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1. Lecture 4: Replacement of curvature: Riesz energy
and its estimates

We are interested in the following singular Riesz transforms:

Rsφ(x) =

∫
Rn

Rs(x− y)f(y) dµ(y)

understood as a Calderón-Zygmund operator. Here x, y ∈ Rn, s ∈
(0, n],

Rs(x) =
x

|x|s+1
, Rs(x) = (Rs

1, . . . , R
s
n) , Rs

j(x) =
xj
|x|s+1

.

The measure µ is an Ahlfors–David (AD) regular measure in Rn mean-
ing that

c rs 6 µ(B(x, r)) 6 C rs

for all x in support of µ and all r 6 diamE, where E := suppµ.

Conjecture 1. If the operator Rs (this is actually n operators) is
bounded in L2(µ) then

1) s is integer;
2) if s = m is already integer, then support E of µ is m-
rectifiable.

Definition 1. A set E in Rn is called m-rectifiable, if there are {Γk}∞k=1

Lipschitz images of Rm, so that Hm(E \
⋃∞
k=1 Γk) = 0.

This notion is equivalent to m-rectifiability given in the previous
lectures, [Fe].

The conjecture belongs to David and Semmes. For a special case
s = n−1 it has received a lot of attention. In particular, because of its
relations with regularity of solutions of Laplace equation in domains
with very low regularity. For a long time it is remained open even
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for the case n = 2 (and 1 < s < 2). For n = 2, s = 1 it was done
by Mattila–Melnikov–Verdera [MMV] in case of homogeneous sets (1-
Ahlfors regular sets), [DM], [NTV] plus [Le] for the nonhomogeneous
situation. For s = 1 Menger’s curvature tool was available. It is
“cruelly missing” for s > 1.

We present here a case of arbitrary n and s = n−1. That is the case
of co-dimension 1. The case 0 < s 6 1 can be treated using Menger’s
curvature. This has been done by Laura Prat, Xavier Tolsa. In the
case s = n there is nothing to do. The case n− 1 < s < n was solved
by Eiderman–Nazarov–Volberg recently [ENV].

Definition 2. LetHs(E) <∞. We call a point x super s-nonhomogeneous
(irregular) point of E if

θs∗(HdbE, x) = lim inf
r→0

1

rs
Hs(E ∩B(x, r)) = 0.

The following geometric statement for s = n− 1 is also quite easily
discernible (but not conspicuously formulated) in [ENV]:

Theorem 1. Let µ := Hn−1bE, where 0 < Hn−1(E) <∞. Let Rn−1
µ :

L2(µ)→ L2(µ) be a bounded operator. Then the µ measure of the set of
super (n− 1)-nonhomogeneous points of E is zero, that is θs∗(µ, x) > 0
for µ-a.e. x.

New tools of Riesz energy were used in [ENV]. We start with these
tools here.

We omit the use of the index s = n− 1 in what appears below; that
is we write

R := Rn−1(x) = (R1, . . . , Rn) , Rj := Rd
j (x) =

xj
|x|n

.

Given a hyperplane H on which xn = const we consider RH :=
Rs(x) = (Rs

1, . . . , R
s
n−1) and notice that the operatorRH∗ acts on vector

fields: let ψ = (ψ1, . . . , ψn−1) be an Lp(mn−1) vector function on H.
Then RH∗ψ = R1(ψ1 dmn−1) + · · · + Rn(ψn−1mn−1), where mn−1 is
Lebesgue measure on H.

Riesz Energy. We wish to give the estimate from below for the
expression

E(f, E) :=

∫
H

(Rf)2(x)f(x) dmn−1(x) ,

where E ⊂ H and 0 6 f 6 1 function is supported on E. We want to
give the estimate from below of E(f, E) in terms of |E| := Hn−1(E) =
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mn−1(E) <∞ and

mass := mass(f dmn−1) = mass(f dHn−1) :=

∫
H

f dmn−1 .

Theorem 2. E(f, E) > cn
(mass)5
|E|4 , where cn > 0.

