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ALEXANDER VOLBERG

1. Lecture 7: Almost orthogonality of flat layers
contributions. The preparation for the estimate from

below of each flat layer contribution.

Recall that our goal is to prove that the family of all non-BAUP
cells P ∈ D is Carleson. In view of the just proved abundance of flat
cells in several fixed directions, it obviously suffices to show the
following statement:

We can choose A,α > 0 such that for every fixed linear hyperplane
H and for every integer N , the family F = F(A,α,H,N) of all non-
BAUP cells P ∈ D containing an (H,A, α)-flat cell Q at most N levels
down from P is Carleson.

Then all non-BAUP cells are Carleson, and we are completely done
by referring to David–Semmes theorem from the book [DS].

The idea of how we will prove this statement. Suppose the
statement above is false. Then there will be P from F (family of
non-BAUP cells containing a flat cell in a fixed direction at most N
generations down) such that it can be tiled (up to tiny measure)
by arbitrarily large number of layers of non-BAUP cells. Use
now the abundance of flat cells. We can also tile the same cell P by
layers of (H,A, α)-flat cells Q (up to tiny measure) also with as many
layers as we wish. Moreover we can alternate layers. Namely:

Alternating non-BAUP and flat layers.

Lemma 1. If F is not Carleson, then for every positive integer K and
every η > 0, there exist a cell P ∈ F and K + 1 alternating pairs of
finite layers Pk,Qk ⊂ D (k = 0, . . . , K) such that

• P0 = {P}.
• Pk ⊂ FP (that is they are from F and lie inside P ) for all
k = 0, . . . , K.
• All layers Qk consist of (H,A, α)-flat cells only.
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• Each individual layer (either Pk, or Qk) consists of pairwise
disjoint cells.
• If Q ∈ Qk, then there exists P ′ ∈ Pk such that Q ⊂ P ′ (k =

0, . . . , K).
• If P ′ ∈ Pk+1, then there exists Q ∈ Qk such that P ′ ⊂ Q

(k = 0, . . . , K − 1).
•
∑

Q∈QK
µ(Q) > (1− η)µ(P ).

Sketch of the proof. Suppose F is not Carleson. For every η′ > 0
and every positive integer M , we can find a cell P ∈ F and M + 1
layers L0, . . . ,LM ⊂ FP that have the desired Cantor-type hierarchy
and satisfy

∑
P ′∈L

M
µ(P ′) > (1− η′)µ(P ).

We will go now from the layer Lm to Lm+SN , where S = S(N) will
be large and M ≈ KSN , where K is from above. We take P ′ ∈ Lm
and choose Q(P ′) less than N generations down, which is flat. Those
P ′′ ∈ Lm+N that are inside such Q(P ′) we color white, the collection
of Q(P ′) we color blue. Notice that at this moment the mass of all
non-colored P ′′ ∈ Lm+N is 6 (1− c4−4dN)µ(P ).

In those P ′′ ∈ Lm+N that are not colored again we will have Q(P ′′)
less than N generations down that are flat, color them blue, color
white those P ′′′ ∈ Lm+2N that are in some of Q(P ′′). Notice that
at this moment the mass of all non-colored P ′′′ ∈ Lm+2N is 6 (1 −
c4−4dN)2µ(P ).

Non-colored follow non-colored, and in S steps (if S = S(N) is suf-
ficiently large) the portion of µ(P ) of non-colored cells become very
small. Then we stop and put mnew := m + SN , we consider only the
part of layer Lm+SN , namely those cells of it that lie in some white
colored cells. Call it L′mnew

. So if Lm was Pk, then L′mnew
will be our

Pk+1.
Consider all blue cells we have on the road. Take the family of

maximal blue cells out of those which we just constructed. This will
be layer of disjoint (H,A, α)-flat cells and this will be our layer Qk.

Given K, we choose S very large, η′ very small. Then we make the
error in tiling µ(P ) only of the order (K+ 1)[η′+ (1− c4−4dN)S], which
is as small as we wish. Lemma is proved.

