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1. Lecture 1: Connectivity?

In what follows Hd denotes the Hausdorff measure (it is a Borel but
not a sigma finite measure in Rn, 0 < d < n). We will usually consider
only compact sets in Rn, and we are not very interested in d = n case.
The Hausdorff dimension dimE of such a set is the infimum of s such
that Hs(E) = 0, (=the supremum of those s for which Hs(E) = ∞).
Our main interest will be in compact sets E such that 0 < Hd(E) <∞.
Obviously in this case d = dimE.

Let us ask the following simple question: for which compact set E
we can find another set Γ, which 1) contains E, 2) dim Γ = 1, 3) Γ is
connected?

The necessary condition is of course dim E 6 1. This is also suf-
ficient, and Γ is easy to construct starting with 1/k nets of E and
connecting points of each finer net to the closest point of the previous
net.

However, here is a much more interesting and difficult question. It
is again hinged on connectivity of the ambient set.

Question 1.1 For which compact set E we can find another set Γ,
which 1) contains E, 2) H1(Γ) <∞, 3) Γ is connected?

Again the obvious necessary condition is H1(E) < ∞ (and, thus,
dim Γ 6 1), but now it is very far from the sufficient condition. Ques-
tion 1.1 can be (and is) called Analytic Traveling Salesman Problem.
The necessary and sufficient condition for this to happen was found
by Peter Jones in [PJ] if n = 2 (that is if E ⊂ R2). He also showed
that his condition is sufficient in any Rn. Kate Okikioulu proved the
necessity of Peter Jones’ condition for n > 2 in [KO].

The connected sets of finite length (that is of finite H1) can be rather
nasty, but there is an interesting sub-class of such sets having the so-
called 1-AD regularity (AD stands for Ahlfors–David).
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Definition 1.2 Let E be a d-dimensional set in Rn. It is called d-AD
regular if with some 0 < c < C <∞

crd 6 Hd(E ∩B(x, r)) 6 Crd, ∀x ∈ E, ∀r ∈ (0, diamE) .

Connected 1-AD regular sets turn out to be the right class sets with
bounded geometry, and they appear the right class to answer a plethora
of interesting questions.

1.1. Some Answers. For the set E to be a subset of a connected 1-
AD regular set, it is necessary to satisfy the right hand side inequality
in Definition 1.2. But again this is very far from being sufficient. The
necessary and sufficient condition was found again by Peter Jones [PJ]
(again the necessity for n > 2 is due to [KO]).

Later Mattila–Melnikov–Verdera [MMV] proved the following re-
markable result:

Theorem 1. If the set E ⊂ R2 is 1-AD regular (so it satisfies both
inequalities in Definition 1.2, not only the right one) then such an E
is contained in a connected 1-AD regular set if and only if the Cauchy
integral operator is bounded in L2(E,H1).

The same is true for 1-AD regular sets E ⊂ Rn, n > 2, if the Cauchy
operator is replaced by vector Riesz operator R1 := R1

n.

This a variant of analytic traveling salesman problem for 1-AD reg-
ular sets. The same is true for 1-AD regular sets E ⊂ Rn, n > 2, if the
Cauchy operator is replaced by vector Riesz operator R1 := R1

n.
We will need this operator very soon, so let us tell what it is.
Definition 1.4. The operator with the kernel

Rs(x, y) :=

(
x1 − y1
|x− y|s+1

, . . . , (
xn − yn
|x− y|s+1

)
is called the Riesz operator (we should write Rs

n, but we skip n every
time it is clear what is n).

Notice that for s = 1, n = 2 the components of R1
2 are the real and

imaginary parts of Cauchy kernel

C(z, w) :=
1

z − w
.

Notice that the left hand side inequality of Definition 1.2 is much
less natural than the right hand side one. In fact, the boundedness
of R1

n in L2(E,H1) implies (rather easily, see [D]) the right hand side
inequality. But of course it does not imply the left hand side one.

Therefore, here is a natural
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Question 1.5 Given E ⊂ Rn,H1(E) <∞, such that R1
n is bounded

in L2(E,H1), what kind of geometry must E have?
It is easy to see that the answer should change, the operator can

be bounded, but E might not be 1-uniformly rectifiable. However, a
weaker type of connectedness is preserved!

Definition 1.6. A set E in Rn is called d-rectifiable if there is a
countable number of C1-manifolds of dimension d: Γ1, . . . ,Γk, . . . such
that Hd(E \ ∪∞k=1Γk) = 0.

Rectifiability is also a sort of connectedness condition. Somehow
separate parts of E should “feel” that many of them are in fact parts
of the same smooth manifold. Here is a theorem establishing such form
of connectedness of E if Riesz operator R1

n is bounded on E. It has
been proved by Guy David and Jean-Christoph Léger.

