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H1 AND DYADIC H1

SERGEI TREIL

To Victor Petrovich Khavin

Abstract. In this paper we give a simple proof of the fact that the average over all dyadic
lattices of the dyadic H1-norm of a function gives an equivalent H1-norm. The proof we
present works for both one-parameter and multi-parameter Hardy spaces.

The results of such type are known; cf. [2] for the one-parameter case. Also, by duality,
such results are equivalent to the “BMO from dyadic BMO” statements proved in [4] (one
parameter case) and [8] (two-parameter case).

While the paper generalizes these results to the multi-parameter setting, this is not its
main goal. The purpose of the paper is to present an approach leading to a simple proof,
which works in both one-parameter and multi-parameter cases.

The main idea of treating square function as a Calderón–Zygmund operator is a common-
place in harmonic analysis; the main observation, on which the paper is based, is that one
can treat the random dyadic square function this way. After that, all is proved by using the
standard and well-known results about Calderón–Zygmund operators in the Hilbert-space-
valued setting.

As an added bonus, we get a simple proof of the (equivalent by duality) inclusions BMO ⊂

BMOd, H
1
d ⊂ H1 in the multi-parameter case. Note, that unlike the one-parameter case,

the inclusions in the general situation are far from trivial.
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Notation

H⊗K tensor product of Hilbert spaces H and K; we consider its endowed with the
“canonical” norm, which makes H ⊗ K a Hilbert space. If one of the spaces is
a function space, for example if H = L2, then H ⊗ K can be interpreted as L2

with values in K.

Lp(X;H) Lp-space of functions on X with values in H; X is usually R
N with the Lebesgue

measure. Symbols X and/or H can be omitted if they are clear from the context.
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dx Lebesgue measure in R
N if x ∈ R

N .

D Dyadic Lattice in R
N , see below.

H1, H1
D real variable Hardy space on R

N and its dyadic counterpart, associated to a
dyadic lattice D. We will also consider Hilbert-space-valued spaces, and the
notation like H1(X;H) will be used.

ℓ(Q), |Q| sidelength and volume of a cube Q ⊂ R
N .

Eξ expectation of a random variable ξ, Eξ =
´

Ω ξ(ω)dP (ω); sometimes, to distin-
guish the random variable in a formula, the notation Eξ(ω) or Eωξ(ω) will be
used instead of Eξ.

Cubes and dyadic lattices. Throughout the paper we will speak a lot about dyadic cubes
and dyadic lattices, so let us first fix some terminology. A cube in R

N is an object obtained
from the standard cube [0, 1)N by dilations and shifts.

For a cube Q we denote by ℓ(Q) its size, i. e. the length of its side. Given a cube Q one
can split it by dividing each side in halves into 2N cubes Qk of size ℓ(Q)/2: we will call such
cubes Qk the children of Q.

For a cube Q and λ > 0 we denote by λQ the cube Q dilated λ times with respect to its
center.

Now, let us define the standard dyadic lattice D0: for each k ∈ Z let us consider the cube
[0, 2k)N and all its shifts by elements of RN with coordinates of form j · 2k, j ∈ Z. The
collection of all such cubes (union over all k) is called the standard dyadic lattice.

A dyadic lattice D is just a shift of the standard dyadic lattice D0. A collection of all cubes
from a dyadic lattice D of a fixed size 2k is called a layer of the lattice.

Random dyadic lattice. Our random lattice will contain the dyadic cubes of standard
size 2k (k ∈ Z), but will be “randomly shifted” with respect to the standard dyadic lattice
D0. The simplest idea would be to pick up a random variable x uniformly distributed over
R
N and to define the random lattice as x + D0. This idea works for the torus T

N , but
unfortunately, there exists no such random variable x in R

N , so we have to act in a little bit
more sophisticated way.

