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1. Lecture 6: The abundance of flat cells

We want to show the abundance of flat cells. First we will show the
abundance of geometrically flat cells.

The word “abundance” will be used in a very concrete sense. This
word will almost mean that the cells which are not flat can be only rare
(Carleson). But in fact, abundance means that we relax the meaning
of pleasure, in what follows we will be glad and it will be pleasant to
us if we meet any cell (not geometrically flat for that matter) such
that a fixed number of generations down one of its descendant cell is
geometrically flat. “Abundance” will mean that unpleasant cells are
rare (Carleson).

So, fix A′ > 1, α′ ∈ (0, 1), β > 0 to be chosen later. We want to
show first that if N > N0(A′, α′, β), then there exists a Carleson family
F1 ⊂ D and a finite set H of linear hyperplanes such that every cell
P ∈ D \ F1 contains a geometrically (H, 5A′, α′)-flat cell Q ⊂ P at
most N levels down from P for some linear hyperplane H ∈ H that
may depend on P .

Let R = 1
16
`(P ). According to the Geometric Flattening Lemma, we

can choose ρ > 0 so that either
First Case. There is a scale ` > ρR and a point z ∈ B(z

P
, R −

16[(5A′+5)+α′

3
]`) ⊂ P such that µ is geometrically (H ′, 16(5A′+5), α

′

3
)-

flat at z on the scale ` for some linear hyperplane H ′,
Second case. There exist ∆ ∈ (0, 1

2
), δ ∈ (ρ,∆) and a point z ∈

B(z
P
, (1−2∆)R) with dist(z, suppµ) < δ

4
R such that |[R(ψ

z,δR,∆R
µ)](z)| >

β, where ψ
z,δR,∆R

is

ψ
z,r,R

(x) = ψ0

(
|x− z|
R

)
− ψ0

(
|x− z|
r

)
.
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In the first case, take any point z′ ∈ suppµ such that |z − z′| < α′

3
`

and choose the cell Q with `(Q) ∈ [`, 16`) that contains z′. Since
z′ ⊂ B(z

P
, R) ⊂ P and `(Q) < `(P ), we must have Q ⊂ P . Also, since

|z
Q
− z′| 6 4`(Q), we have |z − z

Q
| < 4`(Q) + α′

3
` < 5`(Q).

Note now that, if µ is geometrically (H, 16A,α)-flat at z on the scale
`, then it is geometrically (H,A, α)-flat at z on every scale `′ ∈ [`, 16`).

Note also that the geometric flatness is a stable condition with re-
spect to shifts of the point and rotations of the plane.

Applying these observations with `′ = `(Q), z′ = z
Q

, ε = α′

3A
, and

choosing any finite ε-net Y on the unit sphere, we see that µ is geo-
metrically (H, 5A′, α′)-flat at z

Q
on the scale `(Q) with some H whose

unit normal belongs to Y . Note also that the number of levels between
P and Q in this case is

log16

`(P )

`(Q)
6 log16 ρ

−1 + C .

Explanation of shifting and rotating. More precisely, if µ is geo-
metrically (H ′, A+5, α)-flat at z on the scale `, then it is geometrically
(H,A, 2α+Aε)-flat at z′ on the scale ` for every z′ ∈ B(z, 5`)∩ suppµ
and every linear hyperplane H with unit normal vector n such that the
angle between n and the unit normal vector n′ to H ′ is less than ε. To
see it, it is important to observe first that, despite the distance from z
to z′ may be quite large, the distance from z′ to the affine hyperplane
L′ containing z and parallel to H ′ can be only α`, so we do not need
to shift L′ by more than this amount to make it pass through z′. Com-
bined with the inclusion B(z′, A`) ⊂ B(z, (A + 5)`), this allows us to
conclude that µ is (H ′, A, 2α)-flat at z′ on the scale `. After this shift,
we can rotate the plane L′ around the (d− 1)-dimensional affine plane
containing z′ and orthogonal to both n and n′ by an angle less than ε
to make it parallel to H. Again, no point of L′∩B(z, A`) will move by
more than Aε` and the desired conclusion follows.

If the Second case stated at page 1 of this lecture in fact happens,
then there is a point z ∈ B(z

P
, (1 − 2∆)R) and a point z′ ∈ suppµ,

such that

|[R(ψ
z,δR,∆R

µ)](z)| > β , |z − z′| < δ

4
R ,

where

ψ
z,r,R

(x) = ψ0

(
|x− z|
R

)
− ψ0

(
|x− z|
r

)
.
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Let now Q and Q′ be the largest cells containing z′ under the restric-
tions that `(Q) < ∆

32
R and `(Q′) < δ

32
R. Since both bounds are less

than `(P ) and the first one is greater than the second one, we have
Q′ ⊂ Q ⊂ P .