Towards almost orthogonality of flat layers. From now on, for
a while (in this lecture at least) we will be interested only in the cells
Q from the flat layers Qk. With each such cell Q we will associate the
corresponding approximating plane L(Q) containing its center z

Q
and
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parallel to H and the approximating measure ν
Q

= a
Q
ϕ
Q
m
L(Q)

. These

approximate measures we need to explain.

Fix K. Choose ε > 0, A,α > 0, η > 0 in this order. Construct
layers as it has been just done. Consider flat layers Qk ignoring the
non-BAUP layers Pk almost entirely.

For a cell Q ∈ D and t > 0, define

(1) Qt = {x ∈ Q : dist(x,Rd+1 \Q) > t`(Q)} .
Note that

(2) µ(Q \Qt) 6 Ctγµ(Q) ,

for some γ > 0. This is stated at the beginning of Lecture 5.
Let us consider ϕ0 ∈ C∞ supported onB(0, 1) and such that

∫
ϕ0 dm =

1 where m is the Lebesgue measure in Rd+1. Put

ϕ
Q

= χ
Q2ε
∗ 1

(ε`(Q))d
ϕ0

( ·
ε`(Q)

)
.

Then ϕ
Q

= 1 on Q3ε and suppϕ
Q
⊂ Qε. In particular, the diameter of

suppϕ
Q

is at most 8`(Q).

In addition,

‖ϕ
Q
‖
L∞

6 1, ‖∇ϕ
Q
‖
L∞

6
C

ε`(Q)
, ‖∇2ϕ

Q
‖
L∞

6
C

ε2`(Q)2
.

The approximating measure is ν
Q

= a
Q
ϕ
Q
m
L(Q)

, where a
Q

is

chosen so that

ν
Q

(Rd+1) =

∫
ϕ
Q
dµ .

Both integrals
∫
ϕ
Q
dm

L(Q)
and

∫
ϕ
Q
dµ are comparable to `(Q)d, pro-

vided that ε < 1
48

, say. In particular, in this case, the normalizing
factors a

Q
are bounded by some constant.

To formulate the orthogonality of layers we need to define

Gk =
∑
Q∈Qk

ϕ
Q
RH [ϕ

Q
µ− ν

Q
] , k = 0, . . . , K .

Now put

Fk = Gk −Gk+1, when k = 0, . . . , K − 1, FK = GK .

Note that
K∑
m=k

Fm = Gk .
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“Orthogonality” of telescopic layers. This is almost orthogo-
nality of “errors” (errors between genuine and flat situations).

Lemma 2. Assuming that ε < 1
48

, A > 5, and α < ε8, we have

|〈Fk, Gk+1〉| 6 σ(ε, α)µ(P )

for all k = 0, . . . , K − 1, where σ(ε, α) is some positive function such
that

lim
ε→0+

[ lim
α→0+

σ(ε, α)] = 0 .

The proof is long and and not easy. Lemmas 1 and 2 from Lecture
5 are constantly used. And the boundedness of Rµ in L2(µ) is used.
The detailed proof is in [NToV1].

How almost orthogonality works?
We have the identity

‖G0‖2
L2(µ)

=

∥∥∥∥∥
K∑
k=0

Fk

∥∥∥∥∥
2

L2(µ)

=
K∑
k=0

‖Fk‖2
L2(µ)

+ 2
K−1∑
k=0

〈Fk, Gk+1〉µ .

As we will see in a minute, ‖G0‖2
L2(µ)

6 Cµ(P ), and the scalar products

can be made arbitrarily small by first choosing ε > 0 small enough and
then taking a sufficiently small α > 0 depending on ε.

At this point, we need to know that the non-BAUPness condition
depends on a positive parameter δ. We will fix that δ from now on
in addition to fixing the measure µ. Note that despite the fact that
we need to prove that the family of non-BAUP cells is Carleson for
every δ > 0, the David-Semmes uniform rectifiability criterion does
not require any particular rate of growth of the corresponding Carleson
constant as a function of δ.

So we will get a contradiction if we are able to bound ‖Fk‖2
L2(µ)

for

k = 0, . . . , K − 1 from below by τ 2µ(P ), with some τ = τ(δ) > 0 (as
usual, the dependence on the dimension d and the regularity constants
of µ is suppressed).