To do that we want first the following vector field ψ on H:

•
∫
H
|ψ| dmn−1 6 C1 <∞ ;

•
∫
H
|ψ|2 dmn−1 6 C2 <∞ ;

• RH∗ψ(x) = 1 , mn−1 a. e. on E .

To do this put ψ0 = 0, φ0 = χE,

(1) ψk+1 − ψk = χ
{Rφk>A−k}

Rφk ,

and

χER
∗(ψk+1 − ψk) = φk − φk+1 ,

where A := 2 + ε will be chosen momentarily. Here we use R for RH

temporarily.

Then

φk+1 = χER
∗(χ
{Rφk6A−k}

Rφk)

By induction (using that mn−1(E) < ∞) ‖φk+1‖2 6 C‖φk+1‖4 6( ∫
|Rφk|2A−2k

)1/4
6 C2−k/2A−k/2 6 2−k−1.

Automatically ψk converges in L2(H,mn−1), see (1). But also in
L1(H,mn−1). In fact,∫
H

|ψk+1 − ψk| dmd 6 C‖φk‖2|{Rφk > A−k}|1/2 6 C 2−k(2−2kA2k)1/2 =

= C 4−kAk 6 C qk, and q < 1 if A < 4. Hence, ψ := limk ψk is in
L1(H) ∩ L2(H). As ψ0 = 0, φ0 = χE, we use (1) again:

χER
∗ψN = χE − φN .

Taking the limit in N →∞ we get R∗ψ = 1 on E.

Now we start the estimate of the Riesz energy from below. Suppose
that E(f, E) < λ · mass with a very small λ. Let H = {xn = 0}.
Consider a new measure

dν := f(x)dmd × δ−1χ[0,δ]
dxn .

Lemma 1.
∫
|RHν|2 dν → E(f, E) when δ → 0.
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In fact, notice that given intervals I containing 0 and of length δ we
have for almost every x ∈ E ⊂ H:

lim
δ→0

sup
I

∣∣∣ 1

|I|

∫
I

(RHf)(x, xn) dxn − (RHf)(x, 0)
∣∣∣ = 0 .

Moreover this convergence is dominated by an L2(H) majorant.

Therefore,

lim
δ→0

sup
xn∈[0,δ]

∣∣∣ ∫
E

|(RHf)(x, xn)|2 dmn−1 −
∫
E

|(RHf)(x, 0)|2 dmn−1

∣∣∣ = 0 ,

which immediately means that∫
|RHν|2 dν → E(f, E) .

This proves the lemma. Hence we can assume that

(2) E(ν) :=

∫
|RHν|2 dν < λ ·mass(ν) .

Now we will estimate the Riesz Energy E(ν) from below. For that
purpose introduce functional on functions a ∈ L∞(ν):

H(a) := λ‖a‖∞mass(ν) +

∫
|RH(a dν)|2 adν;

under the assumptions a > 0, mass(a dν) = mass(ν). The minimum is
attained. In fact, let {ak} be a minimizing sequence.

λ‖ak‖∞mass 6 H(ak) 6 H(1) = λmass + E(ν) < 2λmass

by assumption (2). Therefore, ‖ak‖∞ 6 2. WLOG ak → a ∈ L∞(ν)
weakly. So

• ‖a‖∞ 6 lim infk ‖ak‖∞.
• RH(ak dν) are uniformly in any Lp(ν) (p = 4, say).
• For every compact subset S ⊂ supp ν we can conclude that
RH(ak dν)(x) converge to RH(a dν)(x) uniformly for x ∈ S.

This last assertion follows from the observation that the set {RH(x−
·)}x∈S is a continuous image of the compact set S into L1(ν), and hence,
it is compact in L1(ν). Integrating it with ak(x) that converges weakly
to a in L∞(ν), we obtain the uniform convergence on S. The existence
of a minimizer a, ‖a‖∞ 6 2 and H(a) 6 2λmass is very important.
Denote

νa := a dν
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and let U be a set, where a > 0. Denote

νat := a(1− tχ
U

)ν .

