
RECTIFIABILITY OF MEASURES WITH BOUNDED
RIESZ TRANSFORM OPERATOR: FROM SINGULAR
OPERATORS TO GEOMETRIC MEASURE THEORY

ALEXANDER VOLBERG

1. Lecture 8: The estimate from below for each flat
layer contribution and the end of the proof of

David–Semmes conjecture in co-dimension 1

Recall that we claimed to have built the following vector function ψ
with the following properties, where (RH)∗(ψm) = 〈RH , ψm〉 = η and
all claims below are satisfied (m := md+1):

• ψ =
∑

P ′∈P′ ψP ′ , suppψ ⊂ S, dist(suppψ,L) > ∆`(Q) =

ε3`(Q).
• ψ

P ′ is supported in the 2`(P ′)-neighborhood of P ′ and satisfies∫
ψ
P ′ = 0, ‖ψ

P ′‖L∞ 6
C

δ`(P ′)
, ‖ψ

P ′‖Lip
6

C

δ2`(P ′)2
.

•
∫
|ψ| dm 6 Cδ−1µ(Q).

• (RH)∗(ψm) = η.
• ‖T ∗(ψm)‖

L∞(suppν) 6 Cαδ−2ε−3d−3.

• ‖R̃H(|ψ|m)‖
L2(ν)

6 Cδ−1
√
µ(Q) .

Let us prove some of these claims. First,∫
|ψ| dm =

∑
P ′∈P′

∫
|ψ
P ′ | dm 6 C

∑
P ′∈P′

[δ`(P ′)]−1m(B(z
P ′ , 6`(P

′)))

6 Cδ−1
∑
P ′∈P′

`(P ′)d 6 Cδ−1
∑
P ′∈P′

µ(P ′) 6 Cδ−1µ(Q) .
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To get the uniform estimate for T ∗(ψm), note that

|[T ∗(ψ
P ′m)](x)| =

∣∣∣∣∫ 〈RH(x∗ − ·), ψ
P ′ 〉 dm

∣∣∣∣ 6 Cδ−1‖RH(x∗−·)‖
Lip(S)

· `(P ′)d+1 6 Cδ−1∆−d−1
`(P ′)d+1

`(Q)d+1
6 Cαδ−2∆−d−1

µ(P ′)

µ(Q)

for every x ∈ suppν (we remind the reader that `(P ′) 6 2αδ−1`(Q)).
Adding up and recalling our choice ∆ = ε3:

‖T ∗ψ‖
L∞(suppν) 6 Cαδ−2ε−3d−3

∑
P ′∈P′

µ(P ′)

µ(Q)
6 Cαδ−2ε−3d−3 .

The bound of ‖R̃H(|ψ| dm)‖L2(ν). First we estimate ‖R̃H(|ψ| dm)‖L2(µQ).
And then use our transfer estimates modifying the measure µ to ν as
it has been already done many times before.

Recall that for every P ′ ∈ P′, we have
∫
|ψ
P ′ | dm 6 Cδ−1`(P ′)d.

Hence, we can choose constants b
P ′ ∈ (0, Cδ−1) so that |ψ

P ′ |m −
b
P ′χP ′µ is a balanced signed measure, i.e.,∫

|ψ
P ′ | dm = b

P ′

∫
χ
P ′ dµ .

Let

f =
∑
P ′∈P′

b
P ′χP ′ .

Our goal is to first prove a pointwise estimate

(1) |R̃H(|ψ|m)| 6 Cδ−1 + |R̃H(fµ)|+
∑
P ′∈P′

χ
V (P ′)
|R̃H(b

P ′χP ′µ)| ,

where for each P ′ ∈ P′, denote by V (P ′) the set of all points x ∈ Rd+1

such that dist(x, P ′) 6 dist(x, P ′′) for all P ′′ ∈ P′.

