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RIESZ TRANSFORMS: FROM SINGULAR

OPERATORS TO GEOMETRIC MEASURE THEORY

ALEXANDER VOLBERG

1. Lecture 2: The description of removable sets of
Lipschitz harmonic functions

1.1. Critical Dimension. Let L(E) denote the set of harmonic func-
tions in Rn \E (E is compact as usual), such that they are bounded at
infinity and Lipschitz in Rn. Of course then they are bounded in Rn.
Constant functions belong to L(E). We want to describe sets E such
that L(E) contains only constant functions.

Definition 2.1. Such sets are called removable for Lipschitz har-
monic functions.

Two remarks are in order:
Remarks. 1) Removability is a local notion. What we mean by that

is that if we consider a big ball containing E and denote by L(E,B)
the set of harmonic functions in B \ E (E is compact as usual), such
that they are Lipschitz in B, then removability of E is equivalent to

L(E,B) = L(∅, B) ,

which means that L(E,B) consists only of functions harmonic (and
Lipschitz) in the whole ball B.

2) Instead of the class L(E) we could have considered a slightly
bigger class of functions harmonic in Rn \ E, Lipschitz in Rn \ E and
continuous in Rn. Everything below will be true. But if E does not
have interior (and in many interesting cases it will not have interior)
this is the same class.

First let us understand what is the critical dimension of removability/non-
removability threshold.

Obviously, if dim E = s = n−1+ε, there are plenty of non-constant
functions in L(E). Here is why. By Frostman’s lemma [Carl] E carries
a strictly positive measure σ, such that

σ(B(x, r)) 6 rs, ∀x ∈ E.
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Consider the Newtonian potential (here we write it for n > 3)

Uσ(x) :=

∫
1

|x− y|n−2
dσ(y).

It is a harmonic function outside the support of σ, so in Rn \ E. Its
gradient

∇Uσ(x) = Rn−1
n (σ)(x) :=

(
x1
|x|n

, . . . ,
xn
|x|n

)
∗ σ

will be a bounded in the whole Rn vector function. In fact,∣∣∣∣∫ diamE

0

xi − yi
|x− y|n

dσ(y)

∣∣∣∣ 6 ∫ diamE

0

1

|x− y|n−1
dσ(y) 6

C

∫ diamE

0

σ(B(x, r))

rn
dr 6 C

∫ diamE

0

rn−1+ε

rn
dr < C(n, ε) .

This shows that Uσ is a Lipschitz function. The fact that it is not
constant follows from an elementary calculation of the flux. Let S
denote a sphere in Rn \ E that has the whole E inside it, let ν be
the outer unit normal to S. Then it is easy to see that (with strictly
positive absolute constant c(n))∫

S

∂Uσ

∂ν
dHn−1 = −c(n)σ(E) 6= 0.

On the other hand, if dim E < n− 1, or if the dimension is equal to
n − 1, but Hn−1(E) = 0, then L(E) contains only constant functions.
Let us see this.

Our E can be put inside the union of finitely many closed balls Bi

of radius ri such that ∑
rn−1i < ε.

Let Si be the boundaries of these balls. By Φx(y) = c(n)
|x−y|n−2 we denote

the fundamental solution of Laplacian in Rn (here n > 3). Let Ω be a
component of infinity of Rn \ ∪iBi, and let S be boundary of Ω. Let ν
be unit normal to S directed inside Ω. Choose a point x far from E.
Then if ε is small it will be in Ω.

Let u ∈ L(E) and u(∞) = 0. We write

|u(x)| 6
∣∣∣∣∫
S

u(y)
∂Φx

∂νy
dHn−1

∣∣∣∣+∣∣∣∣∫
S

Φx(y)
∂u

∂νy
dHn−1

∣∣∣∣ 6 (C1+C2)Hn−1(S) 6 Cε.

Here C1, C2 are L∞ bounds for u|Rn and |∇u||Rn correspondingly.
As ε can be chose arbitrary close to zero, we see that∇u = 0 identically.
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So we see that the critical dimension for removability for Lipschitz
harmonic functions is n− 1. Moreover there are only two cases left.

1.2. Two Cases. Here they are: 1) 0 < Hn−1(E) < ∞; 2) dim E =
n− 1, Hn−1(E) =∞.

For n = 2 both cases are treated, the first by David–Mattila in [DM]
and Nazarov–Treil–Volberg in [NTV] (see also the exposition in [Vo]).
The second case is treated by Tolsa in [T1] (see also the exposition in
[Vo], [T-b]).

However, for n > 3 we can teat only the first case. The reason is the
same “cruelly missing” tool of Menger’s curvature introduced into the
subject by Melnikov. This tool is immediately missing if n−1 = d > 1.