Theorem 2. Let H1(E) <∞ and R1
n is bounded in L2(E,H1). Then

there is a piece E1 of E, H1(E1) > 0 such that there exists a C1 man-
ifold Γ1 with the property E1 ⊂ Γ1.

Using the classical structure theorem of Besicovitch that every set
E,H1(E) < ∞ can be decomposed to 1-rectifiable set, a set of length
zero, and a set which has zero length intersection with any C1 manifold
(such sets are called purely unrectifiable), one can easily deduce another
theorem of David and Léger.

Theorem 3. Let H1(E) <∞ and R1
n is bounded in L2(E,H1). Then

E is 1-rectifiable.

Unlike Theorem 1, which is a Traveling Salesman Problem (he should
visit all towns spending the finite amount of gasoline), Theorem 2 tells
us the story of a traveling bandit: he should rob as much H1 piece of
measure as he can with a limited amount of gasoline.

Theorems 1 and 2 are very remarkable. They show that the bound-
edness of some singular operators force the points of the set on which
the operator is bounded to “feel” that they can be connected with a
finite cost.

1.2. Other than Dimension 1. If one starts to consider d 6= 1 many
questions appear. Of course we can again start asking the intrinsic
conditions of a set E,Hd(E) <∞ in Rn to be a subset of a connected
set Γ such that Hd(Γ) <∞. Notice that d = 1 case have a very special
relation with connectivity. So maybe the notion of connectivity should
be modified for d 6= 1.

We saw that in the d = 1 case (in what concerns the aspect of singular
integral operators) brought the notion of rectifiability. Rectifiability
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is not only something related to connectedness. It is also related to
smoothness. It is a very low regularity replacement of smoothness.

Let us formulate a very low regularity concept of uniform smooth-
ness.

Definition 1.7. The set E ⊂ Rn,Hd(E) <∞ is called d-uniformly
rectifiable if it is 1) d-AD regular, 2) for every x ∈ E and every r ∈
(0, diamE), there exists a Lipschitz map g = gx,r from d-dimensional
ball Bd(0, r) into Rn, g(0) = x, such that its Lipschitz constant does
not depend on x, r and such that

Hd(E ∩ g(Bd(0, r))) > crd

with certain c > 0 independent of x, r.
Notice that d is of course an integer here. Notice also easily that any

d-uniformly rectifiable set is d-rectifiable.
The case d = 1 is very special because of the fact that any com-

pact E which is 1-AD regular and connected is 1-uniformly rectifiable.
This is not true anymore for integer d > 2, n > d. One can easily
understand this effect by reading, for example, the paper of Hofmann-
Martel–Mayboroda [HMM].

Another big difference is that any 1-uniformly rectifiable set E ⊂ Rn,
is a subset of connected 1-AD regular (and, thus, connected 1-uniformly
rectifiable) set Γ. This follows from the the combination of results of
David–Semmes [DS] and Theorem 1, see [MMV]. The result of Peter
Jones [PJ] is used in the course of the proof. This claim again is not
true anymore for integer d > 2, n > d. As we already mentioned several
times the case d = 1 is really special because of the role of d = 1 for
the concept of connectivity.

1.3. Rectifiability versus Connectivity. We have two roads that
can be traveled: 1) Try to understand a purely geometric question
when E ⊂ Rn, Hs(E) < ∞, s > 1, can be put into connected set Γ,
Hs(Γ) <∞? 2) Try to understand a purely analytic problem when the
Riesz transform operator Rs

n is bounded in L2(E,Hs), namely, whether
this boundedness imposes a low regularity smoothness on E.

We already discussed that for s = 1 these questions are very much
related, and in the case of 1-AD regularity of E have the same family
of sets as an answer: 1-uniformly rectifiable sets.

For s > 1 question 1) turns out to be not very interesting at all.
It is easy to see that any compact set E, Hs(E) < ∞ can be put in
a connected set Γ, Hs(Γ) < ∞. Again Γ is easy to construct starting
with 1/k nets of E and connecting points of each finer net to the closest
point of the previous net.
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However, the answer to question 2) is suspected to be very interesting
and beautiful. For general s, n question 2) is called David–Semmes
problem, it is asked repeatedly in [DS].

David–Semmes’ Conjecture 1. Let d be an integer. If Rd
n is

bounded in L2(E,Hd), and E is d-AD regular, then E is d-uniformly
rectifiable.

David–Semmes’ Conjecture 2. Let d be an integer. If Rd
n is

bounded in L2(E,Hd), then the set E is d-rectifiable.
David–Semmes’ Conjecture 3. If Rs

n is bounded in L2(E,Hs),
then s is some integer d (and then if Conjecture 1 has positive answer,
E has to be d-rectifiable).

