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1. Lecture 5: Geometry of cells. The sparsity of bad
cells (a.k.a. the Main Theorem) as the reduction to

David–Semmes Result

Let µ be a d-dimensional AD regular measure in Rd+1. Let E =
suppµ. Then there exists a family D of sets Q ⊂ Rd+1 with the follow-
ing properties:

• The family D is the union of families Dk (families of level k
cells), k ∈ Z.
• If Q′, Q′′ ∈ Dk, then either Q′ = Q′′ or Q′ ∩Q′′ = ∅.
• Each Q′ ∈ Dk+1 is contained in some Q ∈ Dk (necessarily

unique due to the previous property).
• The cells of each level cover E, i.e., ∪Q∈DkQ ⊃ E for every k.
• For each Q ∈ Dk, there exists z

Q
∈ Q ∩ E (the “center” of Q)

such that

B(z
Q
, 2−4k−3) ⊂ Q ⊂ B(z

Q
, 2−4k+2) .

• For each Q ∈ Dk and every ε > 0, we have

µ{x ∈ Q : dist(x,Rd+1 \Q) < ε2−4k} 6 Cεγµ(Q);

C = C(d, reg), γ = γ(d, reg) .

Since all cells in Dk have approximately the same size 2−4k, it will
be convenient to introduce the notation `(Q) = 2−4k where k is the
unique index for which Q ∈ Dk.

Let Zk be a maximal 2−4k-separated set in E = suppµ. Then
{B(z, 2−4k)}z∈Zk , cover E. For each z ∈ Zk consider the Voronoi cell

Vz := {x ∈ Rd+1 : |x− z| = min
z′∈Zk

|x− z′|} .

Then 1) Vz ⊂ B(z, 2−4k), 2) {Vz}z∈Zk cover E,
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3) dist(z,
⋃
z′∈Zk,z′ 6=z Vz′) > 2−4k−1. The last one because Zk is 2−4k-

separated, the first one because Zk is maximal such. Also
4) There are only finitely many w ∈ Zk−1 such that Vz ∩ Vw 6= ∅.
We say that w ∈ Zk is a descendant of z ∈ Z`, ` > k, if there is a

chain zk = z, z` = w, zj ∈ Zj such that Vzj ∩ Vzj+1
6= ∅. D(z) is the set

of all descendants of z and

Ṽz :=
⋃

w∈D(z)

Vw .

Note that Ṽz contains Vz and is contained in the 2
∑

`>k 2−4` =
2
15

2−4k-neighborhood of Vz. Thus,

(1) dist(z,∪z′∈Zk\{z}Ṽz′) > 2−4k−1 − 2

15
2−4k > 2−4k−2 .

Nobility order. There exists a partial order ≺ on ∪kZk such that
each Zk is linearly ordered under ≺ and the ordering of Zk+1 is con-
sistent with that of Zk in the sense that if z′, z′′ ∈ Zk+1 and z′ ≺ z′′,
then for every w′ ∈ Zk such that Vw′ ∩ Vz′ 6= ∅, there exists w′′ ∈ Zk
such that Vw′′ ∩ Vz′′ 6= ∅ and w′ � w′′. In other words, the ordering
we are after is analogous to the classical “nobility order” in the soci-
ety: comparing maximally “noble” ancestors one generation up defines
“nobility”.

Put now for each z ∈ Zk the cell

Ez := Ṽz \
⋃

z′∈Zk,z≺z′
Ṽz′ .