We choose very large K, then we choose A > A0(δ), ε < ε0(δ), η <
η0(ε), α < α0(ε, δ). Then we come to contradiction in

(−small(ε, α, η) +Kτ 2)µ(P ) 6
K∑
k=0

‖Fk‖2
L2(µ)

− small(ε, α, η)µ(P )

6 ‖G0‖2
L2(µ)

6 Cµ(P ) .
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The estimate from above: ‖G0‖2
L2(µ)

6 Cµ(P ). Notice that

G0 =
∑

Q∈Q0
ϕ
Q
RH [ϕ

Q
µ − ν

Q
] . As the summands have pairwise dis-

joint supports, it will suffice to prove the inequality

‖ϕ
Q
RH(ϕ

Q
µ− ν

Q
)‖2
L2(µ)

6 Cµ(Q)

for each individual Q ∈ Q0 and then observe that
∑

Q∈Qk
µ(Q) 6 µ(P ).

Of course ‖ϕ
Q
RH(ϕ

Q
µ)‖2

L2(µ)
6 Cµ(Q) by the boundedness of Rµ. But

the estimate ‖ϕ
Q
RH(ν

Q
)‖2
L2(µ)

6 Cµ(Q) is not so trivial because we

start with flat measure ν
Q

:= aQϕQmL but we send it by RH into L2(µ).

Such an estimate can be obtained by using an error estimate Lemmas
1 and 2 from Lecture 5. Details can be seen in Lemma 9 [NToV1].

The estimate from below. Densely packed cells.
Fix k ∈ {0, 1, . . . , K − 1}. We can write the function Fk as

Fk =
∑
Q∈Qk

FQ

where

FQ = ϕ
Q
RH(ϕ

Q
µ− ν

Q
)−

∑
Q′∈Qk+1,Q′⊂Q

ϕ
Q′
RH(ϕ

Q′
µ− ν

Q′
) .

We shall call a cell Q ∈ Qk densely packed if
∑

Q′∈Qk+1,Q′⊂Q µ(Q′) >
(1 − ε)µ(Q). Otherwise we shall call the cell Q loosely packed. The
loosely packed cells constitute a tiny minority of all cells in Qk if η 6 ε2.
Indeed, we have

∑
Q∈Qk

Q is packed loosely

µ(Q) 6 ε−1
∑
Q∈Qk

µ

Q \
 ⋃
Q′∈Qk+1,Q′⊂Q

Q′



= ε−1

∑
Q∈Qk

µ(Q)−
∑

Q′∈Qk+1

µ(Q′)


6 ε−1

µ(P )−
∑

Q′∈Qk+1

µ(Q′)

 6
η

ε
µ(P ) 6 εµ(P ) .
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We can immediately conclude from here that∑
Q∈Qk

Q is densely packed

µ(Q) =
∑
Q∈Qk

µ(Q)−
∑
Q∈Qk

Q is loosely packed

µ(Q)

> (1− η)µ(P )− εµ(P ) > (1− 2ε)µ(P ) .

From now on, we will fix the choice η = ε2.

We claim now that to estimate ‖Fk‖2
L2(µ)

from below by τ 2µ(P ), it

suffices to show that for every densely packed cell Q ∈ Qk, we have

(3) ‖FQ‖2
L2(µ)

> 2τ 2µ(Q) .

To see it, just write

‖Fk‖2
L2(µ)

=
∑
Q∈Qk

‖FQ‖2
L2(µ)

>
∑
Q∈Qk

Q is densely packed

‖FQ‖2
L2(µ)

>
∑
Q∈Qk

Q is densely packed

2τ 2µ(Q) > 2(1− 2ε)τ 2µ(P ) > τ 2µ(P ) ,

provided that ε < 1
4
.

To prove (3) one uses “the process of modification of mea-
sure”. It consists of several stages.
Stage 1: ϕQµ to piecewise flat ν. The goal of this modification is
to show

Lemma 3. There exists a subset Q′ of Q such that

(4)
∑
Q′∈Q′

µ(Q′) > (1− Cε)µ(Q),

and

‖FQ‖
L2(µ)

>
1

2
‖RH(ν − ν

Q
)‖
L2(ν)

− σ(ε, α)
√
µ(Q) ,

where ν =
∑

Q′∈Q′ νQ′ and σ(ε, α) is some positive function such that

limε→0+[limα→0+ σ(ε, α)] = 0.

