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In this paper we wish to extend the corona theorem on the multiplier algebra
of Dirichlet space to infinitely many functions. For a finite number of functions,
the corresponding theorem is due to Tolokonnikov [T]. (Another source for this is
Nikolskii [N].) For infinitely many functions in H*° (D), the corona theorem is due
to Rosenblum [R] and to Tolokonnikov [T]. Our methods are in principle close to
those of Rosenblum [R]. All of these efforts were made possible by Wolff’s beautiful
proof of Carleson’s original corona theorem. (See [G].)

Our proof is based on three parts. First, since the reproducing kernel of
Dirichlet space has one positive square, the commutant lifting theorem comes into
play. This reduces the general M (D?(D))-corona problem to the D?(D)-corona
problem and we may employ Hilbert space methods. Next, we have a series of te-
dious lemmas that basically say that multipliers on Dirichlet space can be naturally
extended to multipliers on (boundary values of) Harmonic Dirichlet space. Third,
a linear algebra result allows us to explicitly write down proposed solutions for
the D(D)-corona problem in the smooth case. This is our key innovation. Finally,
simple estimates and a compactness argument allow us to remove the smoothness
condition.

Partially supported by NSF Grant DMS-0100294.
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We will establish our notation. D?(D) or just D will denote the Dirichlet
space on the unit disk, D. That is

D={f:D — C|f is analytic on D and for f(z) Zan ,

oo

1715 =D (n+ D]an|* < co}.

n=0
For a nice account of many interesting properties of Dirichlet space see the survey
article of Wu [W].
We will use two other equivalent norms for smooth functions in D. Namely,

11 = [ 1fPdo+ [ 17P AR, where da) = 220

™

zt AP
1= [ i [ [ DL dodn )

Also, we will consider D% (D), or 6197), which can be considered as [2-valued

and

Dirichlet space. The norms in this case are as above, but with absolute values
replaced by [2-norms in the appropriate spots. In addition, we will need Harmonic
Dirichlet space, HD (restricted to the boundary of D), and its vector analog. But
again we will only use this norm for smooth functions in this space. So if f is
smooth on 0D, the boundary of the unit disk, then

o= [ e+ [ [ HEI=IEE
HD — e O |ezt 619‘2 0G0,

Of course, this is formally the same as (1), but the functions in HD may have
nonvanishing negative fourier coefﬁments

The algebra of operators which we consider is the multiplier algebra on Dirich-
let space, M(D) = {¢ € D : ¢f € D Vf € D}, and the multiplier algebra
on Harmonic Dirichlet space, M(HD), defined similarly (but only on 9D). We
will use My to denote the operator multiplication by ¢ for ¢ € M(D) (and for
¢ € M(HD)).

Given {f;}32, C M(D), we let F(z) = (fi(2), fa(2),...). We use Mf to

denote the (row) operator from %D to D defined by

M ({h, }521) Zf] i for {h;}52, € EPD-

Similarly, Mg will denote the (column) operator from D to &SD defined by
1

=Y fih for heD.

j=1
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The corona theorem for H*°(D) is due to Carleson [C]. The infinite version,
given by Rosenblum [R] and Tolokonnikov [T}, can be formulated as follows:

Theorem C. Let {f;}52, C H>®(D) with0 < ¢ <37, |f;(2)]> <1 forallz € D.
Then there exist {g;}2, C H>(D) such that 37 fjg; = 1 and sup{3_72 [g;(2)[*}
’ z€D

9 1 2 1
<z lng fore <.

(This bound is due to Uchiyama and can be found in, for example, Trent
[Tr2].)

We note that D is a reproducing kernel (r.k.) Hilbert space with r.k. k,(z) =
L log - for z,w € D. This means that if f € D and w € D then (f, ky)p =

f(w). Tt has been shown, in for example [A], that

1 oo
1-— = cp2"w"™,  where ¢, > 0 for all n.
R 2

This property of the reproducing kernel referred to as “one-positive square”
or “Nevanlinna—Pick” (N-P) has been much studied recently in, for example, [A],
[M], [AM], [BT], [BLTT], [BTV], [CM], and [GRS]. This property will be exploited
for “%” of the corona theorem in Dirichlet space. The useful relationship between
multiplier spaces and reproducing kernels is that for ¢ € M (D) and z € D

M:;kz = Mkr (2)
It immediately follows from this that ||@||ec < [[My||, so M(D) C H*(D).
Similarly, if ¢;; € M(D) and My, |~ € B(‘él%) D), then for z € {2 and z € D,
we have
My, (ks = (65 (2)] k.