By the word “treat” we mean a find a splitting of E as in 1) (or 2))
into removable and nonremovable sets depending on finer geometric
indicators than dimension and than Hausdorff measure.

Even though we cannot treat the case 2) for n > 3, we can prove a
highly nontrivial statement about it.

Theorem 1. If L(E) \ {Constants} 6= ∅ (so we are in the cases 1) or
2) above), then E supports a strictly positive measure σ such that the
Newtonian potential Uσ ∈ L(E).

Remark. Notice that nobody told us that function u ∈ L(E) \
{Constants} is a Newtonian potential of a positive measure. Moreover,
in general, this is false, there are many u in L(E) \ {Constants} (if
this class is nonempty) that are absolutely not Newtonian potentials
of positive measures. However, Theorem 1 says, that if a non constant
function in L(E) exists, then a very special non constant function in
L(E) must also exist. For the case n = 2 this led Tolsa [T1] to the
geometric description of sets in case 2). But Menger’s curvature was
used in [T1] (both in the proof of the Theorem 1 for n = 2 and in
its geometric corollaries), and this is why we cannot continue from
Theorem 1. For n > 3 Theorem 1 was proved in [Vo] by getting rid of
Menger’s curvature considerations.

Here is the main result we want to prove now.

Theorem 2. Let Hn−1(E) < ∞ and Γn−1,n(E) = 0. Then set E is
purely (n − 1)-unrectifiable, meaning that its intersection with any C1

(n−1)-dimensional submanifold in Rn must have zero surface measure.
The converse is also true (but the converse is a much easier statement).

Remark. Purely d-unrectifiable sets E, Hd(E) < ∞ have many
equivalent characterizations, and the notion is very robust. For ex-
ample, C1 d-dimensional submanifolds can be replaced by Lipschitz



4 ALEXANDER VOLBERG

images of Rd, and also can be replaced by graphs of Lipschitz functions
Rd → Rn−d. The standard reference is the book of Federer [Fe].

Let us reformulate the main statement of Theorem 2.

Theorem 3. Let E be a compact set in Rn, and 0 < Hn−1(E) < ∞.
Suppose L(E) \ {Constants} 6= ∅. Then E contains a piece E ′ of a C1

(n− 1)-dimensional manifold such that

Hn−1(E ′) > 0 .

Below is the proof.

1.3. The Newtonian Potential of Signed Measure in L(E). Given
L(E)\{Constants} 6= ∅ we will build now a nontrivial signed measure
τ such that U τ ∈ L(E).

This is easy. Let u ∈ L(E) \ {Constants}. Consider uε := u ∗ φe,
where φe := 1

εn
φ
(
x
ε

)
, and φ ∈ C∞0 (B), where B is the unit ball centered

at the origin.
All uε are uniformly Lipschitz and smooth (not uniformly). Con-

sider functions ∆ue and measures τε := ∆uedx with these densities.
Uniformly

∫
∂B(x,r)

| uε
∂ν
|dHn−1 6 Crn−1. Then it is easy to see that

uniformly in ε, x, r we have

|τε(B(x, r))| 6 Crn−1.

But measure τε is supported by the ε-neighborhood of E. And
Hn−1(E) <∞.

Then the last display inequality implies that the total variation mea-
sures |τε| satisfy

|τε|(Rn) 6 2L

for all sufficiently small ε. Let us consider a weak limit τ of τεk . This
measure τ is of finite total variation, it lies on E, and it satisfies

|τ |(B(x, r)) 6 Crn−1.

Obviously we just proved that function’s u distributional Laplacian
∆u is equal to signed measure τ satisfying the properties above. More-
over, it is quite easy to see now that

u(x) = u(∞) + U τ (x),

where U τ is Newtonian potential of τ .
We proved that if L(E) contains a non constant function, it also con-

tains a non constant Newtonian potential of a signed measure. More-
over, this measure is absolutely continuous with respect to Hn−1|E,
and the density is bounded (and signed).
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Conclusion: There exists a bounded measurable function b on E,
such that for dτ = b dHn−1|E the Newtonian potential

U τ (x) :=

∫
E

1

|x− y|n−2
b(y)dHn−1(y)

has bounded gradient, which is not identically zero in Rn \ E.

1.4. One More Step: τ(E) 6= 0. Notice that τ(E) is the flux of u on
any surface S surrounding E. This flux can vanish, even if ∇U τ is not
identically zero.

Let φ be an arbitrary function C∞ with compact support. The dis-
tributional Laplacian of φU τ is a measure that can be written as

∆(φU τ ) = φ dτ + U τ∆(φ)dx+ (∇U τ · ∇φ)dx .

