
RECTIFIABILITY OF MEASURES WITH BOUNDED
RIESZ TRANSFORM OPERATOR: FROM SINGULAR
OPERATORS TO GEOMETRIC MEASURE THEORY

ALEXANDER VOLBERG

1. Lecture 3: Bounded Riesz operator: a reduction from
nonhomogeneous sets to (n− 1)-AD regular sets.

Let us recall our goals. They are reduced to proving

Theorem 1. Let Hn−1(E) < ∞. If Rn−1
n is bounded in L2(E,Hn−1),

and E is (n− 1)-AD regular, then E is (n− 1)-uniformly rectifiable.

Theorem 2. Let Hn−1(E) < ∞. If Rn−1
n is bounded in L2(E,Hn−1),

then the set E is (n− 1)-rectifiable.

In this lecture we will reduce Theorem 2 to Theorem 3. In other
words we will show why AD-regularity can be assumed without loss of
generality. This is not very simple. The reduction will be based on
Pajot’s idea [Paj] and on elimination of super nonhomogeneous points
of the measure µ := Hn−1bE. The dimension being (n− 1) will (unfor-
tunately) play a crucial part in this latter elimination based on paper
of Eiderman–Nazarov–Volberg [ENV].

1.1. The Main Lemma.

1.2. Statement of the Main Lemma. We say that a Borel measure
µ in Rn has growth of degree d if there exists some constant c such that

µ(B(x, r)) ≤ c rd for all x ∈ Rd, r > 0.

We define the upper and lower d-dimensional densities by

θd,∗(x, µ) = lim sup
r→0

r−dµ(B(x, r)) and θd∗(x, µ) = lim inf
r→0

r−dµ(B(x, r)),

respectively.
If µ and σ are Borel measures on Rn, the notation µ ≤ σ means that

µ(A) ≤ σ(A) for all Borel sets A ⊂ Rn. Let R denote the operator
with the kernel Rd

n(x− y).
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Lemma 1 (Main Lemma). Let µ be a compactly supported finite Borel
measure in Rn with growth of degree d such that θd∗(x, µ) > 0 for µ-a.e.
x ∈ Rn. Suppose that Rµ is bounded in L2(µ). Then there are finite
Borel measures µk, k ≥ 1, such that

(a) µ ≤
∑

k≥1 µk
(b) µk is AD-regular for each k ≥ 1 (with the AD-regularity con-

stant depending on k), and
(c) for each k ≥ 1, Rµk is bounded in L2(µk).

1.3. Proof of Theorem 2 using the Main Lemma 1. Let E ⊂ Rn

be a bounded set with Hn−1(E) < ∞. Set µ = Hn−1bE, and suppose
that Rµ is bounded in L2(µ).

Let E0 be the subset of those x ∈ E for which θn−1
∗ (x, µ) = 0. We

can call such points super nonhomogeneous points. We want to get rid
of them. We set

µ0 = µbE0.

Then,

θn−1
∗ (x, µ0) 6 θn−1,∗(x, µ) = 0 for µ0-a.e. x ∈ Rn,

and, moreover, Rµ0 is bounded in L2(µ0). Then, by the main theorem
of [ENV] (applied to the co-dimension 1 case) we deduce that µ0 = 0.
That is,

θn−1
∗ (x, µ) > 0 for µ-a.e. x ∈ Rn.

So the measure µ satisfies the assumptions of Main Lemma 1, and thus
we may consider measures µk as in the statement of the Main Lemma.

By the result of [NToV1] suppµk is (n− 1)-rectifiable. Therefore,

F =
⋃
k≥1

suppµk

is also (n− 1)-rectifiable. Since

Hn−1(E \ F ) = µ(Rn \ F ) ≤
∑
k

µk(Rn \ F ) = 0,

we infer that E is (n − 1)-rectifiable too. Theorem 2 is proved up to
the proof of Lemma 1. Below we never again use that d = n− 1. The
only two usages of this fact happened above.

1.4. Preliminaries in the proof of the Main Lemma 1. For the
proof of the Main Lemma 1 we will need the following proposition.