It again follows from this that

. < oo
sup 615 (Ml < 1Miou 1l .,

and
M(%1§ D) C Hpa(D).
For part of the pointwise hypothesis of Theorem C (that Z;’;l If;(2)]? < 1),
we note that if TF and T§ are defined on ?11§H2 (D) and H?(D) (Hardy spaces) in

analogy to that of ME and M§, we have
ITEN = ITE I = sup (3 1 £5(2))2.
z€D i=1

Thus one part of the pointwise hypothesis of Theorem C gives the boundedness
of the operators TE and TE. We will need a similar hypothesis for our version
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3
on Dirichlet space. But since M(D) & H*(D), (e.g., >~ %z is in H*(D) but
is not in D), a pointwise upper bound hypothesis will not suffice. Moreover, it is
not hard to check that I —1® 1 = > 7 ¢, MP?M:™ and Y .7, ¢, = 1, where

n=1
1- %(Z) =Y oy cpz"w". Thus, for f; = \/¢;M,; with j > 1 and fo = 1, we have
Mf = (M, My,....) € B(GD,D) and [|MF| = 1.
Now

IMEMI =11 Venz"llp =Y (n+1)en =Y ncn.
n=1

n=1 n=1
But

d

2 Zlncnu%_l = (—(ky(u))™) ~ (1 —u) " (In ( N2 —ooasu /1.

(1—u)
Thus M§ ¢ B(D7$’D). However, as the next lemma shows, we always have
IME| < VI8 |ME].

Lemma 1. Let MﬁeB(D@D). Then ME € B(?ql‘a’D,D) and || ME| < VI8 | MS.

Proof. First note that from our earlier discussion, || M S || <1 implies that F(2)F(z)*
<1 for all zin D. Let {uy}°, € & D. Then
1

IME (ki) = / S 2 do + / S ) P dA
oD — D p=
<l [ 1S f Y o da
D 1 k=1
§||g||3+2/ Z|u;|2dA+2/ 1> frugl* dA
D= D =

<2flul3 +2 /D SOS fwTu; dA

k=1 j=1

<2ful3 +4 /DZZ s dA

k=1 j=1
< 2|Jullp +4% D IME ()%
j=1
< 18 ||ul3.

So
IME| < V18| ME||. O
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Thus our replacement for “>2°% Ifi(2)]2 <17 for z € D will be |[ME| < 1.
We plan to prove

Theorem 1. Let {f;}52, C M(D). Assume that

IME| <1 and 0 <& <Y [fi(2)] forall z € D.

j=1
Then
there erists {g;}52, C M(D)

so that

(1) Z figi=1

j=1
and
1,500
@) gl <20

Notice that we are concluding that the strong bound, [|[M§|| < oo, follows
from the strong bound, ||ME|| < oo, together with the lower bound hypothesis
on F(z)F(z)*. Whether the weaker hypothesis that | MZ|| < co together with the
lower bound hypothesis on F(z)F(z)* leads to || M§|| < oo is not known to us.

To prove Theorem 1 we will establish Theorems A and B.

Theorem A. Let {f;}32, C M(D). Assume that |Mg| < 1 and 0 < € <
Py |f;(2)? for all z € D. Then

-2
1
( ’;OO) I < M(ME)* <1I.

Theorem B. Assume that 6 < MF(Mf)* < I. Then there exists {g;};>, C M(D)
so that

1 > figi=1
j=1

1
() IMS)I< 5.