Now we want to show that the difference of averages of RµχE over
Q and Q′ is at least β−C in absolute value for every set E ⊃ B(z, 2R)
and, hence, for every set E ⊃ B(z

P
, 5`(P )). Here C depends only on

the norm of operator Rµ in L2(µ).

Estimate of the difference of averages 〈RµχE 〉Q − 〈RµχE 〉Q′.
The function ψ

z,δR,∆R
is roughly characteristic function of the an-

nulus. We can write χ
E

= ψ
z,δR,∆R

+ f1 + f2 where |f1|, |f2| 6 1 and

supp f1 ⊂ B̄(z, 2δR), supp f2 ∩B(z,∆R) = ∅. So∫
|Rµf1|2 dµ 6 C

∫
|f1|2 dµ 6 C(δR)d 6 C`(Q′)d 6 Cµ(Q′) .

Hence|〈Rµf1〉Q|, |〈Rµf1〉Q′ | are bounded by some C.
Note also that Q ⊂ B(z′, 8`(Q)) ⊂ B(z′, ∆

4
R) ⊂ B(z, ∆

2
R), so the

distance from Q to supp f2 is at least ∆
2
R > `(Q). Thus,

‖Rµf2‖Lip(Q)
6 C`(Q)−1

the difference of the averages of Rµf2 over Q and Q′ is bounded by
some C.

We are left to to estimate the difference of averages 〈Rµψz,δR,∆R〉Q−
〈Rµψz,δR,∆R〉Q′ . For this

‖Rµψz,δR,∆R‖
2

L2(µ)
6 C‖ψ

z,δR,∆R
‖2

L2(µ)
6 C(∆R)d 6 C`(Q)d 6 Cµ(Q) ,

so the average over Q is bounded by a constant.
On the other hand,

Q′ ⊂ B(z′, 8`(Q′)) ⊂ B(z′,
δ

4
R) ⊂ B(z,

δ

2
R) .

Again dist(suppψ
z,δR,∆R

, Q′) > δ
2
R. Therefore,

‖R(ψ
z,δR,∆R

µ)‖
Lip(B(z, δ

2
R))
6 C(δR)−1 .

But this means that |〈Rµψz,δR,∆R〉Q′ −Rµψz,δR,∆R(z)| 6 C(δ).

The quantity |Rµψz,δR,∆R(z)| is large! It is bigger than β.

We finally get

|〈RµχE 〉Q − 〈RµχE 〉Q′ | > β − 3C .
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This conclusion can be rewritten as

(1) µ(P )−
1
2 |〈RµχE , ψP 〉µ| > cρ

d
2 (β − C)

where

(2) ψ
P

= [ρ`(P )]
d
2

(
1

µ(Q)
χ
Q
− 1

µ(Q′)
χ
Q′

)
.

This is for any E,B(zP , 5`(P )) ⊂ E.
Let us show that the set of cells satisfying the latter property can be

only rare, that is a Carleson family.

Carlesonness of cells P satisfying the Second case of page 1
of this lecture.

Fix any cell P0 and consider the cells P satisfying the Second case
of page 1 of this lecture. This means that there exists a point z such
that |Rµψz,δR,∆R(z)| > β with certain position of z inside P , R ≈ `(P ),
and large β. Then B(zP , 5`(P )) ⊂ B(zP0 , 50`(P0)). Also we saw in (1)
that for such P one has

(3) µ(P ) 6 C(ρ, β)|〈RµχB(zP0 ,50`(P0))
, ψ

P
〉µ|2 .

Here ψ
P

form Haar system of depth N ≈ log `(P )
`(Q′)

, `(Q′) ≈
δ`(P ), δ ∈ (ρ, 1/2), so N 6 c log 1

ρ
(see the definition below).

Any Haar system of depth N is a Riesz system. By the property
of Riesz system (see below) we get that∑

P⊂P0

µ(P ) 6C(ρ, β)
∑
P⊂P0

|〈RµχB(zP0 ,50`(P0))
, ψ

P
〉µ|2 6(4)

C‖RµχB(zP0 ,50`(P0))
‖2
µ .(5)

The latter is smaller than Cµ(B(zP0 , 50`(P0))) 6 C ′µ(P0), and we es-
tablished Carleson property of P ’s as above.