Lemma 2. Let µ and σ be Borel measures with growth of degree d
in Rn such that Rµ is bounded in L2(µ) and Rσ is bounded in L2(σ).
Then, Rµ+σ is bounded in L2(µ+ σ).
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Proof. The boundedness of Rµ in L2(µ) implies the boundedness of R
from the space of real measures M(Rn) into L1,∞(µ). In other words,
the following inequality holds for any ν ∈M(Rd) uniformly on ε > 0:

µ
{
x ∈ Rn : |Rεν(x)| > λ

}
≤ c
‖ν‖
λ

for all λ > 0.

For the proof, see Theorem 9.1 of [NTrV1]. Analogously, the same
bound holds with µ replaced by σ. As a consequence, we infer that for
all λ > 0,

(µ+ σ)
{
x ∈ Rn : |Rεν(x)| > λ

}
≤ c
‖ν‖
λ
.

That is, R is bounded from M(Rn) into L1,∞(µ + σ). In particular,
Rµ+σ is of weak type (1, 1) with respect to µ + σ. This implies that
Rµ+σ is bounded in L2(µ + σ). For the proof, based on interpolation,
see Theorem 10.1 of [NTrV1] (an alternative argument based on a good
lambda inequality can be also found in Chapter 2 of the book [T-b]).

�

Let us remark that the preceding lemma and its proof remain valid
for more general Calderón-Zygmund operators. However, we will need
it only for the Riesz transforms.

In the proof of the Main Lemma 1 it will be convenient to work with

an ε-regularized version R̃µ,ε of the Riesz transform Rµ. We set

R̃µ,εf(x) =

∫
x− y

max(|x− y|, ε)d+1
f(y) dµ(y).

It is easy to check that

|R̃µ,εf(x)−Rµ,εf(x)| ≤ cMµf(x) for all x ∈ Rn,

where c is independent of ε and Mµ is the centered maximal Hardy-
Littlewood operator with respect to µ:

Mµf(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f | dµ.

Since Mµ is bounded in L2(µ), it turns out that Rµ is bounded in

L2(µ) if and only if the operators R̃µ,ε are bounded in L2(µ) uniformly

on ε > 0. The advantage of R̃µ,ε over Rµ,ε is that the kernel

Kε(x) =
x

max(|x|, ε)d+1

is continuous and satisfies the smoothness condition

|∇Kε(x)| ≤ c

|x|d+1
, |x| 6= ε
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(with c independent of ε), which implies that Kε(x− y) is a Calderón-
Zygmund kernel (with constants independent of ε), unlike the kernel
of Rµ,ε.

We follow the idea of Pajot [Paj], where some measures µk satisfying
(a) and (b) of Lemma 1 are constructed. For the reader’s convenience,
we will repeat the arguments of the construction, and subsequently we
will show that the statement (c) holds. Some extra calculation will be
though needed for that.

It is known that the L2(µ) boundedness of Rd
µ and the fact that µ

has no point masses implies that µ has growth of degree d. See [Da4,
Proposition 1.4, p.56].

Let D := diamE. Consider the subset F ⊂ suppµ of those x ∈ Rn

for which θd∗(x, µ) > 0, so that µ(Rn \ F ) = 0. For positive integers
p, s, we denote

Fp =
{
x ∈ F : for 0 < r ≤ D, µ(B(x, r)) ≥ 1

p
rd
}
,

Fp,s =
{
x ∈ Fp : for 0 < r ≤ D, µ(Fp ∩B(x, r)) ≥ 1

ps
rd
}
,

where D = diam(suppµ). From the definitions of F and Fp, it is clear
that

F =
⋃
p≥1

Fp.

Also, θn∗ (x, µ) = θn∗ (x, µbFp) for µ-a.e. x ∈ Fp by the Lebesgue differ-
entiation theorem, and thus

µ
(
Fp \

⋃
s≥1

Fp,s

)
= 0.

So we have

µ ≤
∑
p,s≥1

µbFp,s.