We refer to Theorem A as a D-corona theorem, since it involves unknown
functions from D, not M (D). When D is replaced by H?(D), Hardy space, this is
the main result of Rosenblum [R] and Tolokonnikov [T]. Also, it has recently been
shown to hold when D is replaced by H?(D?). See Trent [Tr2] and for previous
related work see Li [L] and Lin [Li]. Theorem B with H*°(D) replacing M (D) is
referred to as a Toeplitz corona theorem. Theorem B has an interesting history.
See, for example, [A], [CM], [SNF], [S], [KMT], [H], [BT], and [BTV].
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Of course, Theorems A and B with § = (1765300)_1 complete the proof of
Theorem 1.

To prove Theorem B, we use the commutant lifting theorem for multipliers
on Dirichlet space from [CM]. But we state it in our context using the version
from [BTV]. The reader should note that the second part of the corona theorem
for multiplier algebras on reproducing Hilbert space with complete N-P kernels
holds as in the following argument.

M N
Theorem 2 (CLT). Let M., N, be invariant subspaces for M7 on & D and ®D,
i 1

respectively, where 1 < M, N < oo. Assume that X* € B(M,,N,) satisfies

M
X*M¥ \m,= M} |n. X*. Then there exists a Y* € B(@&D,®D) so that
171

Z

(i) Y*|m.=X"
(i) Y*M;=MY"
(i) Y = X7
Note that if we view Y as an M by N matriz, then the entries of Y are in
M (D) by (ii). This follows since analytic polynomials are dense in D.

Proof of Theorem B. Define M = oo, N =1, M, = range M},{*, N, =D. Let
X* = [ME(ME) ] (ME).

Then
x| < 5
)
and
XM (M) u) = X*(ME)* Miu= M;u
= MZ(X* (M) u).
So

X*MZ |pm, = MIX".
Thus, by CLT there exists a Y* € B(%‘; D, D) satistying (i), (ii), and (iii).

By (ii), Y has entries in M(D), say g;, so Y = M§&. By (i), Y*(ME)* = I, so
MEME = I. Finally, (iii) gives us that |[MS|| = Y| = | X]| < +. O

Now we proceed with our proof of Theorem A. First we note that it is a
simple operator theoretic fact that Theorem A is equivalent to Theorem A’.

Theorem A’. Let {f;}32, C M(D). Assume that |IME]| < 1 and 0 < € <
Z;}il |f;(2)|? for all z € D. Then for every h € D, there exists u,, € %D with

(i) Mﬁ(ﬂh) =h
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and

. 1,
(i) Jlupllp <

500

= lIhllo.
Actually, it suffices to prove Theorem A’ for any dense set of functions in D.

We take functions of D smooth across dD. The general plan is as follows. Assume

F'is analytic on D11¢(0). Given h € D analytic on D14(0), write the most general

solution of the pointwise problem on D. That is

v, (2) = F(2)"(F(2)F(2)")"'h — Q(2)k(=),

where range Q(z) = kernel F(z), Q(z) is analytic, and k(z) € (® for z € D. In
fact, we will show that for each z € D,

(F(2)F(2)") = F(2)"F(2) = Q(2)Q(2)".

We must find k(z) so that v, € %D. Thus we want

gzyh =0 inD.

So take u;, = F*(FF*)~th— Q%, where k is the Cauchy transformation

of k on D. That is, for k smooth on D and z € D,

i) Y [ H gaw)
pZ—w
and we have ng =kin D.
Clearly, F'u, = h and w;, is analytic. Thus we are done (in the smooth case
of F) if
1’

500
= lIhlo.

lupllo <
Let k = ?F?—/)i’ Our procedure is to show that
|F*(FF*) " hllup < Cillhllo,
QK| ap < Collk|| o,

and the main estimate,

IEllsp < Cslhllp.

The next three lemmas involve extending multipliers on D to multipliers on
HD, where we are just considering HD on 0D.