By (1) we have the left inclusion (the right one is clear too)

B(z, 2−4k−2) ⊂ Ez ⊂ B(z, 2−4k+1), for all z ∈ Zk.
Next goal is to show the tiling: that for every z ∈ Zk+1 there exists

w ∈ Zk such that Ez ⊂ Ew. For a given z ∈ Zk+1 choose w to be the
largest in ≺ element of Zk. Let w′ ∈ Zk be such that w ≺ w′. Let
z′ ∈ Zk+1, z

′ ∈ D(w′). Automatically z ≺ z′. And so {z′ ∈ Zk+1 : z′ ∈
D(w′)} ⊂ {z′ ∈ Zk+1 : z ≺ z′}. On the other hand, by definition
Vw′ ⊂

⋃
z′∈Zk+1 : z′∈D(w′) Vz′ , and so

Ṽw′ =
⋃

z′∈Zk+1 : z′∈D(w′)

Ṽz′ ⊂
⋃

z′∈Zk+1,z≺z′
Ṽz′

Ṽz \
⋃

z′∈Zk+1,z≺z′
Ṽz′ ⊂ Ṽw \

⋃
w′∈Zk,w≺w′

Ṽw′

This is exactly Ez ⊂ Ew.
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The notion of sparsity via Carleson measure condition.

For us this will be the right notion of sparse, rare family of cells.
From now on, we will fix a good AD regular in the entire space Rd+1

measure µ and a David-Semmes lattice D associated with it.

Definition 1. A family F ⊂ D is called Carleson with Carleson con-
stant C > 0 if for every P ∈ D, we have∑

Q∈F
P

µ(Q) 6 Cµ(P ) ,

where

F
P

= {Q ∈ F : Q ⊂ P} .

Bad cells: Non-BAUP cells.
We will start with the definition [DS, pg. 139] of a δ-non-BAUP cell.

In this book there are many abbreviations for various kind of geometric
badness of cells, here it stands for “bilateral approximation by unions
of d-planes.”

Definition 2. Let δ > 0. We say that a cell P ∈ D is δ-non-BAUP
if there exists a point x ∈ P ∩ suppµ such that for every hyperplane
L passing through x, there exists a point y ∈ B(x, `(P ))∩L for which
B(y, δ`(P )) ∩ suppµ = ∅.

Note that in this definition the plane L can go in any direction.
In what follows, we will need only planes parallel to certain H but,
since H is determined by the flatness direction of some unknown cell
P , we cannot fix the direction of the plane L in the definition of non-
BAUPness from the very beginning.

Theorem 1 (David–Semmes). Let µ be AD-regular. If for all δ > 0 the
family of δ-non-BAUP cells is a Carleson family, then µ is rectifiable.

The Main Theorem

Theorem 2. Let µ be an AD regular measure of dimension d in Rd+1.
If the associated d-dimensional Riesz transform operator

f 7→ R ∗ (fµ), where R(x) =
x

|x|d+1
,

is bounded in L2(µ), then the non-BAUP cells in the David-Semmes
lattice associated with µ form a Carleson family.
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Proposition 3.18 of David–Semmes [DS] (page 141) asserts that this
condition “implies the WHIP and the WTP” and hence, by Theorem
3.9 (pages 137), the uniform rectifiability of µ.

Hence the plan is to prove the main theorem, it reduces everything
to the above mentioned Theorem of David–Semmes (whose proof is
rather long (see [DS]), and the combination of these two results proves
finally the Uniform Rectifiability of E = suppµ.

The Idea of the proof of the Main Theorem.

Using the boundedness of Rµ in L2(µ) we will establish the abun-
dance of flat cells. On the other hand, if non-BAUP cells are not
rare (not Carleson) they will be also abundant. Then we will be able
to build intermitting layers of flat and non-BAUP cells. This will allow
us to construct an analog of the vector field ψ of Lecture 4 on non-
BAUP scales. This is because non-BAUP cell have holes in suppµ in
it! Flat cells will play the role of the set E of Lecture 4 (which was
totally flat). Then Riesz energy concentrated on each flat layer will be
sufficiently large (the non-BAUP layer encompassing a flat layer and
ψ of this non-BAUP layer ensures that). Then we will need that flat
layers are almost orthogonal. Adding a huge amount of not-so-small
Riesz energies we get estimate from below on

∫
|Rµ1|2 dµ as large as

we wish. This leads to a contradiction.