Let us construct a random lattice of dyadic intervals on the real line R, and then define a
random lattice in R

N as the product of the lattices of intervals.
Let Ω1 be some probability space and let x(ω) be a random variable uniformly distributed

over the interval [0, 1).
Let ξj(ω) be random variables satisfying P{ξj = +1} = P{ξj = −1} = 1/2. Assume also

that x(ω), ξj(ω), j ∈ N are independent. Define the random lattice D(ω) as follows:

(1) We require that I0(ω) := [x(ω) − 1, x(ω)] ∈ D(ω); this gives us all intervals in D(ω)
of length 2k, k ≤ 0.

(2) To determine the rest of the intervals, it is enough to know dyadic intervals Ik(ω) ⊃
I0(ω), of length 2k, k ≥ 0. The intervals Ik(ω) are determined inductively: if
Ik−1(ω) ∈ D(ω) is already known (and thus all intervals of length 2k−1 in D(ω)),
then

• Ik(ω) is the union of Ik−1(ω) and its right neighbor if ξk(ω) = +1, and
• Ik(ω) is the union of Ik−1(ω) and its left neighbor if ξk(ω) = −1.

To get a random dyadic lattice in R
N we just take N independent random dyadic lattices

D1,D2, . . . ,DN in R and consider all cubes Q = I1 × I2 × . . .× IN , Ik ∈ Dk.
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0. Introduction and main results

0.1. One parameter case. Let H1 = H1(RN ) be the usual real variable Hardy space on
R
N , and let H1

D
be its dyadic counterpart, defined as follows.

Consider a dyadic lattice D in R
N . Let Ek = ED

k be the averaging operator over cubes

Q ∈ D of size 2k, Ekf(x) = |Q|−1
´

Q f , where Q is the cube in D of size 2k containing x. If

Q ∈ D is a cube of size 2k define E
Q

by E
Q
f = (|Q|−1

´

Q f)1
Q
= 1

Q
(Ekf).

Define the martingale differences ∆k = ∆D
k := ED

k−1 −ED
k , and again for a cube Q ∈ D of

size 2k define ∆
Q

by ∆
Q
f = 1

Q
(Ekf).

Define the dyadic square function S = S
D

by

(0.1) (S
D
f)(x) =

(
∑

k∈Z

∣∣∆D
k f(x)

∣∣2
)1/2

=




∑

Q∈D,Q∋x

|∆Qf(x)|
2




1/2

.

One can also consider a slightly different square function S̃f = S̃
D
f

(0.2) (S̃
D
f)(x) =

(
∑

k∈Z

(
ED

k

∣∣∆D
k f
∣∣2
)
(x)

)1/2

=




∑

Q∈D, Q∋x

(
ED

Q

∣∣∆D
Qf
∣∣2
)
(x)




1/2

;

in other words, each term in the sum on the right equals the average of |∆
Q
f |2 if x ∈ Q and

0 otherwise.
It is not hard to show and will be explained later that C−1‖Sf‖1 ≤ ‖S̃f‖1 ≤ C‖Sf‖1,

where the constant C depends only on the dimension N .

Definition. A function f ∈ L1
loc is in the dyadic Hardy space H1

D
(with respect to the dyadic

lattice D) if ‖f‖H1
D

:= ‖S
D
f‖1 < ∞

One can use the square function S̃Df here and get an equivalent norm.
And now one of the main results of the paper. Let D(ω), ω ∈ Ω be the random dyadic

lattice, as described above, and let us recall that E = Eω denotes the expectation (average
with respect to ω)

Theorem 0.1. A function f ∈ L1
loc(R

n) belongs to H1 if and only if
ˆ

RN

[
E(|SD(ω)f(x)|

2)
]1/2

dx < ∞.

Moreover, the latter quantity gives an equivalent norm on H1.

The same result is true with the square function S̃D(ω) in place of SD(ω).

0.2. Multi-parameter case. The above results can be generalized to the case of multi-
parameter Hardy spaces. Let Xk = R

Nk , k = 1, 2, . . . , n and let H1(X1 ×X2 × · · · ×Xn) be
the n-parameter Hardy space, see Section 2.1 below for the definition.

Define the dyadic Hardy space as follows. Let Dk be a dyadic lattice on Xk, k = 1, 2, . . . , n
and let D = D1 ×D2 × . . . ×Dn be the product dyadic lattice on X = X1 ×X2 × . . . ×Xn;
the elements on D are the “rectangles” (parallelepipeds) R = Q1 ×Q2 × . . .×Qn, Qk ∈ Dk.