Abundance of geometrically flat cells is already obtained up
to the understanding “what is the Riesz system and what is
Haar systems of depth N , and why the latter is an example
of the former.”

In fact, fix A,α > 0. We shall say that a cell Q ∈ D is (geometrically)
(H,A, α)-flat if the measure µ is (geometrically) (H,A, α)-flat at z

Q
on

the scale `(Q).
We have just shown (modulo estimates of Riesz system that follows)

that there exists an integer N , a finite set H of linear hyperplanes in
Rd+1, and a Carleson family F ⊂ D (depending on A,α) such that
for every cell P ∈ D \ F , there exist H ∈ H and a geometrically
(H,A, α)-flat cell Q ⊂ P that is at most N levels down from P .
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Riesz systems: Haar system of a given depth, Lipschitz wavelet
system.

Let ψ
Q

(Q ∈ D) be a system of L2(µ) functions.

Definition 1. The functions ψ
Q

form a Riesz family with Riesz con-

stant C > 0 if ∥∥∥∥∥∑
Q∈D

a
Q
ψ
Q

∥∥∥∥∥
2

L2(µ)

6 C
∑
Q∈D

a2

Q

for any real coefficients a
Q

.

Note that if the functions ψ
Q

form a Riesz family with Riesz constant

C, then for every f ∈ L2(µ), we have∑
Q∈D

|〈f, ψ
Q
〉µ|2 6 C‖f‖2

L2(µ)
.

Assume next that for each cell Q ∈ D we have a set ΨQ of L2(µ)
functions associated with Q.

Definition 2. The family ΨQ (Q ∈ D) of sets of functions is a Riesz
system with Riesz constant C > 0 if for every choice of functions
ψ
Q
∈ ΨQ, the functions ψ

Q
form a Riesz family with Riesz constant C.

Riesz systems are useful because of the following Lemma.

Lemma 1. Suppose Rµ is bounded in L2(µ). Suppose that ΨQ is any
Riesz system. Fix A > 1. For each Q ∈ D, define

ξ(Q) = inf
E:B(z

Q
,A`(Q))⊂E,µ(E)<+∞

sup
ψ∈ΨQ

µ(Q)−1/2|〈RµχE , ψ〉µ| .

Then ∀δ > 0,Fδ := {Q ∈ D : ξ(Q) > δ} is Carleson.

Proof. Fix a cell P0. Then E = B(zP0 , (50A + 50)`(P0)) satisfies
B(zP , A`(P )) ⊂ B(zP0 , (50A+ 50)`(P0)). Therefore,∑

P⊂P0

µ(P ) 6δ−2
∑
P⊂P0

|〈RµχB(zP0 ,(50A+50)`(P0))
, ψ

P
〉µ|2 6

C‖RµχB(zP0 ,(50A+50)`(P0))
‖2
µ 6 Cµ(P0) .

�

It is important that there are two natural classes of Riesz systems:
Haar systems of fixed depth ΨH(N), and Lipschitz wavelet sys-
tems ΨL(A).
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Let now N be any positive integer. For each Q ∈ D, define the set
of Haar functions Ψh

Q(N) of depth N as the set of all functions ψ that
are supported on Q, are constant on every cell Q′ ∈ D that is N levels
down from Q, and satisfy

∫
ψ dµ = 0,

∫
ψ2 dµ 6 C. The Riesz property

follows immediately from the fact that D can be represented as a finite
union of the sets D(j) = ∪k:k≡j mod NDk (j = 0, . . . , N−1) and that for
every choice of ψ

Q
∈ Ψh

Q(N), the functions ψ
Q

corresponding to the

cells Q from a fixed D(j) form a bounded orthogonal family.

Our ψ
P

= [ρ`(P )]
d
2

(
1

µ(Q)
χ
Q
− 1

µ(Q′)
χ
Q′

)
from (2) are obviously from

ΨH(N) with N 6 c log 1
ρ
, so the second inequality in (4) is done, and

the abundance of geometrically flat cells is completely estab-
lished.

Lipschitz wavelet systems. We will need then to establish the
abundance of (H,A, α) flat (not just geometrically flat) cells.