H(at) = H(a)− t
[ ∫

U

|RHνa|2 dνa + 2

∫
U

RH∗[(RHνa)dνa
]
dνa

]
+ o(t2) .

The mass of νat is (mass − tνa(U)), therefore at is not admissible. To

make it admissible consider mass
mass−tνa(U)

at =
(

1− t νa(U)
mass

)−1
at.

Then

H(a) 6 H
( mass

mass− tνa(U)
at

)
6
(

1− tνa(U)

mass

)−3
H(at) 6 H(a)+

t
[
3
νa(U)H(a)

mass
−
(∫

U

|RHνa|2 dνa + 2

∫
U

RH∗[(RHνa)dνa
]
dνa

)]
+o(t2)

This immediately implies:∫
U

|RHνa|2 dνa + 2

∫
U

RH∗[(RHνa)dνa
]
dνa 6 3νa(U)

H(a)

mass
.

This holds for every U on which a is strictly positive. We use also
H(a) 6 2λmass. Then point-wisely

|RHνa|2 + 2RH∗[(RHνa)dνa
]
6 6λ

on O := {x ∈ Rn : a > 0}. But all functions here are continuous (this
is why we replaced f dmn−1 by “mollified” ν). So this holds on closO.

However, RHµ is harmonic outside of the support of µ for any µ.
In our case µ = νa and supp νa = closO. All functions above are
subharmonic and continuous. Maximum Principle shows now that

(3) |RHνa|2 + 2RH∗[(RHνa)dνa
]
6 6λ

is true everywhere in Rn. In particular, it is true on H on which ψ
lives. Integrate (3) with respect to |ψ| dmn−1bH. We remember:

•
∫
H
|ψ| dmn−1 6 C1 <∞ ;

•
∫
H
|ψ|2 dmn−1 6 C2 <∞ ;

• RH∗ψ(x) > 1 , md a. e. on E .

From the very beginning we can think that E is the union of finitely
many (but a very large number) of n− 1 dimensional balls in H. Then
we can mollify ψ to keep the first two claims and to have the third one
holding in a small neighborhood N(E) of E already in Rn (RH∗ applied
to a smooth vector function on H produces a continuous function in
Rn). So we will get

(4) RH∗ψ(x) > 1/2 , mn a. e. on N(E) .
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We get∫
|RH(νa)|2|ψ| dmn−1 6 6C1λ+

∣∣∣ ∫ RH(|ψ| dmn−1) ·RH(νa)dνa

∣∣∣
6 6C1λ+

√
2H(a)1/2

( ∫
|RH(|ψ| dmn−1)|2 dν

)1/2
.

The last integral can be taken “layer” by “layer” as dν = dmn−1 ×
δ−1dxn. On each layer we use that RH is bounded in L2(mn−1). Hence,
we continue∫

|RH(νa)|2|ψ| dmn−1 6 6C1λ+ 2λ1/2mass1/2
( ∫

H

|ψ|2 dmn−1
)1/2

.

Temporarily normalize by |E| 6 1 ⇒ mass 6 1. Then integrate (4)
with respect to dνa whose support lies in N(E) if δ is sufficiently small.
Cauchy inequality gives then 1

2
mass = 1

2
mass(νa) 6 1

2
|
∫
RH∗ψ dνa| =

1

2
|
∫
RH(νa)ψ dmn−1| 6

1

2

∫
|RH(νa)||ψ| dmn−1 6 C(λ+λ1/2)1/2 6 Cλ1/4 .

Therefore, using the assumption |E| 6 1 we finally get the estimate
on λ from below λ > c(mass)4 = c(

∫
f dmn−1)

4. This gives us imme-
diately the following estimate on the Riesz energy from below (see (2)
with minimal λ):

E(f, E) > c
(∫

f dmn−1
)5
.

To get rid of the assumption |E| 6 1 we just use the scaling invariance
to get

(5) E(f, E) > c
(∫ f dmn−1

|E|

)4 ∫
f dmn−1 =

mass5

|E|4
.

Theorem 2 is proved.
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