For a multiindex k = (k1, k2, . . . kn) define on X = X1 × X2 × · · · × Xn the average

Ek := E1
k1
E2

k2
. . . En

kn
and the martingale differences ∆k := ∆1

k1
∆2

k2
. . .∆n

kn
, where Ej

kj
and

∆j
kj

are the “one variable” averages Ekj martingale difference ∆kj as defined above by in

Section 0.1, taken in the variable xj ∈ Xj .
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For a “rectangle” R = Q1 ×Q2 × . . .×Qn, Qk ∈ Dk define ∆R := ∆1
Q1

∆2
Q2

. . .∆n
Qn

, where

again ∆j
Qj

is the operator ∆Qj
defined by (0.2) taken in the variable xj .

Define the multi-parameter square function S = SD by

(0.3) (S
D
f)(x) =

(
∑

k∈Zn

|∆kf(x)|
2

)1/2

=




∑

R∈D,R∋x

|∆Rf(x)|
2




1/2

.

One can also define the square function S̃ = S̃D

(0.4) S̃f(x) :=

(
∑

k∈Z

(
Ek |∆kf |

2
)
(x)

)1/2

=




∑

R∈D,R∋x

(
ER |∆Rf |

2
)
(x)




1/2

The definitions look very similar to (0.1), (0.2), only here the sums in the right hand side is
taken over all “rectangles” R, while in (0.1), (0.2) they are taken over all cubes.

We use the same notation for the one-parameter and multi-parameter square function, but
since we will treat these cases in different sections, we hope to avoid the confusion.

Definition. Let D = D1×D2×. . .×Dn be a product dyadic lattice onX = X1×X2×. . .×Xn.
We say that a function f ∈ L1

loc(X) belongs to the dyadic Hardy space H1
D if ‖f‖H1

D

:=

‖S
D
f‖1 < ∞

Let now D1(ω),D2(ω), . . . ,Dn(ω) be the independent random dyadic lattices on the spaces
X1,X2, . . . ,Xn respectively, and let D(ω) = D1(ω) × D2(ω) × . . . × Dn(ω) be the multi-
parameter random dyadic lattice.

Theorem 0.2. A function f ∈ L1
loc(R

n) belongs to H1(X1 ×X2 × · · · ×Xn) if and only if
ˆ

RN

[
E(|SD(ω)f(x)|

2)
]1/2

dx < ∞;

here SD(ω) is the multi-parameter random dyadic lattice defined above. Moreover, the latter

quantity gives an equivalent norm on H1.

The same result is true with the square function S̃D(ω) in place of SD(ω).

0.3. Some remarks.

Remark 0.3. It is a simple exercise to show that in both one-parameter and multi-parameter
cases

E(|SD(ω)f(x)|
2 = lim

Q→RN

1

|Q|

ˆ

Q
|SDf(x+ u)|2du

whereD is a fixed dyadic lattice and the limits is taken over cubes (or parallelipipeds) Q ⊂ R
N

(Q ⊂ X in the multi-parameter case) centered at 0 whose sidelengths tend to ∞.

Remark 0.4. Note that for every dyadic lattice D one has ‖f‖H1 ≤ C‖SDf‖1, thus by Tonelli
theorem and Hölder inequality we have for p ≤ 2

‖f‖H1 ≤ C

ˆ

RN

[
E(|SD(ω)f(x)|

p)
]1/p

dx ≤ C

ˆ

RN

[
E(|SD(ω)f(x)|

2)
]1/2

dx.