The strategy of the construction consists in adding a measure σp,s to
each µbFp,s so that the resulting measure is AD-regular, for each p, s.

It is easy to check that all the sets Fp and Fp,s are compact. Fix p, s
and denote

d(x) =
1

10
dist(x, Fp,s).

Notice that d(y) > 0 if x 6∈ Fp,s, as Fp,s is closed. Now we cover
Fp \Fp,s by a family of balls of the form B(x, d(x)), with x ∈ Fp \Fp,s,
using Besicovitch’s covering theorem. So there exists a family of points
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Hp,s ⊂ Fp \ Fp,s, at most countable, such that

Fp \ Fp,s ⊂
⋃

x∈Hp,s

B(x, d(x)),

and ∑
x∈Hp,s

χ
B(x,d(x))

≤ Cd .

Moreover, we can split Hp,s =
⋃Nd

i=1 H
i
p,s so that for each i, the balls

from {B(x, d(x))}x∈Hi
p,s

are pairwise disjoint (see Theorem 2.7 in p. 30

of [Ma]). Here Cn, Nn are some constants depending on n only.
To define σp,s, for each x ∈ Hp,s we consider an arbitrary d-plane Πx

containing x and set Px = Πx ∩B(x, 1
2
d(x)). Then we define

σp,s = HdbΠp,s +
∑
x∈Hp,s

HdbPx

where Πp,s is an arbitrary d-plane in Rn intersecting Fp,s. We set

µp,s = σp,s + µbFp,s.
We also denote

σip,s =
∑
x∈Hi

p,s

HdbPx,

so that σp,s = HdbΠp,s +
∑Nd

i=1 σ
i
p,s. We will show now that µp,s is

AD-regular.

1.5. Lower AD-regularity of µp,s.

µp,s(B(x, r)) > δ(p, s)rd, x ∈ suppµp,s .

We refer the reader to [Paj], [NToV2] for this purely geometric proof.
It is interesting to notice that we would be able to prove this lower
regularity without going to the seemingly “unnatural” construction of
second order splitting Fp,s. In fact we could have considered only Fp,
corresponding σp, µp and the lower AD-regularity of the latter measure
would follow.

But not so for the seemingly easier upper AD-regularity. The beau-
tiful idea of Pajot to split Fp to Fp,s turns out to be critical for the
proof of

1.6. Upper AD-regularity of µp,s.

µp,s(B(x, r)) 6 ∆(p, s)rd, x ∈ suppµp,s .

This is more difficult, the second splitting is essential in the proof,
see [Paj], [NToV2].
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1.7. Boundedness of Rµp,s in L2(µp,s). We set r(x) = 1
2
d(x) for

x ∈ H i
p,s. So σip,s is a measure supported on the union of the closed

balls

(1) Bx := B(x, r(x)) = B(x,
1

2
d(x)), x ∈ H i

p,s,

coinciding with HdbPx inside Bx. Recall (see [NToV2], this is just
because H i

p,s ⊂ Fp) that

(2) µ(Bx) ≥
1

p
r(x)d

Taking into account that RµbFp,s is bounded in L2(µbFp,s), and that
RHdbΠp,s

is bounded in L2(HdbΠp,s), it is enough to show that Rσi
p,s

is bounded in L2(σip,s) for each i = 1, . . . , Nn. Then the repeated
application of Lemma 2 yields the result.

To simplify notation, for fixed p, s, i, we denote σ = σip,s, H = H i
p,s.

Now we define

ν =
∑
x∈H

cx µbBx,

with cx = Hd(Px)/µ(Bx). Observe that the constants cx, x ∈ H, are
uniformly bounded by some constant depending on p, because of (2),
and thus Rν is bounded in L2(ν). Further, ν(Bx) = σ(Bx) for each
x ∈ H. Recall also that, by construction both σ and ν are supported
on the union of the balls Bx, x ∈ H, and the double balls 2Bx are
pairwise disjoint.

It is clear that, in a sense, ν can be considered as an approximation
of σ (and conversely).

To prove the boundedness of Rσ in L2(σ), we will prove that R̃σ,ε is

bounded in L2(σ) uniformly on ε > 0 by comparing it to R̃ν,ε.