This estimate of |R̃H(|ψ|m)| above now gives

‖R̃H(|ψ|m)‖2
L2(µQ)

6

6 C

[
δ−2µ(Q) + ‖f‖2

L2(µ)
+
∑
P ′∈P′

‖b
P ′χP ′‖2

L2(µ)

]
6 Cδ−2µ(Q) ,

which we wanted. To get the pointwise estimate (1) we write for x ∈
V (P ′):
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(2) [R̃H(|ψ|m− fµ)](x) = [R̃H(|ψ
P ′ |m)](x)− [R̃H(b

P ′χP ′µ)](x)

+
∑

P ′′∈P′,P ′′ 6=P ′

[R̃H(|ψ
P ′′ |m− bP ′′χP ′′µ)](x) .

If x ∈ V (P ′) and cells are Vitali disjoint, then dist(x, P ′′) > c`(P ′′)
and so∣∣∣RH(|ψ

P ′′ |m− bP ′′χP ′′µ)](x)
∣∣∣ =

∣∣∣∣∫ KH(x− ·) d(|ψ
P ′′ |m− bP ′′χP ′′µ)

∣∣∣∣
=

∣∣∣∣∫ [KH(x− ·)−KH(x− z
P ′′ )] d(|ψ

P ′′ |m− bP ′′χP ′′µ)

∣∣∣∣
6 2‖KH(x− ·)−KH(x− z

P ′′ )‖L∞(P ′′)

∫
|ψ
P ′′ | dm

6
C`(P ′′)

dist(x, P ′′)d+1
δ−1`(P ′′)d 6 Cδ−1

[
`(P ′′)

`(P ′′) + dist(x, P ′′)

]d+1

,

and the same for RH(x∗ − y). Hence all this huge sum in (2) is 6
δ−1h(x) 6 C/δ by the Marcinkiewicz choice of P′, see Lecture 7 under
the title “A collection of P ’s (inside Q) of non-BAUP layer
Pk+1.”

Note also that

‖R̃H(|ψ
P ′ |m)‖

L∞ 6 Cδ−1

(this is just the trivial bound C`(P ′) for the integral of the absolute
value of the kernel over a set of diameter 12`(P ′) multiplied by the
bound C

δ`(P ′)
for the maximum of |ψ

P ′ |). Therefore,

‖R̃H(|ψ|m)‖2
L2(µQ)

6 Cδ−2µ(Q)

is proved, and then we (non-trivially, but habitually) transfer this into

‖R̃H(|ψ|m)‖2
L2(ν)

6 Cδ−2µ(Q)

by using (as we did several times before) Lemmas 1, 2 of Lecture 5.

Qualitative step: smearing of the measure ν without the
estimate of its density We replace the measure ν by a compactly
supported measure ν̃ that has a bounded density with respect to the
(d+1)-dimensional Lebesgue measure m in Rd+1. We use the notations
from Lecture 7 under the title “Stage 2. The next measure mod-
ification. Reflection trick.” We want just “thicken” the support of
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measure ν to make it (d + 1)-dimensional “thickening” of the actual
d-dimensional support of ν.

For every κ > 0, we will construct a measure ν̃ with the following
properties:

• ν̃ is absolutely continuous and has bounded density with respect
to m.
• suppν̃ ⊂ S and dist(suppν̃, L) > ∆`(Q).
• ν̃(S) = ν(S) 6 µ(Q).
•
∫
η dν̃ >

∫
η dν − κ.

•
∫
|R̃H(|ψ|m)|2 dν̃ 6

∫
|R̃H(|ψ|m)|2 dν + κ.

•
∫
|R̃H ν̃|2 dν̃ 6

∫
|R̃Hν|2 dν + κ.

Here is how ν̃ is constructed. It is important to note that this step
will be purely qualitative. The boundedness of the density dν̃

dm
will

be used to show the existence of a minimizer in a certain extremal
problem and the continuity of the corresponding Riesz potential but
the supremum bound of dν̃

dm
itself will not enter any final estimates.

Fix some radial non-negative C∞-function ϕ1 with suppϕ1 ⊂ B(0, 1)
and

∫
ϕ1 dm = 1. For 0 < s 6 1, define

ϕs(x) = s−d−1ϕ1(s
−1x)

and
νs = ν ∗ ϕs .