The proof is long and technical, see [NToV1], pages 62–66, but look-
ing at

FQ = ϕ
Q
RH(ϕ

Q
µ− ν

Q
)−

∑
Q′∈Qk+1,Q′⊂Q

ϕ
Q′
RH(ϕ

Q′
µ− ν

Q′
)

we see that the claim is at least natural, as it says that the value
of RH(ϕ

Q
µ − ϕ

Q′
µ) on each Q′ ∈ Q′ almost cancels out the value
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of RH(νQ − νQ′) on Q′. This boils down to saying that for Q′, Q′′ ∈
Q′, Q′ 6= Q′′, one can see that the value of RH(ϕ

Q′
µ − νQ′) on Q′′ is

negligible if α and ε are small.
Which is believable because of flatness. And we also replace µ outside

in ‖FQ‖
L2(µ)

by the measure ν consisting of flat pieces parallel and close

to flat νQ.
For the choice of Q′ one uses Marcinkiewicz function in the following

way: For Q′ ∈ Q, define

g(Q′) =
∑
Q′′∈Q

[
`(Q′′)

D(Q′, Q′′)

]d+1

where

D(Q′, Q′′) = `(Q′) + `(Q′′) + dist(Q′, Q′′)

is the “long distance” between Q′ and Q′′.
We have∑
Q′∈Q

g(Q′)µ(Q′) =
∑

Q′,Q′′∈Q

`(Q′′)d+1 µ(Q′)

D(Q′, Q′′)d+1

6 C
∑

Q′,Q′′∈Q

`(Q′′)d+1

∫
Q′

dµ(x)

[`(Q′′) + dist(x,Q′′)]d+1

6 C
∑
Q′′∈Q

`(Q′′)d+1

∫
dµ(x)

[`(Q′′) + dist(x,Q′′)]d+1

6 C
∑
Q′′∈Q

`(Q′′)d 6 C
∑
Q′′∈Q

µ(Q′′) 6 Cµ(Q) .

Let Q∗ = {Q′ ∈ Q : g(Q′) > ε−1}, Q′ = Q\Q∗. Then, by Chebyshev’s
inequality, ∑

Q′∈Q∗

µ(Q′) 6 Cεµ(Q) ,

so ∑
Q′∈Q′

µ(Q′) > (1− Cε)µ(Q) ,

which is (4).
In estimating the value of RH(ϕ

Q′
µ− νQ′) on Q′′, one uses Lemmas

1,2 from Lecture 5. Then one can see that
∑

Q′∈Q′,Q′ 6=Q′′ |RH(ϕ
Q′
µ −

νQ′)| can be estimated from above by Cαε−d−2
∑

Q′∈Q′,Q′ 6=Q′′

[
`(Q′)

D(Q′,Q′′)

]d+1

6

Cαε−d−2g(Q′′).
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Stage 2. The next measure modification. Reflection trick.
Fix a hyperplane L parallel to H at the distance 2∆`(Q) from suppµ∩
Q. Number ∆ is small compared to ε and large compared to α. Let S
be the (closed) half-space bounded by L that contains suppµ∩Q. For
x ∈ S, denote by x∗ the reflection of x about L. Define the kernels

R̃H(x, y) = RH(x− y)−RH(x∗ − y), x, y ∈ S

and denote by R̃H the corresponding operator. We will assume that
α << ∆, so the approximating hyperplanes L(Q′) (Q′ ∈ Q′) and L(Q),
which lie within the distance α`(Q) from suppµ∩Q are contained in S
and lie at the distance ∆`(Q) or greater from the boundary hyperplane
L.

Lemma 4. The goal of this section is to show that, for some appropri-
ately chosen ∆ = ∆(α, ε) > 0, and under our usual assumptions about
ε, A, and α, we have

‖RH(ν − ν
Q

)‖
L2(ν)

> ‖R̃Hν‖
L2(ν)

− σ(ε, α)
√
µ(Q)

where, again, σ(ε, α) is some positive function such that

lim
ε→0+

[ lim
α→0+

σ(ε, α)] = 0 .