Lemma 2. (a) Let o € M(D), then a € M(HD) and ||| pmEp) < V20 |laf p)-

(b) Let {£:}32, € M(D). Then |ME]|, < VIO ME]

HD, & HD) D, & D)’
1 1
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Proof. We will only show (a), since (b) follows by summing the results of (a). Let

a € M(D). As we have observed, [|a|w < [l pD) © 0. Let D, qo be analytic
polynomials with go(0) = 0. We need only estimate ||a(p+q,)||ap, since {p +q,}
is dense in HD.

la(p + )% = / la(p+ o) do

‘ezt 619 |2

§2/ \ap|2do+2/ lag,|? do

+2/_7T /_Tr \e” _ e’9|2 dodo
(Oéqo)(e“’)|2
—|—2/77T/ ezt_619|2 dodo
< 20%|pll3, + 2C° / Gl do
T |a 704 7,9)|2 .
+4/ / |e’t 6“9|2 lqo(e t)|2d0do-

zt 2\% )—QO( )\
—|—4/_7r/_7T )| P dodo

< 202 |p|3 + 2C? / Go? dor + 16 |ao 3

402 \QO ( )|
tac / / |en — g dode
< 2C%||p||% + (4C% +16C?) ||qo |15

< 20C%(|lpllD + llaollD)
= 20C%|lp + qolip-

Here we are using the fact that p L g, in HD and ||g,||%p = |lgo]|%- o

Lemma 3. Assume that |M&|| < 1. Then
M(FF*) € B(HD)

and

| Mp -

< 86.
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Proof. We show that M( Foyh € B(HD) with ||M (FEeyh | < +/86. This will com-

plete the proof. Let p and ¢o be analytic polynomials with go(0) = 0. We let u
denote p 4+ gy. Then

1M s Wl = [ PFufdo

R (FF)(eu(e) - (FF)3 ()P
oD JOD

‘ezt 619|2
FF* L it FF*)3 i9 2 it\|2
SR o GO e LT TS
oD JoD et —e

2
+2/ / (FF*)( ” [ule’ Z (02)| dodo.
oD JoD et — eif]

[(FF7)3 () = (FF*)* (") < DI ~ File )P

So

|Fk ") = Fu(e?)P? it |2
~/8D /aD |ezt — ¢if]2 |u(e')|* dodo
k
| Fy (e zt Ju( ) Fy(e* )u(ei9)|2 i
=1 /8D/a Z |61t _ eze|2 lu(e™)|? dodo

i6)2
19 _U’(e )‘
+4/8D/a E |Fy (e —e” I dodo

< 4|ME ()| Fp + 4llullfip
< (4-20+4)|[klFp

by Lemma 2. Thus

1M, 3 () B < 2l + 84l = 86 [l O

Lemma 4. Let H € Mult(HD) with 1 > |H(e")| > € > 0 for o-a.e. t € [-m,7].
Then & € Mult(HD) and || % || p(up) < *42
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Proof. Let r € HD be a rational polynomial on 9D and let ||H||ggzp) = C. Then

1 L zt (r)(ei9)|2
g7l = [ \—|2da+/_/_ e e£|2 dodo

LT g |H D)r(eit) — H(e)r(e)
< a) |r| do + — /_ﬂ/ |e’t—ei9|2 dodo
1 o (e") —r(e)
S? |T|2d0+*/ / 9 | |€Zt7|2d0'd(f
T HE) - HEE
/ / ezt py Ir(e’)|? dodo
207
< T ||7"HHDJr (4C2H7”||HD)
1002
= H’””HD

O

Lemma 5. Let {f;}32, C M(D). Assume that || ME|| <1 and 0 < € < F(z)F(z)*
for all z € D. Then for h € D, we have

F* 10 - 862 - 20
IIWhH%m < eillhl\p

Proof. Let r be a rational polynomial on dD. Then by Lemma 2,

17| = [IME (7)Ep < IME || 5oy Tl 7D
< 20 |ME | Il = 20 [Ir|7p-

Lemmas 3 and 4 tell us that

v 10 V10 - 86

Mppey-1llBap) < G—QHMFF* B(HD) < —a
Finally for h € D
1 10 - 862 10 - 862 - 20
I(FF) P hllyp < ——— - 20 |hlfhp = ————[Ihl[3. O

The next lemma is our linear algebra result which enables us to write down
the most general pointwise solution of Fu,(z) = h(z). A more general version of
this lemma can be found in Trent [Trl].

Lemma 6. Let {c;}52, € I? and C = (c1,¢a,...) € B(I*,C). Then 3Q such that
entries of Q are ezther 0 or *c; for some j and

CC*'I - C*C =QQ".



