 0+. Moreover, RE(f m, )
is a Lipschitz function in R¥ harmonic outside supp(f mL), and we
have

sup [RY(fm, )| < OD*sup |V, ]

and
H < 2
IR ()l < CDsup V2

where D is the diameter of supp(fm,) and Vy is the partial gradient
imwvolving only the derivatives in the directions parallel to H.

By this lemma, R¥ (v — v*) is a bounded Lipschitz function, so the
convergence (R (v — v*)] x p, — RH(v — v*) as s — 0+ is uniform
on compact sets and so is the convergence |[R¥(v — v*)] x p,|? —
|RH (v — 1v*)|2. Thus, despite all the singularities in the kernel, |[R¥ v, |2

converges to ]éH v|? uniformly, which is enough to ensure that
/ \R7v,|? dv, — / |R7v|? dv
as s — 04. So, we can take v = v, with sufficiently small s > 0.

Now the crucial part of the proof comes. We are going to give
the estimate from below of [ |R7v|?dv.

Suppose ||§HV||L2(V) < Au(Q) with tiny A. Our goal is to bring
this to contradiction (and to find how small is A that gives the contra-
diction).

If this inequality holds, then, choosing sufficiently small smearing
parameter we get very small s > 0 and we can ensure that the measure
v constructed in the previous section, satisfies

[R5 65 < 3@, [ wd > 0u@). [ 1R ol a7 < 0u(@)

where 0, © > 0 are two quantities depending only on ¢ (plus, of course,
the dimension d and the goodness and AD-regularity constants of p).
Our aim is to show that if A = A(d) > 0 is chosen small enough, then
these three conditions are incompatible.
Then of course |[R"v| 12,y = Au(Q) with not-so-tiny A, and almost
orthogonality finishes the contradiction, as we have already shown in
Lecture 7.
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Extremal problem. For non-negative a € L>(m), define v, = av
and consider the extremal problem

2@ = M@l ey + [ 1R, > i

under the restriction [ ndv, > 0u(Q). Note that since 7 is absolutely
continuous and has bounded density with respect to m = mgy1, the
measure 7, is well defined and has the same properties.

The first goal is to show that the minimum is attained and for every
minimizer a, we have HaHLw(m) < 2 and

|RY 7,2 + 2(R"Y (R D,)7,] < 6MA0

everywhere in S.
This is done exactly as in Lecture 4. In fact, one should compare
what follows very closely with the reasoning in Lecture 4.

Contradiction: why this smallness is impossible? Integrate
the last inequality against || dm, where 1 is the vector field con-
structed at the end of Lecture 7 and at the beginning of this Lecture.
We then get

SR ol dm + 2 [ (@Y (R3] 10l dm
<60 / ldm < CAI~151u(Q)

Rewrite the second integral on the left as

/<§H§a,ﬁH(|¢]m)> d7, .

Then, by the Cauchy inequality,

(R*)" [(RMT,))| - [v|dm
] o |
< |[imea) | [
<zt | [ 1R w\m)r?dua]l

Recall that [|a]| my S < 2, so we can replace 7, by v in the last integral

losing at most a factor of 2. Taking into account that

/ T )
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we get

SIS

‘/ (R B 'Wldm\@u@J wQ).

Thus,
) .
J 1Rzl dm <( [ 1Rl dm) (] 1ol dm) o< CON @),

In particular, (3) implies

(4) / (50, 6) dim < CEONu(Q).

On the other hand,
[R5y dm = [ 1R (om) a7,
_ / (RTY*(m)] i, — / (T (m)] 7, > / n v, — o(e, 0)7a(S).

This yields

() )
IR () 7> 61(Q)-o(e. a)u(S) > [b-20(e. n(Q) > Su(Q).
if ¢ and « are chosen small enough (in this order). Thus, if A has been
chosen smaller than a certain constant depending on ¢ only, we get a
contradiction between (4) and (5) (their left hand sides are identically
equal).

The conclusion is that the estimate [|R¥v[>dv > Au(Q) if A has
been chosen smaller than a certain constant depending on ¢ only. Then
in Lecture 7 we explained that such estimates from below will sum up to
too big a number for [ |R,1|?du because of the almost orthogonality
of flat layers. And we explained in Lecture 7 that this leads to a
contradiction.

We started our abyss to this contradiction by assuming that d-non-
BAUP cells are not rare (do not form a Carleson sequence). See the
beginning of Lecture 7. Henceforth, they have to be rare. But then
David—Semmes main result of [DS] gives the rectifiability of p.

The proof of David-Semmes conjecture in co-dimension 1 is com-
pletely done.
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