We saw that for d = 1 Conjecture 1 has a positive answer by the
work [MMV], moreover, by [DS] the converse is true. Again for the
case d = 1 the second Conjecture is also true. This follows from David–
Léger’s Theorem 3 proved in [Le].

Till recently Conjecture 3 was attacked only for s ∈ (0, 1). This is
due to Laura Prat [Pr]. And also, till recently all attempts to approach
Conjectures 1, 2 for d ∈ [2, n) ∩ Z failed, as well as the attempts to
prove Conjecture 3 for s ∈ (1, n) ∩ (R \ Z).

1.4. Recent Progress. Recently a progress was made, and the main
goal of the present lectures is to present this progress.

In the paper [HMM] it was proved that if E is a priori connected,
and in fact is a boundary of so-called one sided NTA domain (a do-
main having certain geometric conditions: a corkscrew condition and
a Harnack chain condition (it is a space analog of being a quasidisc on
the plane–sort of)), if E is (n− 1)-AD regular and if Rn−1

n is bounded
in L2(E,Hn−1), then E is (n − 1)-uniformly rectifiable. The method
used a harmonic measure approach, and use this extra connectivity
assumption and certain regularity (one sided NTA) for Rn \ E.

Notice that the case d = n− 1, a co-dimension 1 case, has a special
interest because of the relations with boundary value problems for the
Laplacian in very low regularity domains, see [HMM].

This co-dimension 1 case was completely settled in papers of Nazarov–
Tolsa–Volberg [NToV1], [NToV2]. Both Conjectures 1 and 2 have a
positive answer for d = n− 1 case.

Conjecture 3 also was considered, and for the case s ∈ (n−1, n) it has
been shown that Rs

n is never bounded in L2(E,Hs), 0 < Hs(E) < ∞.
Thus Conjecture 3 is confirmed for two intervals of s: s ∈ (0, 1) (Prat
[Pr]) and s ∈ (n− 1, n). This latter result was obtained by Eiderman–
Nazarov–Volberg [ENV].
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Combining these results with [MMV] and [DS], we see that on the
plane all Conjectures 1, 2, 3 have positive answers.

1.5. Rectifiability versus Removability. Free Boundary Ques-
tions. Free boundary questions usually deal with (harmonic) functions
who are solutions of certain natural variational problems (like a mini-
mal energy function majorizing a certain obstacle function).

However, sometimes free boundary is understood in a more general
way, as a question about an a priori arbitrary set such that in its com-
plement a certain nontrivial harmonic function exists. It then becomes
a question of description of removable sets of singularities of some class
of functions. In many simpler situations such removability is described
by saying that a certain (Sobolev) capacity of a set is zero.

Arguably, one of the much less standard and in fact very difficult
problem was a famous problem of Painlevé:

Describe E ⊂ R2 such that any analytic function outside of E, which
is bounded outside of E must be constant.

Such sets are called the sets of analytic capacity zero. The reader
should not be cheated by the use of the same word “capacity” in this
setting in comparison with more classical Sobolev capacities. Vitushkin
introduced analytic capacity, but he met immediately huge difficulties
to answer the most basic question: Is analytic capacity sub-additive

γ(E1 ∪ E2) 6 γ(E1) + γ(E2)?

Such sub-additivity is obvious for all classical Sobolev capacities. But
this is still strictly speaking unknown for analytic capacity of Vitushkin.

However, in his celebrated work Tolsa [T1] described the sets E
such that γ(E) = 0 (answered Painlevé’s question), he also proved
semi-additivity of γ (answered Vitushkin’s question up to an absolute
constant):

γ(E1 ∪ E2) 6 C(γ(E1) + γ(E2))!

Here constant C is universal.
The real difference between the classical Sobolev capacities and Vi-

tushkin’s analytic capacity hides in the fact, that they are hinged on
positive kernels (of the type 1

|x−y|s , for s = 1, n = 2 it is just 1
|z−w|),

and analytic capacity is hinged on singular kernel 1
z−w . This small

difference brings immense difficulties.

Lipschitz Harmonic Functions, Removability. The analogous
question is the following (our E’s are always compact): What are the
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sets E ⊂ Rn, n > 2, such that there exits a function u outside of E,
having the following properties: 1) u is Lipschitz in Rn \ E, 2) E is
continuous on Rn (it is more of a technical condition), 3) u is bounded
at infinity, 4) u is not harmonic on all Rn. The last property can
be replaced by 4’) u is not a constant function (because bounded at
infinity Lipschitz function is of course bounded in Rn, and bounded in
Rn harmonic functions are constants).

Here it is also instructive to compare the question with classical
Sobolev capacity Cn−1,n, which seeks to find the sets not supporting
strictly positive measures such that their convolution with the kernel

1
|x−y|n−1 is bounded in Rn.