In the one-parameter case the estimate ‖f‖H1 ≤ C‖SDf‖1 is trivial and well known. Indeed,
H1-BMO duality ((H1)∗ = BMO, (H1

D)
∗ = BMOD, see the definitions below in Section 3.1)

and the trivial inclusion BMO ⊂ BMOD imply the H1
D ⊂ H1 with the desired estimates of

the norms.
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Since BMO 6= BMO
D
, one can conclude that th inclusion H1

D ⊂ H1 is proper.
In the multi-parameter case the estimate ‖f‖H1 ≤ C‖SDf‖1is also known to specialists,

but it is less trivial. In fact, the only place that the author is aware of, where this is proved
is the Ph.D. thesis of J. Pipher; this proof is far from trivial and the calculations are quite
tedious. Below in Section 2.3 we present a different, quite simple prove of this fact. This
proof is based on one-parameter (Hilbert-space-valued) H1-BMO theory.

Remark 0.5. Applying Hölder inequality to Theorem 0.1 (to Theorem 0.2 in the multi-
parameter case) we get that for p ≤ 2

(0.5)

ˆ

RN

[
E(|SD(ω)f(x)|

p)
]1/p

dx ≤

ˆ

RN

[
E(|SD(ω)f(x)|

2)
]1/2

dx ≤ C‖f‖H1

If p = 1 Tonelli Theorem and (0.5) implies that

(0.6) E‖S
D(ω)

f‖1 ≤ C‖f‖H1 .

This was proved in one-parameter case in [2]. Note, that by duality (0.6) is equivalent to
“BMO from dyadic BMO” statements: if fω ω ∈ Ω is a measurable family of functions,
fω ∈ BMOD(ω), ‖fω‖BMOD(ω)

≤ 1, then for f defined by f(x) = Eωfω(x) one has f ∈ BMO,

‖f‖BMO ≤ C.
This “BMO from dyadic BMO” result was proved directly in [4] (one-parameter case) and

in the recent paper [8] (the two-parameter case).

1. Proof of Theorem 0.1

1.1. “Vectorization” of the square function. There is a standard way of making the
nonlinear operator SD into a linear one by treating SDf as a vector-valued function.

Namely, let us consider the space L1(ℓ2) consisting of functions on Z× R
N such that

‖f‖L1(ℓ2) :=

ˆ

RN

(
∑

k∈Z

|f(k, x)|2

)1/2

dx < ∞.

Define the vector-valued square function SDf by

SDf(k, x) := ∆D
k f(x), k ∈ Z, x ∈ R

N

(SDf is a function on Z × R
N). We will treat this function as a function of the argument

x ∈ R
N with values in ℓ2 = ℓ2(Z).

Clearly,
SDf( · , x)

ℓ2 = SDf(x), so f ∈ H1
D if and only if Sf ∈ L1(ℓ2). Moreover,

‖SDf‖L1(ℓ2) = ‖SDf‖1 = ‖f‖H1
D

.

Let now D(ω) be the random dyadic lattice, and let Ω,P be the corresponding probability
space. Consider the space L = L1(ℓ2 ⊗ L2(Ω,P)),

‖f‖L :=

ˆ

RN

(
ˆ

Ω

∑

k∈Z

|f(k, ω, x)|2dP(ω)

)1/2

dx.

It is an L1 space with values in the Hilbert space ℓ2 ⊗ L2(Ω,P); here again f is treated as
function of the argument x ∈ R

N with values in ℓ2 ⊗ L2(Ω,P).
Define the vector-valued square function S with values in ℓ2 ⊗ L2(Ω,P) by

(1.1) Sf(k, ω, x) = SD(ω)f(k, x), x ∈ R
N , k ∈ Z, ω ∈ Ω.

here and below we will use notation S( · , · , x) =: Sf(x) ∈ ℓ2 ⊗ L2(Ω,P).
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Clearly, ‖Sf(x)‖ℓ2×L2(Ω,P) =
[
E(|SD(ω)f(x)|

2)
]1/2

, so ‖Sf‖
L
=
´

RN

[
E(|SD(ω)f(x)|

2)
]1/2

dx
(the norm in L was constructed so this would hold).