Vol. 49 (2004) A Corona Theorem for Multipliers on Dirichlet Space

Proof. For k=1,2,..., let

Ak = | —Ck 0 0
0 —Ck 0

Ck+1  Ck+2 Ck+3

0 0 —Cgk

where the first k£ rows of Ax have only 0 entries.

Then
[0
0
AR Ay = |0
0
0
Thus
S i -
k=1
So let

0 0 0 0
0 0 0 0
0 X5lpiilel? —Trerys —Tucris
0 —CrCk+2 |C]€|2 0
0 —CCkg+3 0 ‘Ck‘g
Z;jél |ck]? —C1C2 —c103

— o0 2 —
—CoCy Z,#Q ek —CaC3

_ - oo 9
—C3¢1 —C3c2 Dz okl

=(CC*I - C*C.

Q=[A1,As,...| € B(‘é1§z2,z2).

133

O

Lemma 7. Let {f;}32, C M(D). Assume that for each j, f; is analytic on D11(0)

and || M§ || ppy < 1. Associate Q(2) to F(z) for each |z| = 1. Then

< \/86.

B(& HD) —
1

1R

Proof. Since ||M§||pmp) < 1, we have ||[F(z)[|Z < 1. By Lemma 6, for z €

D, Q(2)Q(2)* < (F(2)F(2)*) Iz, so |Q(2)||puzy < 1. First, note that if r € HD

is a rational polynomial in z, then
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TIEE) = FE)E,
// M o (e ddo
T 10|12
co [ [ NN EDEOE
o |62t767‘9|2

" Ire) - (e
+2/_ﬂ_/ ezt 67,9|2 dodo

<2UMEI o o+ 2
}1

<42|r|Ep
by Lemma 2.
Now for r € gHD
1

I@elnn = [ l@ueipao+ [~ [7 12 6> LG

it 620‘2

. Q) Q) e
By B e
oy e = )P
+2/ / 1Q(e™) 152 it g dode

But using Lemma 6 pointwise with ¢; = f;(e) — f;(e'), we get
Q™) = Qe™)N(Q(E™) = Q)" < (F(e™) = F()(F(e") = F(e) 12

SO

1Q(e™) = Q™) B2y < IF(e™) = F(e™)||*.
Combining the two estimates above, we get that
1QrlHp < 2l +2- 42zl
< 86 |r/l3p-

We need one more lemma to handle Cauchy transforms.

Lemma 8. Let k be smooth and (%-valued on OD. Then

I&lFp < &% + &7

Yl
B = 512 + [ [ BRI

Since all entries in E(e”) involve only negative Fourier coefficients, we see that

Proof.
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19 it) _ 0
— py(e™) —py(e?)
_sup{|/ / e” e“’ ), =0 7;?6 Y dodo |?: p, has

ezt

b
analytic polynomial entries that vanish at 0 and [|p,|[p < 1}.

/ /_,r /_,r = e” ~ 2 _161'9}(6” — ) ]%Madad/l
- /D / /_,@(Z) T (EO() f?a(ew) ) Je''edo(t)do (6)dA
B /D %/aD zi/ap ) g z>(v_z> (W)Mudvcm(z)
/ 2ri /()D w—2) (W))dvm(z)

_ / (k(2), P} (2)) dA(2)
D

by two applications of Cauchy’s theorem.

Now
[ ) A< ([ e dA%/npOH a)?
<(/ ||@||2dA)
D

(a) < |IE[I%. O

So

We are now ready to proceed with a proof of Theorem A’ in the smooth case.