Clearly, all the supports of the measures νs are contained in some
compact set and νs converge to ν weakly as s → 0+. If s is much
less than ∆`(Q), we have suppνs ⊂ S and dist(suppνs, L) > ∆`(Q).
Also, the total mass of νs is the same as the total mass of ν for all s.

Note that both η and |R̃H(|ψ|m)|2 are continuous functions in S, so
the weak convergence is enough to establish the convergence of the
corresponding integrals. What is less obvious is that the integrals∫
|R̃Hνs|2 dνs also converge to the integral

∫
|R̃Hν|2 dν because for-

mally it is a trilinear form in the measure argument with a singular
kernel.

Note, however, that for every finite measure σ, we have R̃Hσ =
RH(σ − σ∗) where σ∗ is the reflection of the measure σ about the
boundary hyperplane L of S, i.e., σ∗(E) = σ(E∗) where E∗ = {x∗ :
x ∈ E}. Moreover, RH commutes with shifts and, since ϕs is radial (all
we really need is the symmetry about H), we have (ν ∗ ϕs)∗ = ν∗ ∗ ϕs.

Hence,

R̃Hνs = RH [ν ∗ ϕs − ν∗ ∗ ϕs] = RH [(ν − ν∗) ∗ ϕs] = [RH(ν − ν∗)] ∗ ϕs .
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Lemma 1. Suppose that f is a C2 smooth compactly supported function
on L. Then the functions RH

δ (f m
L

) converge to some limit RH(f m
L

)

uniformly on the entire space Rd+1 as δ → 0+. Moreover, RH(f m
L

)

is a Lipschitz function in Rd+1 harmonic outside supp(f m
L

), and we
have

sup |RH(f m
L

)| 6 CD2 sup
L
|∇2

H
f |

and

‖RH(f m
L

)‖
Lip

6 CD sup
L
|∇2

H
f |

where D is the diameter of supp(f m
L

) and ∇H is the partial gradient
involving only the derivatives in the directions parallel to H.

By this lemma, RH(ν − ν∗) is a bounded Lipschitz function, so the
convergence [RH(ν − ν∗)] ∗ ϕs → RH(ν − ν∗) as s → 0+ is uniform
on compact sets and so is the convergence |[RH(ν − ν∗)] ∗ ϕs|2 →
|RH(ν− ν∗)|2. Thus, despite all the singularities in the kernel, |R̃Hνs|2
converges to |R̃Hν|2 uniformly, which is enough to ensure that∫

|R̃Hνs|2 dνs →
∫
|R̃Hν|2 dν

as s→ 0+. So, we can take ν̃ = νs with sufficiently small s > 0.

Now the crucial part of the proof comes. We are going to give

the estimate from below of
∫
|R̃Hν|2 dν.

Suppose ‖R̃Hν‖L2(ν) < λµ(Q) with tiny λ. Our goal is to bring
this to contradiction (and to find how small is λ that gives the contra-
diction).

If this inequality holds, then, choosing sufficiently small smearing
parameter we get very small κ > 0 and we can ensure that the measure
ν̃ constructed in the previous section, satisfies∫
|R̃H ν̃|2 dν̃ < λµ(Q) ,

∫
η dν̃ > θµ(Q) ,

∫
|R̃H(|ψ|m)|2 dν̃ 6 Θµ(Q)

where θ,Θ > 0 are two quantities depending only on δ (plus, of course,
the dimension d and the goodness and AD-regularity constants of µ).

Our aim is to show that if λ = λ(δ) > 0 is chosen small enough, then
these three conditions are incompatible.

Then of course ‖R̃Hν‖L2(ν) > λµ(Q) with not-so-tiny λ, and almost
orthogonality finishes the contradiction, as we have already shown in
Lecture 7.
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Extremal problem. For non-negative a ∈ L∞(m), define ν̃a = aν̃
and consider the extremal problem

Ξ(a) = λµ(Q)‖a‖
L∞(m)

+

∫
|R̃H ν̃a|2dν̃a → min

under the restriction
∫
η dν̃a > θµ(Q). Note that since ν̃ is absolutely

continuous and has bounded density with respect to m = md+1, the
measure ν̃a is well defined and has the same properties.