Again we refer the reader to [NToV1], this lemma has a proof on
pages 69–72 of this article.

Now we choose ∆ = ε3 and α = εC with large C. We come to the
point that we need to estimate from below the Riesz Energy

‖R̃Hν‖
L2(ν)

,

where ν :=
∑

Q′∈Q′,Q′⊂Q νQ′ . It is truly desirable to have ‖R̃Hν‖
L2(ν)

>

... using another than ε constant. To give a δ-breath. The subset
Q′ of the set {Q′ : Q′ ⊂ Q,Q′ ∈ Qk+1} is chosen above. In fact, it is
almost the whole {Q′ : Q′ ⊂ Q,Q′ ∈ Qk+1}, the difference being the
use of a certain Marcinkiewicz function to choose Q′.

To estimate Riesz Energy we need function ψ, R̃H(ψm) = 1,m+
md+1, on ν and such that: see below. For that we need first non-BAUP
layer Pk+1 tiling Q and tiled by Qk+1 and special family of cells in it.

This is almost the last effort before the end of this Wagnerian proof.
We need to choose some non-BAUP cells and associated with them
vector functions ψ to be able to estimate the Riesz energy ‖R̃Hν‖

L2(ν)
,

from below.
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A collection of P ’s (inside Q) of non-BAUP layer Pk+1. One
can construct (under our usual assumptions of ε is sufficiently small in
terms of δ, A is sufficiently large in terms of δ, α is sufficiently small
in terms of ε and δ), a family P′ ⊂ Pk+1 such that

• Every cell P ′ ⊂ P′ is contained in Qε and satisfies `(P ′) 6
2αδ−1`(Q).
•
∑

P ′∈P′ µ(P ′) > cµ(Q).
• The balls B(z

P ′
, 10`(P ′)), P ′ ∈ P′ are pairwise disjoint.

• The function

h(x) =
∑
P ′∈P′

[
`(P ′)

`(P ′) + dist(x, P ′)

]d+1

satisfies ‖h‖
L∞

6 C.

We start with showing that every δ-non-BAUP cell P ′ contained
in Q has much smaller size than Q. Indeed, we know that suppµ ∩
B(z

Q
, A`(Q)) is contained in the α`(Q)-neighborhood of L(Q) and that

B(y, α`(Q))∩ suppµ 6= ∅ for every y ∈ B(z
Q
, A`(Q))∩L(Q). Suppose

that P ′ ⊂ Q is δ-non-BAUP. If A > 5, then

B(x
P ′
, `(P ′)) ⊂ B(z

Q
, 5`(Q)) ⊂ B(z

Q
, A`(Q)) .

Moreover, since y
P ′
− x

P ′
∈ H, we have

dist(y
P ′
, L(Q)) = dist(x

P ′
, L(Q)) 6 α`(Q) .

Let y∗
P ′

be the projection of y
P ′

to L(Q). Then |y∗
P ′
− y

P ′
| 6 α`(Q)

and |y∗
P ′
− z

Q
| 6 |y

P ′
− z

Q
| < A`(Q). Thus, the ball B(y

P ′
, 2α`(Q)) ⊃

B(y∗
P ′
, α`(Q)) intersects suppµ, so δ`(P ′) < 2α`(Q), i.e.,

`(P ′) 6 2αδ−1`(Q),

which is desired smallness of Pk+1 cells inside Q ∈ Qk.

Let now P = {P ′ ∈ Pk+1 : P ′ ⊂ Q}. Consider the Marcinkiewicz
function again

g(P ′) =
∑
P ′′∈P

[
`(P ′′)

D(P ′, P ′′)

]d+1

The standard argument with integration it over Q shows that∑
P ′∈P

g(P ′)µ(P ′) 6 C1µ(Q)
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for some C1 > 0 depending on the dimension d and the goodness pa-
rameters of µ only. Define

P∗ = {P ′ ∈ P : P ′ ⊂ Qε, g(P ′) 6 3C1} .