Proof. Assume that {f;}32; are analytic in [2[ < 1+ 6 for all j, |ME]| <1, and
0 < € < F(2)F(2)* for all z € D, where F(z) = (f1(2), f2(2),...). Let h be
analytic in |z| < 1+ §. Define

uy, = —

“h T FFr (FF*)
pointwise on D. From our construction, the entries of Q(z) are contained in
{0, 51524, so

Ouy,(z) =0 forze D.
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Thus we need only show that

2
1,500
lualfs < (252 10l

Combining Lemmas 5, 7, and 8, we get

F*h _Q"F*h

lupllp = llugllHp = ”FF* - Q(FF*)Q 2D
F*h O F*h~

<
<l gzl + ||Q(FF*)2 | D

86 - /200 Q*F*h ., QF*h
<2 VT h 36 .
= €2 || ||D+\/_ || (FF*)QHA+|| (FF*)2 ||0

a b

But since ”\?%HB(W) <1,

1 _ 20
(a) < SIME B [5rp < ol

To estimate (b), we need the corona estimates for the H*°(D) corona theorem.
Using the Wolff procedure (see Garnett [G]) of Paley-Littlewood estimates, we get

that
8 1\,
B < (5 ) I

8 2
<(%) e

See Trent [Tr2] for more details.
Combining these estimates we see that in the smooth case,

1,500
lunll < ==kl O

We show that the same estimate holds for the general case. The following
two lemmas hold for any N-P r.k. kernel on the ball or polydisk in C™.

Lemma 9. Let {f;}52, C M(D) with |ME||=1. For0<r <1, let F.(2) = F(rz).
Then [|ME. || < | ME| and thus F, M(D@D).
Proof. We claim that
I— Mg (M§)*>0.
That is, for any {c;}7_, C 1* and {z;}}_, C D,

0< > > AU = Flrau)F(rz) ;s ) ks, (rz)- 3)
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But

(3)= (I = F(rai)F(rz;)%) ¢j, ¢ Ykrz, (rzp) - [%
=1 k=1 ”

} (4)

The expression (4) without the “boxed terms” is positive since I —M&ME* >
0. We need only note that the matrix whose ij-th entry is the boxed term is
positive. Then Schur’s lemma gives us that (4) is positive.

Now k,(z) is an N-P kernel, in fact

1 o0
1- T (?) = ;cnzﬁn and ¢, > 0 for all n.
Thus
k; (2k) 5
=(1- cnr "z 2 )k, (2
ke (zkr) ( ; 7R ()
= (1= T + S (- ez ks, (o)
n=1 n=1
oo
S 14 e - ().
n=1
Thus, [k]:? E:zi)]zkﬂ is positive and we are done. O

Lemma 10. Let F € M(& D). Then s-lim, - M = M.
: g

Proof. Assume that ||M¢||B($D) < 1. By Lemma 8, | Mgz, || < 1 for all
1

B(&D)
1
0 < r < 1. Thus we need only show that lim,_ - ||(M%z — Mz)z| = 0 for z in

a dense subset of ?D. By considering finite sums of the form Z;V:1 ¢k, , with

{gj}j»v:l C I? and {zj};v:l C D, we need only show that for e € [ and z € D,
lim, - (M, — M) ek 1o = 0.
Now
(My, — Mz)(ek.) = F(rz)"ek. — F(z)"¢ck.
k.
= F(rz) ek,,— — F(z) ek,
krz
* kz *
= Mf(ékrz)F — Mz(ek:).

Thus

I35, = MR < e = ol + Dl (s [0 01 )
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But
k. (w) k. (w) — k- (rw) Kz (w) — k. (rw)|
| — 1= | < (6)
ke (w) ke (w) k.(1)
Since k. is uniformly continuous on D, we see that combining (5) and (6) completes
the proof. O

Proof of Theorem 1. Let {f;}32, C M(D), |ME|| <1 and €2 < F(2)F(2)* for all
2| < 1. By Lemma 8 for 0 < < 1, we have ||Mg || <1 and € < F,(2)F,(2)* for

all |z| < 1. By the proof of Theorem A’ in the smooth case we have

-2
1,500
(’3 ) IT<MEMEY <I for0<r<1.
c . (MF,

By Theorem B, 3 G, € M(D, & D) so that ME MS =1 and | MZ || < 159
1 T ™ T €

By compactness, we may choose a net with G WOT G+ as ro — 17. Note

that G € M (D, &SD), since the multiplier algebra (as operators) is WOT closed.
1

Since Lemma 9 says that F? 5 F*, we get

1=c: F: "' G*F* and FG=1.
with entries of G in M(D) and || M| < 252 0

References

[A] J. Agler, Some interpolation theorems of Nevanlinna—Pick type, preprint.