The second and the third terms have bounded density with respect
to Lebesgue measure in Rn. Newtonian potentials of measures that
have bounded density with respect to Lebesgue measure in Rn have
obviously bounded gradients.

Now the Newtonian potential of the left hand side is also Lipschitz.
In fact, the Newtonian potential of the left hand side is just φU τ itself,
and this function has a bounded gradient because U τ has a bounded
gradient.

Combining all this we conclude that Uφ dτ has a bounded gradient
for any φ. But for some φ then∫

E

φ dτ 6= 0.

Otherwise, τ would be a zero measure, which contradicts the fact that
∇U τ is not identically zero.

Conclusion: There exists a bounded measurable b on E, such that
for dτ = b dHn−1|E Newtonian potential

U τ (x) :=

∫
E

1

|x− y|n−2
b(y)dHn−1(y)

has bounded gradient, and such that
∫
E
b dHn−1 6= 0.

1.5. Bound on the Growth of Underlying Positive Measure.
The measure τ is not positive as a rule. However, it can be written
as dτ = b dµ, just by denoting by µ the restriction of Hn−1|E onto
E+ := {x ∈ E : b(x) 6= 0}. Notice that then

1

rn−1
µ(B(x, r)) =

|τ(B(x, r))|
rn−1

/
|τ(B(x, r))|
µ(B(x, r))

.
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Now let x belong to the set of Lebesgue points of b|E+. Then by the
Lebesgue Differentiation Theorem there exists a nonzero (so strictly

positive) limit of the fraction |τ(B(x,r))|
µ(B(x,r))

in the denominator above. On

the other hand, we already saw that

|τ(B(x, r))| 6 Crn−1.

We conclude that

for µ a.e. x lim sup
r→0

1

rn−1
µ(B(x, r)) <∞ .

We established (nonuniform) (n−1)-growth condition on positive mea-
sure µ = Hn−1|E.

1.6. The Bound on the Maximal Singular Operator. Let us de-
note temporarily by letter T the operator with the kernel R := Rn−1

n .
We want to estimate T ∗µ(b), where b, µ are those above. Here

T ∗µ(b)(x) := sup
ε>0
|T εµ(b)(x)| := sup

ε>0

∣∣∣∣∫
y:|y−x>ε

R(x− y)b(y)dµ(y)

∣∣∣∣ .
Theorem 4. For µ a. e. x0 we have T ∗µ(b)(x0) <∞.

Proof. Take x0 for which (n − 1) growth holds. Consider B = B(x, ε)
and write the expression

I :=
1

|B|

∫
B

(∫
E\B

R(x− y)b(y)dµ(y)

)
dx.

Function under
∫
B

sign is harmonic. Therefore, expression I = T εµ(b)(x0).
On the other hand, recall that a bounded function U τ (x), x ∈ Rn \ E,
is exactly

∫
E
R(x− y)b(y)dµ(y)dx. And I can be written as

I =
1

|B|

∫
B

(∫
E

R(x− y)b(y)dµ(y)

)
dx+

1

|B|

∫
B

(∫
B

R(x− y)b(y)dµ(y)

)
dx

=: II + III ,

and both expressions II, III make perfect sense and they are bounded,
because in II we integrate a bounded function U τ over B, and III we
can estimate it as follows:

|III| 6 C

εn
‖b‖∞

∫
B

dµ(y)

∫
B

|R(x− y)|dx 6

C

εn

∫
B(x0,ε)

dµ(y)

∫
B(x0,ε)

1

|x− y|n−1
dy 6

C

εn
εµ(B(x0, ε)) 6 C(x0) .

The theorem is proved.
�
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1.7. Nonhomogeneous Nonaccretive Tb Theorem. T1 and Tb
theorems are the main tools in the Singular Integral theory, especially
in what concerns Calderón–Zygmund (CZ) operators (but the ideology
goes much beyond CZ operators). They were proved by David–Journé
for CZ operators with respect to Lebesgue measure in Rn. Christ ex-
tend this into CZ operators with respect to doubling measures (homo-
geneous space setting) [Ch].

T1 theorem says that operator with CZ kernel (say, anti-symmetric
kernel) is bounded in L2(dx) if it is bounded uniformly on χB, where
B runs through all balls. Tb theorem says that operator with CZ
kernel (say, anti-symmetric kernel) is bounded in L2(dx) if it is bounded
uniformly on bχB, where B runs through all balls, and b is an accretive
function, namely,

1

|B|

∣∣∣∣∫ bdx

∣∣∣∣ > δ > 0

independently of B (b = 1 is of course accretive).
As we said Christ [Ch] proved this kind of results if dx is replaced by

dµ, |B| by µ(B), and measure µ is doubling: µ(B(x, 2r)) 6 Cµ(B(x, r)).
Metric measure spaces with such measure (homogeneous spaces) of-

ten occur in important questions in Analysis. However, for our metric
measure space (E, µ) (E is provided with the usual euclidean metric,
µ := Hn−1|E+) the doubling is beyond its reach completely. So we are
dealing with a nonhomogeneous space.