1.8. Boundedness of Local Operators related to σ. First we need
to introduce some local and non local operators: Given z ∈

⋃
x∈H Bx,

we denote by B(z) the ball Bx, x ∈ H, that contains z. Then we write,
for z ∈

⋃
x,x∈H Bx,

Rloc
ν,εf(z) = R̃ν,ε(fχB(z)

)(z), Rnl
ν,εf(z) = R̃ν,ε(fχRd\B(z)

)(z).

We define analogously Rloc
σ,εf and Rnl

σ,εf . It is straightforward to check

that Rloc
ν,ε is bounded in L2(ν), and that Rloc

σ,ε is bounded in L2(σ), both

uniformly on ε (in other words, Rloc
ν is bounded in L2(ν) and Rloc

σ is
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bounded in L2(σ)). Indeed,

‖Rloc
σ,εf‖2

L2(σ) =
∑
x∈H

‖χ
Bx
R̃σ,ε(fχBx

)‖2
L2(σ) ≤ c

∑
x∈H

‖fχ
Bx
‖2
L2(σ) = c‖f‖2

L2(σ),

by the boundedness of the d-Riesz transforms on d-planes. Using the
boundedness of Rν in L2(ν), one derives the L2(ν) boundedness of Rloc

ν,ε

analogously.

1.9. Boundedness of Non-Local Operators related to σ. We
must show that Rnl

σ is bounded in L2(σ). Observe first that, since

Rnl
ν,ε = R̃ν,ε − Rloc

ν,ε, and both R̃ν,ε and Rloc
ν,ε are bounded in L2(ν), it

turns out that Rnl
ν,ε is bounded in L2(ν) (all uniformly on ε > 0).

We will prove below that, for all f ∈ L2(ν) and g ∈ L2(σ) satisfying

(3)

∫
Bx

f dν =

∫
Bx

g dσ for all x ∈ H,

we have

(4) I(f, g) :=

∫
|Rnl

ν,εf −Rnl
σ,εg|2 d(ν + σ) ≤ c (‖f‖2

L2(ν) + ‖g‖2
L2(σ)),

uniformly on ε. Let us see how the boundedness of Rnl
σ in L2(σ) fol-

lows from this estimate. As a preliminary step, we show that Rnl
σ :

L2(σ) → L2(ν) is bounded. To this end, given g ∈ L2(σ), we consider
a function f ∈ L2(ν) satisfying (3) that is constant on each ball Bj. It
is straightforward to check that

‖f‖L2(ν) ≤ ‖g‖L2(σ).

Then from the L2(ν) boundedness of Rnl
ν and (4), we obtain

‖Rnl
σ,εg‖L2(ν) ≤ ‖Rnl

ν,εf‖L2(ν)+I(f, g)1/2 ≤ c‖f‖L2(ν)+c ‖g‖L2(σ) ≤ c ‖g‖L2(σ),

which proves that Rnl
σ : L2(σ)→ L2(ν) is bounded.

Notice that Rnl
ε is antisymmetric. Indeed, its kernel is[

1−
∑
x∈H

χ
Bx

(z)χ
Bx

(y)

]
z − y

max(|z − y|, ε)d+1
.

Then, by duality, we deduce that Rnl
ν : L2(ν) → L2(σ) is bounded.

To prove now the L2(σ) boundedness of Rnl
σ , we consider an arbitrary

function g ∈ L2(σ), and we construct f ∈ L2(ν) satisfying (3) which is
constant in each ball Bx. Again, we have ‖f‖L2(ν) ≤ ‖g‖L2(σ).