Note that∑
P ′∈P∗

µ(P ′) >
∑
P ′∈P

µ(P ′)−
∑

P ′∈P:P ′ 6⊂Qε

µ(P ′)−
∑

P ′∈P:g(P ′)>3C1

µ(P ′) .

However, ∑
P ′∈P

µ(P ′) >
∑
Q′∈Q

µ(Q′) > (1− ε)µ(Q) .

Further, since the diameter of each P ′ ∈ P is at most 8`(P ′) 6
8αδ−1`(Q), every cell P ′ ∈ P that is not contained in Qε is contained
in Q \Q2ε, provided that α < 1

8
εδ. Thus, under this restriction,∑

P ′∈P:P ′ 6⊂Qε

µ(P ′) 6 µ(Q \Q2ε) 6 Cεγµ(Q) .

Further, since the diameter of each P ′ ∈ P is at most 8`(P ′) 6
8αδ−1`(Q), every cell P ′ ∈ P that is not contained in Qε is contained
in Q \Q2ε, provided that α < 1

8
εδ. Thus, under this restriction,∑

P ′∈P:P ′ 6⊂Qε

µ(P ′) 6 µ(Q \Q2ε) 6 Cεγµ(Q) .

Finally, by Chebyshev’s inequality,∑
P ′∈P:g(P ′)>3C1

µ(P ′) 6
µ(Q)

3
.

Bringing these three estimates together, we get the inequality
∑

P ′∈P∗ µ(P ′) >
1
2
µ(Q), provided that A, ε, α satisfy some restrictions of the admissible

type.

Vitali’s lemma sparseness. Now we will rarefy the family P∗

a little bit more. Consider the balls B(z
P ′
, 10`(P ′)), P ′ ∈ P∗. By

the classical Vitali covering theorem, we can choose some subfamily
P′ ⊂ P∗ such that the balls B(z

P ′
, 10`(P ′)), P ′ ∈ P′ are pairwise

disjoint but⋃
P ′∈P′

B(z
P ′
, 30`(P ′)) ⊃

⋃
P ′∈P∗

B(z
P ′
, 10`(P ′)) ⊃

⋃
P ′∈P∗

P ′ .
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Then we will still have∑
P ′∈P′

µ(P ′) > c
∑
P ′∈P′

`(P ′)d

> c
∑
P ′∈P′

µ(B(z
P ′
, 30`(P ′))) > c

∑
P ′∈P∗

µ(P ′) > cµ(Q) .

The estimate on h =
∑

P ′∈P′

[
`(P ′)

`(P ′)+dist(x,P ′)

]d+1

follows from the

Marcinkiewicz choice of P∗.

The preparation for building of vector function ψ that one
needs for the estimate of Riesz energy from below.

First functions ηp. Fix the non-BAUPness parameter δ ∈ (0, 1). Fix
any C∞ radial function η0 supported in B(0, 1) such that 0 6 η0 6 1
and η0 = 1 on B(0, 1

2
). For every P ′ ∈ P′, define

η
P ′

(x) = η0

(
1

δ`(P ′)
(x− x

P ′
)

)
− η0

(
1

δ`(P ′)
(x− y

P ′
)

)
.

Here xP ′ is the point of cell P ′ belonging to suppµ, and yP ′ is a point
that is the center of the δ-hole (a ball disjoint with suppµ) in P ′ that
exists by the definition of δ-nonBAUPness.

Note that η
P ′

is supported on the ball B(z
P ′
, 6`(P ′)). This ball

is contained in Q, provided that 12αδ−1 < ε (recall that `(P ′) 6
2αδ−1`(Q) and P ′ ⊂ Qε). Also η

P ′
> 1 on B(x

P ′
, δ
2
`(P ′)) and the

support of the negative part of η
P ′

is disjoint with suppµ. Put

η =
∑
P ′∈P′

η
P ′
.

Since even the balls B(z
P ′
, 10`(P ′)) corresponding to different P ′ ∈ P′

are disjoint, we have −1 6 η 6 1.
We want to show that

∫
η dν > c(δ)µ(Q) with some c(δ) > 0.