The flatness condition and its consequences We shall fix a linear
hyperplane H ⊂ Rd+1. Let z ∈ Rd+1, A,α, ` > 0 (we view A as a large
number, α as a small number, and ` as a scale parameter). We want
the measure µ to be close inside the ball B(z, A`) to a multiple of the
d-dimensional Lebesgue measure m

L
on the hyperplane L containing z

and parallel to H.
We say that a measure µ is geometrically (H,A, α)-flat at the point

z on the scale ` if every point of suppµ∩B(z, A`) lies within distance
α` from the affine hyperplane L containing z and parallel to H and
every point of L ∩ B(z, A`) lies within distance α` from suppµ. We
say that a measure µ is (H,A, α)-flat at the point z on the scale ` if
it is geometrically (H,A, α)-flat at the point z on the scale ` and, in
addition, for every Lipschitz function f supported on B(z, A`) such
that ‖f‖Lip 6 `−1 and

∫
f dm

L
= 0, we have∣∣∣∣∫ f dµ

∣∣∣∣ 6 α`d .
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Note that the geometric (H,A, α)-flatness is a condition on suppµ
only. It doesn’t tell one anything about the distribution of the measure
µ on its support. The latter is primarily controlled by the second, ana-
lytic, condition in the full (H,A, α)-flatness. These two conditions are
not completely independent: if, say, µ is AD regular, then the analytic
condition implies the geometric one with slightly worse parameters.
However, it will be convenient for us just to demand them separately.

The flatness means the possibility of mass transporting µ |B(z, A`)
to c ·mL |B(z, A`) with small cost α.

Flatness allows to switch integration over µ to that over c · mL.
Below are technical but very useful lemmas estimating the error of
such switching.

Two important elementary widely used technical lemmas.

Lemma 1. Let µ be a nice measure (estimate from above). Assume
that µ is (H,A, α)-flat at z on scale ` with some A > 5, α ∈ (0, 1). Let
ϕ be any non-negative Lipschitz function supported on B(z, 5`) with∫
ϕdm

L
> 0. Put

a =

(∫
ϕdm

L

)−1 ∫
ϕdµ, ν = aϕm

L
.

Let Ψ be any function with ‖Ψ‖
Lip(suppϕ)

< +∞. Then∣∣∣∣∫ Ψ d(ϕµ− ν)

∣∣∣∣ 6 Cα`d+2‖Ψ‖
Lip(suppϕ)

‖ϕ‖
Lip

.

As a corollary, for every p > 1, we have∣∣∣∣∫ |Ψ|p d(ϕµ− ν)

∣∣∣∣6C(p)α`d+2‖Ψ‖p−1

L∞(suppϕ)
‖Ψ‖

Lip(suppϕ)
‖ϕ‖

Lip
.

Lemma 2. Assume in addition to the conditions of Lemma 1 that
ϕ ∈ C2, and that the ratio of integrals a is bounded from above by some
known constant. Then∣∣∣∣∫ Ψϕ[RH(ϕµ− ν)] dµ

∣∣∣∣
6 Cα

1
d+2 `d+2

[
‖Ψ‖

L∞(suppϕ)
+ `‖Ψ‖

Lip(suppϕ)

]
‖ϕ‖2

Lip
.

where C > 0 may, in addition to the dependence on d, which goes
without mentioning, depend also on the growth constant of µ and the
upper bound for a.
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Disclaimer: The integral should be understood first. Split it as∫
Ψϕ[RH(ϕµ)] dµ −

∫
Ψϕ[RHν] dµ. Then RHν = aRH(ϕdmL) and

so is a smooth function as ϕ is smooth. The first term should be
understood as a form by using anti-symmetry of RH .

The first lemma is just by definition. In the second Lemma choose

δ = α
1
d+2 and split RH = RH

δ` +RH,δ`. Then∫
Ψϕ[RH

δ`(ϕµ− ν)] dµ = −
∫
RH
δ`(Ψϕdµ) d(ϕµ− ν)

is estimated by the first Lemma using ‖RH
δ`‖Lip 6 δ−(d+1)`−(d+1) and

‖RH
δ`(Ψϕdµ)‖Lip 6 ‖RH

δ`‖Lip‖Ψϕ‖L1(µ).