Using the boundedness of Rnl
ν : L2(ν)→ L2(σ) together with (4), we

obtain

‖Rnl
σ,εg‖L2(σ) ≤ ‖Rnl

ν,εf‖L2(σ)+I(f, g)1/2 ≤ c‖f‖L2(ν)+c ‖g‖L2(σ) ≤ c ‖g‖L2(σ),
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as wished.
It remains to prove that (4) holds for f ∈ L2(ν) and g ∈ L2(σ)

satisfying (3). For z ∈
⋃
x∈H Bx, we have

|Rnl
ν,εf(z)−Rnl

σ,εg(z)| ≤
∑

x∈H:z 6∈Bx

∣∣∣∣∫
Bx

Kε(z − y)(f(y) dν(y)− g(y) dσ(y))

∣∣∣∣ ,
where Kε(z) is the kernel of the ε-regularized n-Riesz transform. By
standard estimates, using (3), the fact that the balls 2Bx, x ∈ H, are
pairwise disjoint, and the smoothness of Kε, it follows that∣∣∣∣∫

Bx

Kε(z − y)(f(y) dν(y)− g(y) dσ(y))

∣∣∣∣
=

∣∣∣∣∫
Bx

(Kε(z − y)−Kε(z − x))(f(y) dν(y)− g(y) dσ(y))

∣∣∣∣
≤ c

∫
Bx

|x− y|
|x− y|d+1

(|f(y)| dν(y) + |g(y)| dσ(y))

≈ r(x)

dist(B(z), Bx)d+1

∫
Bx

(|f | dν + |g| dσ).

Recall that B(z) stands for the ball Bx, x ∈ H, that contains z.
We consider the operators

Tν(f)(z) =
∑

x∈H:z /∈Bx

r(x)

dist(B(z), Bx)d+1

∫
Bx

f dν ,

and Tσ, which is defined in the same way with ν replaced by σ. Observe
that

I(f, g) ≤ c‖Tν(|f |) + Tσ(|g|)‖2
L2(ν+σ)

≤ 2c‖Tν(|f |)‖2
L2(ν+σ) + 2c‖Tσ(|g|)‖2

L2(ν+σ)

= 4c‖Tν(|f |)‖2
L2(ν) + 4c‖Tσ(|g|)‖2

L2(σ),

where, for the last equality, we took into account that both Tν(|f |) and
Tσ(|g|) are constant on each ball Bx and that ν(Bx) = σ(Bx) for all
x ∈ H.

To finish the proof of (4) it is enough to show that Tν is bounded
in L2(ν) and Tσ in L2(σ). We only deal with Tσ, since the arguments
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for Tν are analogous. We argue by duality again. So we consider non-
negative functions f, h ∈ L2(σ). We have∫

Tσ(f)h dν ≈
∫ ( ∑

x∈H:z 6∈Bx

r(x)

dist(z,Bx)n

∫
Bx

f dσ

)
h(z) dσ(z)

=
∑
x∈H

r(x)

∫
Bx

f dσ

∫
Rd\Bx

1

dist(z,Bx)d+1
h(z) dσ(z).

From the growth of degree d of σ and the fact that the balls 2Bx are
disjoint, it follows easily that∫

Rn\Bx

1

dist(z,Bx)d+1
h(z) dσ(z) ≤ c

r(x)
Mσh(y),

for all y ∈ Bx, where Mσ stands for the (centered) maximal Hardy-
Littlewood operator (with respect to σ). Then we deduce that∫

Tσ(f)h dσ .
∑
x∈H

∫
Bx

f(y)Mσh(y) dσ(y) . ‖f‖L2(σ)‖h‖L2(σ),

by the L2(σ) boundedness of Mσ. Thus Tσ is bounded in L2(σ).
So we completely proved that Rd

σ is bounded in L2(σ). Then we have
that Rd

µp,s is bounded in L2(µp,s) (this is just a repeated application of

Lemma 2).
But µp,s is a d-AD regular measure. So Lemma 1 (the Main Lemma)

is proved. And, by the way, d = n − 1 was not used in its proof.
Therefore, Theorem 2 got entirely reduced to Theorem 3.

In the rest of our lectures we will be mostly concerned with indicating
the main points of the proof of Theorem 3:

Theorem 3. Let Hn−1(E) < ∞. If Rn−1
n is bounded in L2(E,Hn−1),

and E is (n− 1)-AD regular, then E is (n− 1)-uniformly rectifiable.
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