It turns out (see later) that removability question for Lipschitz har-
monic functions as above seeks to characterize compact sets E ⊂ Rn

such that they do not support strictly positive measures such that
their convolution with the kernel Rn−1

n (x− y) = ( x1−y1
|x−y|n , . . . , (

xn−yn
|x−y|n ) is

bounded in Rn. For such sets we write Γn−1
n (E) = 0.

So Cn−1,n(E) = 0 means that if µ is a nonnegative measure on E
such that ∫

1

|x− y|n−1
dµ(y) ∈ L∞ ⇒ µ = 0,

while Γn−1,n(E) = 0 means that if µ is a signed measure on E such
that ∫

Rn−1
n (x− y)dµ(y) ∈ L∞ ⇒ µ = 0.

Notice that singularity of the kernels is the same, it is −(n−1). But
the classes of sets have nothing to do with each other.

Definition 1. 8. The sets E with Γn−1,n(E) = 0 are called the sets
of zero Lipschitz harmonic capacity.

Tolsa proved

Theorem 4. On the plane the sets of zero analytic capacity and the
sets of zero Lipschitz harmonic capacity are the same.

This is highly non trivial, but easy to explain. Notice that on the
plane we can form f = ∂u, and if u is Lipschitz, then f is bounded,
and if u is harmonic, then f is analytic. This is the beginning of the
proof of Theorem 4, but it is only the beginning.

On the plane there is another remarkable fact, relating sets with
Γ1,2(E) = 0 with rectifiability.

The following theorem was proved independently and in different
ways by David–Mattila [DM] and by Nazarov–Treil–Volberg [NTV],
[Vo].
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Theorem 5. Let H1(E) < ∞ and Γ1,2(E) = 0. Then set E is purely
1-unrectifiable, meaning that its intersection with any C1 curve on the
plain, or its intersection with any rectifiable curve on the plane must
have zero length.

The converse is also true (but the converse is a much easier state-
ment). Such sets sometimes are called “invisible”. This theorem solved
an old problem of Denjoy. We will need bits and pieces of the proof
later.

In the next lecture we will prove the following higher dimensional
analog of Theorem 5:

Theorem 6. Let Hn−1(E) < ∞ and Γn−1,n(E) = 0. Then set E is
purely n − 1-unrectifiable, meaning that its intersection with any C1

n− 1 dimensional submanifold in Rn must have zero surface measure.
The converse is also true (but the converse is a much easier statement.

This is again the jump from d = 1 to d = n − 1 (of course for
n = 2 there should not be any jump, and there is none). Tools specific
to the case of d = 1 cannot be used. This specific tool consists of
use of Menger’s curvature, discovered by Melnikov. It is an amazing
geometric tool. But we cannot use it because it is “cruelly missing” by
the expression of Guy David if d > 1. It was formally shown, however,
that the Menger curvature approach is rigidly restricted to d 6 1 case
by Farag [Fa].

In the proof of Theorem 6 the most essential part will be to refer to
the solution of David–Semmes Conjectures 1 and 2 in the co-dimension
1 case. So the rest of the lectures will be devoted to a some sort of
explanation of the following results.

Theorem 7. Let Hn−1(E) < ∞. If Rn−1
n is bounded in L2(E,Hn−1),

and E is n− 1-AD regular, then E is n− 1-uniformly rectifiable.

This is proved in [NToV1]. The converse is also true, see [DS].

Theorem 8. Let Hn−1(E) < ∞. If Rn−1
n is bounded in L2(E,Hn−1),

then the set E is n− 1-rectifiable.

This is proved in [NToV2].

1.6. Traveling Salesman Problem (TSP) again. We want to re-
turn to the case d = 1 again (even though it will not be very important
for us). In this case, if the set E is a subset of vertices of a plane
graph, then as Peter Jones writes in [PJ] “to compute the length of
the shortest Hamiltonian cycle passing through E is the same up to
a constant multiple as asking for the infimum of H1(F ) where F is a
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curve, E ⊂ F . (Such a F is called a spanning tree in TSP theory.)
For infinite sets E, we cannot hope in general to have E be a subset
of a Jordan curve. What we should therefore look at is connected sets
which contain E”. In [PJ] the algorithm to find the minimal, up to an
absolute constant, spanning tree is given. This algorithm, unlike the
algorithms in [Law] use the Euclidean structure of the ambient space.
The advantage of algorithm in [PJ] that it can give minimal up to a
constant connected set containing E for infinite sets E, which cannot
be done by algorithms of [Law] as they work for finite graphs with
triangle inequality. See also [PS]. In principle, the algorithm in [PJ]
gives constant depending on the dimension n of the ambient euclidean
space. Raanan Schul won over this “curse of dimensionality” in [RS].
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