In the Lipschitz wavelet system, the set Ψ`
Q(A) consists of all Lip-

schitz functions ψ supported on B(z
Q
, A`(Q)) such that

∫
ψ dµ = 0

and ‖ψ‖
Lip

6 C`(Q)−
d
2
−1. Since µ is nice, we automatically have∫

|ψ|2 dµ 6 C(A)`(Q)−dµ(Q) 6 C(A) in this case.
If Q,Q′ ∈ D and `(Q′) 6 `(Q), then, for any two functions ψ

Q
∈

Ψ`
Q(A) and ψ

Q′ ∈ Ψ`
Q′(A), we can have 〈ψ

Q
, ψ

Q′ 〉µ 6= 0 only ifB(z
Q
, A`(Q))∩

B(z
Q′ , A`(Q

′)) 6= ∅, in which case,

|〈ψ
Q
, ψ

Q′ 〉µ| 6 ‖ψQ‖Lipdiam(Q′)‖ψQ′‖L1(µ) 6 C(A)

[
`(Q′)

`(Q)

] d
2

+1

.

Then:

∥∥∥∥∥∑
Q∈D

a
Q
ψ
Q

∥∥∥∥∥
2

L2(µ)

6 2
∑

Q,Q′∈D, `(Q′)6`(Q)

|a
Q
| · |a

Q′ | · |〈ψQ , ψQ′ 〉µ|

6 C(A)
∑

Q,Q′∈D, `(Q′)6`(Q)
B(z

Q
,A`(Q))∩B(z

Q′ ,A`(Q
′)) 6=∅

[
`(Q′)

`(Q)

] d
2

+1

|a
Q
| · |a

Q′ |

6 C(A)
∑

Q,Q′∈D, `(Q′)6`(Q)
B(z

Q
,A`(Q))∩B(z

Q′ ,A`(Q
′)) 6=∅

{[
`(Q′)

`(Q)

]d+1

|a
Q
|2 +

`(Q′)

`(Q)
|a
Q′ |2
}
.
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Q′∈D: `(Q′)6`(Q)

B(z
Q
,A`(Q))∩B(z

Q′ ,A`(Q
′))6=∅

[
`(Q′)

`(Q)

]d+1

6 C,
∑

Q∈D: `(Q′)6`(Q)
B(z

Q
,A`(Q))∩B(z

Q′ ,A`(Q
′)) 6=∅

`(Q′)

`(Q)
6 C .

`(Q′)

`(Q)
.

We recall Flattening Lemma from Lecture 5, that says how to get
flat cell if it is already geometrically flat.

Lemma 2. Fix four positive parameters A,α, c̃, C̃. ∃A′, α′ > 0 depend-

ing on A,α, c̃, C̃ and d such that: if H is a linear hyperplane in Rd+1,
z ∈ Rd+1, L is the affine hyperplane containing z and parallel to H,

` > 0, and µ is a C̃-good finite measure in Rd+1 that is AD regular
in B(z, 5A′`) with the lower regularity constant c̃. Assume that µ is
geometrically (H, 5A′, α′)-flat at z on the scale ` and, in addition, for
every (vector-valued) Lipschitz function g with supp g ⊂ B(z, 5A′`),
‖g‖

Lip
6 `−1, and

∫
g dµ = 0, one has

|〈RH
µ 1, g〉µ| 6 α′`d .

Then µ is (H,A, α)-flat at z on the scale `.

We already saw that all cells P (except for a rare (Carleson) family
F1) are such that not more than N generation down inside P a cell
Q lies, which is (H,A′, α′)-geometrically flat, where A′, α′ depend on
A,α as Flattening Lemma requires, and H = HQ belongs to H, a finite
family (cardinality of it depends on A,α too).

Given P , we find such Q, and Flattening Lemma applied to any
µ := µ · 1E, E ⊃ B(zQ, 100A′`(Q)), shows that either Q is (H,A, α)-
flat, or for each such E there exists a function g = gE such that it is
supported on B(zQ, 5A

′`(Q)),
∫
g dµ = 0, Lipschitz with norm at most

1/`(Q) 6 C(N)/`(P ) and

〈RH
µ 1E, g〉 > α′`(Q)d = c(N)α′`(P )d .

Consider ψP = ψP,E = g/`(P )
d
2 . They form a Lipschitz wavelet

system ΨL(C), as on page 6 of this lecture. Therefore,

ξ(P ) = µ(P )−
1
2 inf
E : E⊃B(zp,C`(P ))

sup
ψ∈ΨL(C)

|〈Rµ1E, ψ〉| > C(N)α′ .

We know by Lemma 1 of this lecture that such P can form only a rare
(Carleson) family if Rµ is a bounded operator in L2(µ). Call it F2. So
by the exception of two rare families F1,F2, any other cell P ∈ D will
have inside it and not more than N (fixed number depending on A,α)
generations down a sub-cell Q, which is (H,A, α)-flat. Here H will be
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chosen from a finite family H of hyperplanes (having fixed cardinality
depending on A,α).

The abundance of flat cells is completely proved.
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