Obviously,
∫
η dµ > c(δ)µ(Q) with some c(δ) > 0. This is because

of the choice of P′ and because, where η is negative does not carry any
mass µ.

Moreover,∫
ηΦ dµ >

∫
η+ dµ−

∣∣∣ ∫ (χ
Q
−Φ) dµ

∣∣∣ > c(δ)µ(Q)−εγµ(Q) >
c

2
µ(Q) .

So we need to estimate as a small thing
∫
η (dΦµ − ν), which is the

sum over Q′ ∈ Q′ of
∫
η (dϕQ′µ − νQ′). By Lemmas 1, 2 of Lecture 5

we have
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|
∫
η (dϕQ′µ− νQ′)| 6 Cα`(Q′)d+2‖ϕQ′‖Lip‖η‖Lip(suppϕQ′ )

6

Cαε−1`(Q′)d+1‖η‖Lip(suppϕQ′ )
6 Cαε−1µ(Q′) sup

P ′ : B(zP ′ ,6`(P
′))∩Q′ε 6=∅

`(Q′)

δ`(P ′)
.

For Q′ ⊂ P ′, fine. Otherwise Q′ ∩ P ′ = ∅, B(zP ′ , 6`(P
′)) ∩Q′ε 6= ∅ give

C`(P ′) > ε`(Q′). And again smallness of α kills all ε−2δ−1.

Now vector function ψ: ψ = ∆
∫ x

η. Fix P ′ ∈ P′. Let e
P ′

be the
unit vector in the direction y

P ′
− x

P ′
. Put

u
P ′

(x) =

∫ 0

−∞
η
P ′

(x+ te
P ′

) dt .

Let us think that H is parallel to xd+1 = 0 and that e1 = eP ′ (this is
without loss of generality). Then ∂1uP ′ = ηP ′ . But

RH = (∂1, . . . , ∂d)
1

|x|d−1
.

Therefore,

RH∆uP ′ = RH∆

∫
ηP ′ = (∂1, . . . , ∂d)

1

|x|d−1
?∆

∫
ηP ′ =

= (∂1, . . . , ∂d)
∫
ηP ′ . We showed that

RH,1∆uP ′ = ∂1

∫
ηP ′ = ηP ′ ⇒ 〈RH ,∆uP ′ · e1〉 = ηP ′ .

Since the restriction of η
P ′

to any line parallel to e
P ′

consists of two
opposite bumps, the support of u

P ′
is contained in the convex hull of

B(x
P ′
, δ`(P ′)) and B(y

P ′
, δ`(P ′)). Also, since

‖∇jη
P ′
‖
L∞

6 C(j)[δ`(P ′)]−j

and since suppη
P ′

intersects any line parallel to e
P ′

over two intervals

of total length 4δ`(P ′) or less, we have

|∇ju
P ′

(x)| 6
∫ 0

−∞
|(∇jη

P ′
)(x+ te

P ′
)| dt 6 C(j)

[δ`(P ′)]j−1

for all j > 0. Define the vector fields

ψ
P ′

= (∆u
P ′

)e
P ′
, ψ =

∑
P ′∈P′

ψ
P ′
.
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Vector function ψ is built. Properties of ψ. Then, clearly,
(RH)(ψm) = 〈RH , ψm〉 = η and all claims below are satisfied (m :=
md+1):

• ψ =
∑

P ′∈P′ ψP ′ , suppψ ⊂ S, dist(suppψ,L) > ∆`(Q) =

ε3`(Q).
• ψ

P ′
is supported in the 2`(P ′)-neighborhood of P ′ and satisfies∫

ψ
P ′

= 0, ‖ψ
P ′
‖
L∞

6
C

δ`(P ′)
, ‖ψ

P ′
‖
Lip

6
C

δ2`(P ′)2
.

•
∫
|ψ| dm 6 Cδ−1µ(Q).

• (RH)∗(ψm) = η.
• ‖T ∗(ψm)‖

L∞(suppν) 6 Cαδ−2ε−3d−3.

• ‖R̃H(|ψ|m)‖
L2(ν)

6 Cδ−1
√
µ(Q) .
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