Moreover, function b from Theorem 4 is not accretive, and there is
no hope that it can be “made” accretive. It is an arbitrary bounded
nonzero function. Frankly there is a very weak trace of accretivity in
b. Namely, in Section 1.4 we saw that

1

µ(Q0)

∣∣∣∣∫
Q0

b dµ

∣∣∣∣ =
|τ(E)|
µ(Q0)

= δ > 0 ,

where Q0 is a large cube containing the whole compact E. So we do
have a meager accretivity: we have accretivity in one scale.

Here is a nonhomogeneous nonaccretive Tb theorem from [NTV],
[Vo] that played a very important role in multitude of recent achieve-
ments, including Tolsa’s proofs of Painlevé and Vitushkin’s conjecture
[T1].

Theorem 5. Let T be operator with kernel R (in fact, any CZ kernel
of singularity −(n − 1), and n > 1 can be non-integer as well), let
measure µ satisfies a nonuniform (n− 1) growth condition:

lim sup
r→0

1

rn−1
µ(B(x, r)) <∞ µ a.e. x ∈ E.
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Let b ∈ L∞(µ) and b satisfies one-scale accretivity condition as above:

1

µ(E)

∣∣∣∣∫
E

b dµ

∣∣∣∣ = δ > 0.

Finally let |T ∗µ(b)(x)| is finite µ almost everywhere.
Then there exists a measurable subset E ′ ⊂ E such that
1) µ(E ′) > δ

2‖b‖L∞(µ)
µ(E),

and
2) Tµ : L2(E ′, µ)→ L2(E ′, µ) is a bounded operator.

The proof is too complicated and long to be given here. It is based
on dyadic techniques mixed with a probabilistic approach. This is
a random way how the proof chooses a piece E ′ of E. Notice that
this random geometric constructions (see [NTV], [Vo], [T-b]) got many
extensions by Nazarov, Treil, Volberg, Hytönen, Martikainen, Lacey,
Sawyer, Uriatre-Tuero and many others.

Notice also that usually “a piece” to be chosen is “a leftover” after
“bad” pieces are deleted. This brings in a difficult task of controlling
that something is actually left after all deleting! See the details in
[NTV], [Vo], [T-b].

1.8. Recapitualation. We established the following. If L(E) consists
of not only constant functions, then it should contain a non-constant
function of the type U τ =

∫
E

1
|x−y|n−2 dτ(y) (here n > 3 with obvious

change for n = 2). Measure τ is dτ = b dµ, where µ := Hn−1|E+,
E+ is just a certain piece of E of positive Hn−1 measure, b ∈ L∞(µ),∫
E
b dµ 6= 0.
Then Theorem 5 steps into the main stage, and we got

E ′ ⊂ E,Hn−1(E ′) > 0

such that

(1) THn−1|E′ : L2(E ′,Hn−1)→ L2(E ′,Hn−1) is bounded.

This is not exactly what we promised. We promised to find E ′′ ⊂
E,Hn−1(E ′′) > 0, such that it lies on a C1 (n − 1)-dimensional sub-
manifold.

The reader, however, should be recalled that in Lecture 1 we for-
mulated the following two theorems (proved in [NToV1] and [NToV2]
correspondingly).

Theorem 6. Let Hn−1(E) < ∞. If Rn−1
n is bounded in L2(E,Hn−1),

and E is (n− 1)-AD regular, then E is (n− 1)-uniformly rectifiable.
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Theorem 7. Let Hn−1(E) < ∞. If Rn−1
n is bounded in L2(E,Hn−1),

then the set E is (n− 1)-rectifiable.

Notice that Theorem 7 now gives us a desired conclusion about the
“hidden smoothness and connectivity” of E ′. Therefore, the main The-
orems of Lecture 2: Theorem 3 and Theorem 2 are already proved.

Remark. We recall one more time that for n = 2 Theorem 6 was
proved by Mattila–Melnikov–Verdera in [MMV], and Theorem 7 was
proved by David and Léger in [Le]. However, for n > 2 Menger’s
curvature approach of these papers does not work anymore.

The next lecture is devoted to the reduction of Theorem 7 to Theo-
rem 6. And later in our lectures we go along the proof of Theorem 6
in almost all details.
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