[AM] J. Agler and J.W. McCarthy, Nevanlinna—Pick interpolation on the bidisk, J.
Reine Angew. Math. 506 (1999), 191-204.

[BLTT] J.A. Ball, W.S. Li, D. Timotin, and T.T. Trent, A commutant lifting theorem on
the polydisc, Indiana Univ. Math. J. 48 (1999), 653-675.

[BT] J.A. Ball and T. Trent, Unitary colligations, reproducing kernel Hilbert
spaces, and Nevanlinna—Pick interpolation in several variables, J. Funct. Anal.
157 (1998), 1-61.

[BTV] J.A. Ball, T.T. Trent, and V. Vinnikov, Interpolation and commutant lifting for
multipliers on reproducing kernel Hilbert spaces, Oper. Theory: Advances and
Applications 122 (2001), 89-138.

[C] L. Carleson, Interpolation by bounded analytic functions and the corona problem,
Annals of Math. 76 (1962), 547-559.

[CM] R.S. Clancy and S. McCullough, Projective modules and Hilbert spaces with
Nevanlinna—Pick kernel, Proc. Amer. Math. Soc. 126 (1998), 3299-3305.

[EP] J. Eschmeier and M. Putinar, Spherical contractions and interpolation problems
on the unit ball, J. Reine Angew. Math. 542 (2002), 219-236.

[G] J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.



Vol. 49 (2004) A Corona Theorem for Multipliers on Dirichlet Space 139

[GRS]

D. Greene, S. Richter, and C. Sundberg, The structure of inner multipliers on
spaces with complete Nevanlinna—Pick kernels, preprint.

J.W. Helton, Optimization over H* and the Toeplitz corona theorem, J. Oper-
ator Theory 15 (1986), 359-375.

E. Katsoulis, R.L. Moore, and T. Trent, Interpolation in nest algebras and ap-
plications in operator corona theorems, J. Operator Theory 29 (1993), 115-123.
S.-Y. Li, Corona problems of several complex variables, Madison Symposium
of Complex Analysis, Contemporary Mathematics, vol. 137, Amer. Math. Soc.,
Providence, 1991.

K.C. Lin, H? corona theorem for the polydisk, Trans. Amer. Math. Soc.
341 (1994), 371-375.

S. McCullough, The local deBranges-Rovnyak construction and complete
Nevanlinna—Pick kernels, Algebraic Methods in Operator Theory, Birkhauser,
Boston, 1994, 15-24.

N.K. Nikolskii, Treatise on the Shift Operator, Springer-Verlag, New York, 1985.
P. Quiggin, For which reproducing kernel Hilbert spaces is Pick’s theorem true?,
Integral Equations and Operator Theory 16 (1993), 244-266.

M. Rosenblum, A corona theorem for countably many functions, Integral Equa-
tions and Operator Theory 3 (1980), 125-137.

C.F. Schubert, Corona theorem as operator theorem, Proc. Amer. Math. Soc.
69 (1978), 73-76.

B. Sz.-Nagy and C. Foias, On contractions similar to Toeplitz operators, Ann.
Acad. Sci. Fenn. Ser. A T Math. 2 (1976), 553-564.

V.A. Tolokonnikov, The corona theorem in algebras of smooth functions, Trans-
lations (American Mathematical Society), series 2, vol. 149 (1991), 61-95.

T.T. Trent, An H? corona theorem on the bidisk for infinitely many functions,
preprint.

T.T. Trent, A new estimate for the vector valued corona problem, J. Funct. Anal-
ysis 189 (2002), 267-282.

Z. Wu, Function theory and operator theory on the Dirichlet space, Holomorphic
Spaces, Math. Sci. Res. Inst. (Berkeley), Publ. 33, Cambridge University Press,
1998, 179-199.

Tavan T. Trent

Department of Mathematics
The University of Alabama

Box 870350

Tuscaloosa, AL 35487-0350

USA

e-mail: ttrent@gp.as.ua.edu

Submitted: May 10, 2002
Revised: August 30, 2002