The short range term
∫

Ψϕ[RH,δ`(ϕµ− ν)] dµ essentially reduces to
estimate:

1

2

∣∣∣ ∫∫
|x−y|6δ`

RH(x− y)(Ψ(x)−Ψ(y))ϕ(x)ϕ(y) dµ(x) dµ(y)
∣∣∣ 6

6
1

2
‖Ψ‖

Lip(suppϕ)
‖ϕ‖2

L∞

∫∫
x,y∈suppϕ,|x−y|<δ`

dµ(x) dµ(y)

|x− y|d−1
6

6 Cδ`d+3‖Ψ‖
Lip(suppϕ)

‖ϕ‖2

Lip
.

Geometric Flattening Lemma.

We are heading to the proof that the boundedness of Rµ in L2(µ)
implies flatness of abundant family of cells. The first step is the fol-
lowing analysis-to-geometry Lemma. Fix some continuous function
ψ0 : [0,+∞)→ [0, 1] such that ψ0 = 1 on [0, 1] and ψ0 = 0 on [2,+∞).
For z ∈ Rd+1, 0 < r < R, define

ψ
z,r,R

(x) = ψ0

(
|x− z|
R

)
− ψ0

(
|x− z|
r

)
.

Lemma 3 (Geometric Flattening Lemma). Fix five positive param-

eters A,α, β, c̃, C̃ > 0. There exists ρ > 0 depending only on these
parameters and the dimension d such that the following implication
holds.

Suppose that µ is a C̃-good measure on a ball B(x,R) centered at a
point x ∈ suppµ that is AD regular in B(x,R) with lower regularity
constant c̃. Suppose also that

|[R(ψ
z,δR,∆R

µ)](z)| 6 β

for all ρ < δ < ∆ < 1
2

and all z ∈ B(x, (1 − 2∆)R) such that

dist(z, suppµ) < δ
4
R.
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Then there exist a scale ` > ρR, a point z ∈ B(x,R− (A+α)`), and
a linear hyperplane H such that µ is geometrically (H,A, α)-flat at z
on the scale `.

Replacing µ by R−dµ(x + R·) if necessary, we may assume without
loss of generality that x = 0, R = 1.

The absence of geometric flatness and also the boundedness of
[R(ψ

z,δ,∆
µ)](z) are inherited by weak limits. More precisely, let νk

be a sequence of C̃-good measures on B(0, 1) and AD-regular there
with lower regularity constant c̃. Assume that ν is another measure on
B(0, 1) and νk → ν weakly in B(0, 1).

Lemma 4.

• If for some A′ > A and 0 < α′ < α, the measure ν is ge-
ometrically (H,A′, α′)-flat on the scale ` > 0 at some point
z ∈ B(0, 1 − (A′ + α)`), then for all sufficiently large k, the
measure νk is geometrically (H,A, α)-flat at z on the scale `.
• If for some 0 < δ < ∆ < 1

2
and some z ∈ B(0, 1 − 2∆) with

dist(z, suppν) < δ
4
, we have |[R(ψ

z,δ,∆
ν)](z)| > β, then for

all sufficiently large k, we also have dist(z, suppνk) <
δ
4

and
|[R(ψ

z,δ,∆
νk)](z)| > β.

So suppose that with fixed 5 constants as above and with smaller and
smaller ρk we still have µk’s with the absence of geometric flatness
and at the same time with the boundedness of R[(ψ

z,δ,∆
ν)](z), 0 <

ρk < δ < ∆ < 1/2, for all z ∈ B(0, 1− 2∆), dist(z, suppµk) <
δ
4

by the
same β. Then we can come to a weak limit, and get that this limit µ
negates the following Alternative.