The first goal is to show that the minimum is attained and for every
minimizer a, we have ‖a‖

L∞(m)
6 2 and

|R̃H ν̃a|2 + 2(R̃H)∗[(R̃H ν̃a)ν̃a] 6 6λθ−1

everywhere in S.
This is done exactly as in Lecture 4. In fact, one should compare

what follows very closely with the reasoning in Lecture 4.

Contradiction: why this smallness is impossible? Integrate
the last inequality against |ψ| dm, where ψ is the vector field con-
structed at the end of Lecture 7 and at the beginning of this Lecture.
We then get∫

|R̃H ν̃a|2 · |ψ| dm+ 2

∫ [
(R̃H)∗[(R̃H ν̃a)ν̃a]

]
· |ψ| dm

6 6λθ−1
∫
|ψ|dm 6 Cλθ−1δ−1µ(Q) .

Rewrite the second integral on the left as∫ 〈
R̃H ν̃a, R̃

H(|ψ|m)
〉
dν̃a .

Then, by the Cauchy inequality,∫ [
(R̃H)∗[(R̃H ν̃a)ν̃a]

]
· |ψ| dm

6

[∫
|R̃H ν̃a|2 dν̃a

] 1
2
[∫
|R̃H(|ψ|m)|2 dν̃a

] 1
2

6 Ξ(a)
1
2

[∫
|R̃H(|ψ|m)|2 dν̃a

] 1
2

.

Recall that ‖a‖
L∞(m)

6 2, so we can replace ν̃a by ν̃ in the last integral

losing at most a factor of 2. Taking into account that∫
|R̃H(|ψ|m)|2 dν̃ 6 Θµ(Q) ,
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we get ∣∣∣∣∫ [(R̃H)∗[(R̃H ν̃a)ν̃a]
]
· |ψ| dm

∣∣∣∣ 6 C [λΘ]
1
2 µ(Q) .

Thus,
(3)∫
|R̃H ν̃a|·|ψ| dm 6

(∫
|R̃H ν̃a|2·|ψ| dm

)1/2
(

∫
|ψ| dm)1/26 C(δ)λ1/4µ(Q) .

In particular, (3) implies

(4)

∫
〈R̃H ν̃a, ψ〉 dm 6 C(δ)λ

1
4µ(Q) .

On the other hand,∫
〈R̃H ν̃a, ψ〉 dm =

∫
[(R̃H)∗(ψm)] dν̃a

=

∫
[(RH)∗(ψm)] dν̃a −

∫
[T ∗(ψm)] dν̃a >

∫
η dν̃a − σ(ε, α)ν̃a(S).

This yields
(5)∫

[(R̃H)∗(ψm)] dν̃a> θµ(Q)−σ(ε, α)ν̃a(S) > [θ−2σ(ε, α)]µ(Q) >
θ

2
µ(Q) ,

if ε and α are chosen small enough (in this order). Thus, if λ has been
chosen smaller than a certain constant depending on δ only, we get a
contradiction between (4) and (5) (their left hand sides are identically
equal).

The conclusion is that the estimate
∫
|R̃Hν|2 dν > λµ(Q) if λ has

been chosen smaller than a certain constant depending on δ only. Then
in Lecture 7 we explained that such estimates from below will sum up to
too big a number for

∫
|Rµ1|2 dµ because of the almost orthogonality

of flat layers. And we explained in Lecture 7 that this leads to a
contradiction.

We started our abyss to this contradiction by assuming that δ-non-
BAUP cells are not rare (do not form a Carleson sequence). See the
beginning of Lecture 7. Henceforth, they have to be rare. But then
David–Semmes main result of [DS] gives the rectifiability of µ.

The proof of David–Semmes conjecture in co-dimension 1 is com-
pletely done.
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