Similar “vectorization” can be performed to the square function S̃. Namely, fix some
ordering of the “children” of a dyadic cube (the same one for all cubes), and for each dyadic

cube Q define operator from the functions constant on the “children” of Q to C
2N by

UQ1Qk
= |Qk|

1/2ek, k = 1, 2, . . . , 22
N

,

where Qk are “children” of Q and {ek}
2N

k=1 is the standard basis in R
2N . Let now L :=

L1(ℓ2 ⊗ L2(Ω,P)⊗ C
2N ) with the norm

‖f‖L :=

ˆ

RN

(
ˆ

Ω

∑

k∈Z

f(k, ω, x)
2

C2N
dP(ω)

)1/2

dx.

Define the square function S̃ by

S̃f(k, ω, x) := UQ∆Qf ∈ C
2N ,

where Q ∈ D(ω) is the cube of size 2k containing x. From the construction it is clear that

‖S̃f‖
L
=
´

RN

[
E(|S̃D(ω)f(x)|

2)
]1/2

dx.

Now the proof of Theorem 0.1 can be outlined in few sentences. First, it is nor hard to

show that S (or S̃) is a Calderón–Zygmund operator, whose kernel takes values in the Hilbert
space ℓ2 ⊗L2(Ω,P). It is a well known fact that such Calderón–Zygmund operators map H1

to L1, so
ˆ

RN

[
E(|SD(ω)f(x)|

2)
]1/2

dx = ‖Sf‖
L
≤ C‖f‖H1 .

As we discussed above in Section 0.1, the opposite inequality ‖f‖H1 ≤ C‖Sf‖
L
is trivial.

Of course, the classical theory of Calderón–Zygmund operators deals with the scalar-valued
kernels. But, as it is well known to the specialists, all the facts that we need, are valid in the
case of Hilbert space valued kernels too.

However, the blind trust is not expected from the reader: all relevant facts will be presented
below.

1.2. S as a Calderón–Zygmund operator. Let us recall that the classical Calderón–
Zygmund kernel on R

N is the function K( · , · ) defined on R
N × R

N \ {(x, x) : x ∈ R
N}

satisfying

(1) |K(x, y)| ≤ C|x− y|−N ;
(2) There exists δ > 0 such that

|K(x, y)−K(x0, y)|,
K(y, x)−K(y, x0)

≤ C
|x− x0|

δ

|y − x0|N+δ
,

whenever |y − x0| ≥ 2|x− x0|

One can also consider operator-valued kernels, K(x, y) ∈ B(X,Y ) for arbitrary Banach
spaces X and Y . In this case | · | in the left hand side should be replaced by the norm in
B(X ,Y).
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1.2.1. Vector-valued Calderón–Zygmund operators. A Calderón–Zygmund operator with (op-
erator-valued) Calderón–Zygmund kernel K is a bounded operator T : L2(RN ;X ) →
L2(RN ,Y) such that for all compactly supported f ∈ L2(RN ;X ) and g ∈ L2(RN ;Y∗) with
separated supports

〈Tf, g〉 =

¨

RN×RN

〈K(x, y)f(y), g(y)〉 dydx.

Such operators with operator-valued kernels were considered, for example, in [9], and it was
proved there (see Theorem 1.2 in Ch. 3) that if X and Y are Hilbert spaces then the operator
acts from H1 to L1, ‖Tf‖L1(RN ,X ) ≤ C‖f‖H1(RN ,Y).

In fact, in [9] a much more general situation was considered. The kernel was only assumed
to satisfy a weaker version of condition (2), and there was no condition (1). Moreover, it was
assumed that T was bounded in some Lp, 1 < p < ∞, not necessarily p = 2.

Note, that condition (1) in some form is required for the proof of T1 and Tb theorems, but
if one assumes that T is bounded in some Lp, 1 < p < ∞ the condition (2) alone is sufficient
for the action from H1 to L1.

Also, in [9] the theorem was proved for the case when X and Y are arbitrary Banach
spaces, if one defines H1 via atomic decomposition.

It is well known that for the case of Hilbert-space-valued functions all the definitions of H1

(via atomic decompositions, via maximal function, via different square functions, via Riesz
transforms) are equivalent1, so one can use the result from [9] without worrying about what
definition of H1 is used.

In this paper we are considering the case when X = C and Y = H = ℓ2 ⊗ L2(Ω,P), so we
can say that K takes values in the Hilbert space H.