Alternative. If ν is any good measure on B(0, 1) that is AD regular
there, then either for every A,α > 0 there exist a scale ` > 0, a
point z ∈ B(0, 1− (A+ α)`) and a linear hyperplane H such that ν is
geometrically (H,A, α)-flat at z on the scale `, or

sup
0<δ<∆< 1

2

z∈B(0,1−2∆),dist(z,suppν)< δ
4

|[R(ψ
z,δ,∆

ν)](z)| = +∞ .

We are left to prove the Alternative.

Sketching the proof of the Alternative The negation of every of
the two condition of the Alternative is inherited by all tangent measures
of ν. Since ν is finite and AD regular in B(0, 1), its support is nowhere
dense in B(0, 1). Take any point z′ ∈ B(0, 1

2
)\supp ν. Let z be a closest
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point to z′ in suppν. Note that since 0 ∈ supp ν, we have |z−z′| 6 |z′|,
so |z| 6 2|z′| < 1. Also, the ball B = B(z′, |z−z′|) doesn’t contain any
point of supp ν. Let n be the outer unit normal to ∂B at z. Consider
the blow-ups νz,λ of ν at z. As λ→ 0, the supports of νz,λ lie in a smaller
and smaller neighborhood of the half-space S = {x ∈ Rd+1 : 〈x, n〉 > 0}
bounded by the linear hyperplane H = {x ∈ Rd+1 : 〈x, n〉 = 0}. So,
every tangent measure of ν at z must have its support in half-space
S. Thus, starting with any measure ν that gives a counterexample to
the alternative we are trying to prove, we can modify it so that it is
supported on a half-space. But this is impossible: either support is
then on the boundary of S (then geometric flatness “almost” follows)

or if otherwise, then the integral
∫
B(0,∆)

〈x,n〉
|x|d+1 dν(x) blows up.

We proved the geometric flattening lemma.

The flattening lemma.

This is the major step in the argument: from geometric flatness
and the absence of large oscillation of RHµ on suppµ near some fixed
point z on scales � ` to the flatness of µ at z on scale `.

Lemma 5. Fix four positive parameters A,α, c̃, C̃. ∃A′, α′ > 0 de-

pending on A,α, c̃, C̃ and d such that: if H is a linear hyperplane in
Rd+1, z ∈ Rd+1, L is the affine hyperplane containing z and parallel

to H, ` > 0, and µ is a C̃-good finite measure in Rd+1 that is AD
regular in B(z, 5A′`) with the lower regularity constant c̃. Assume that
µ is geometrically (H, 5A′, α′)-flat at z on the scale ` and, in addition,
for every (vector-valued) Lipschitz function g with suppg ⊂ B(z, 5A′`),
‖g‖

Lip
6 `−1, and

∫
g dµ = 0, one has

|〈RH
µ 1, g〉µ| 6 α′`d .

Then µ is (H,A, α)-flat at z on the scale `.

The proof is rather involved, see [NToV1]. In the next lecture we will
prove that the cells that are not flat are very rare (satisfy the Carleson
measure condition that was mentioned at the beginning of this lecture).

Discussion.

The first step in proving the rectifiability of a measure is showing that
its support is almost planar on many scales in the sense of the geometric
(H, 5A′, α′)-flatness in the assumptions of the Flattening Lemma. This
step is not that hard and we will carry it next.

The second assumption involving the Riesz transform means, roughly
speaking, that RH

µ 1 is almost constant on suppµ∩B(z, A′`) in the sense
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that its “wavelet coefficients” near z on the scale ` are small. There is
no canonical smooth wavelet system in L2(µ) when µ is an arbitrary
measure but mean zero Lipschitz functions serve as a reasonable sub-
stitute. The boundedness of RH

µ in L2(µ) implies that RH
µ 1 ∈ L2(µ)

(because for finite measures µ, we have 1 ∈ L2(µ)), so an appropri-
ate version of the Bessel inequality can be used to show that large
wavelet coefficients have to be rare and the balls satisfying the second
assumption should also be viewed as typical.
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