Operators with such kernels also act naturally from L2(RN ;K) → L2(RN ;H ⊗ K), where
K is a Hilbert space, and we will need this interpretation later in Section 2. Indeed, with
each vector h ∈ H we can associate an operator K ∋ f 7→ f ⊗ h ∈ K ⊗ H (and the norm
of this operator is ‖h‖). So, if K is ah H-valued Calderón–Zygmund kernel, then a Calder-
ón–Zygmund operator on L2(RN ;K) is a bounded operator T : L2(RN ;K) → L2(RN ;H⊗K)
such that

〈Tf, g〉L2(RN ;H⊗K) =

¨

RN×RN

〈K(x, y)⊗ f(y), g(y)〉H⊗K dydx.

for all compactly supported f and g with separated supports.

1.2.2. Why S is a Calderón–Zygmund operator? To find the kernelK of S we need to compute
Sδy, where δy is the unit mass at y ∈ R

N :

K(x, y) =
{
∆

D(ω)
k δy(x)

}
k∈Z, ω∈Ω

∈ ℓ2 ⊗ L2(Ω,P)

To get that expression rigorously, one needs to approximate δy by appropriate bump func-

tions; notice that ∆Dω

k δy is well defined, i.e. does not depend on the choice of approximating
sequence.

Notice that for a dyadic cube Q, ∆Qδy(x) 6= 0 only if x ∈ Q, y ∈ Q. Therefore ∆Qδy(x) = 0

if ℓ(Q) < |x− y|∞, so ∆
D(ω)
k δy(x) = 0 if 2k < |x− y|∞.

Noticing that ‖∆Dω

k δy‖∞ ≤ C2−kN and summing the geometric series we get the property
(1) of Calderón–Zygmund kernels.

1Unfortunately, the author cannot point to a paper where all such equivalences are proved; but following
the proofs for the scalar-valued case, one can see that everything works for the case of Hilbert-space valued
case as well.
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To show property (2) notice that ∆
D(ω)
k δy(x) = ∆

D(ω)
k δy(x0) if all 3 points x, x0, y are in

the same cube Q ∈ D(ω), ℓ(Q) = 2k and the points x, x0 are in the same “child” of Q.
The probability that it fails for a given k can be estimated above by C|x− x0|2

−k. Using

the estimate ‖∆Dω

k δy‖∞ ≤ C2−kN we conclude that
ˆ

Ω
|∆

D(ω)
k δy(x)−∆

D(ω)
k δy(x0)|

2dP(ω) ≤ C2−2kN |x− x0|2
−k = C|x− x0|2

−2kN−k.

Let k0 be the maximal k ∈ Z such that 2k < min{|x− y|∞, |x0 − y|∞}. Then ∆Dω

k δy(x) =

∆Dω

k δy(x0) = 0 for k < k0, so
K(x, y)−K(x0, y)

2 ≤ C
∑

k≥k0

2−2kN−k|x− x0| ≤ C|x− x0|2
−2k0N−k0

≤ C|x− x0||x0 − y|−2N−1.

Interchanging x and y and repeating the above reasoning we also get that
K(y, x)−K(y, x0)

2 ≤ C|x− x0||x0 − y|−2N−1.

This means condition (2) holds with δ = 1/2.

The proof for S̃ is absolutely the same.

1.3. A remark about conditions S1 = 0, S∗1 = 0. Material in this section is not needed
for the proof of the main results. However, it might be of interest for specialists; one can
use it to present a different proof of the main results, without employing the cited above in
Section 1.2.1 result from [9] result about Calderón–Zygmund operators with operator-valued
kernels.

Note that the operator S, introduced above satisfies the conditions S1 = 0 and S∗1 = 0
(more precisely, the second condition should read as S∗1e = 0 for all e ∈ H), which are well
known to everybody familiar with T (1)-theorem.

If one formally plugs 1 into S or S∗, the result will be 0. Of course, it is only a formal
reasoning, for 1 is not in the domain of S, but any reasonable interpretation of S1 gives the
same result. For example it is not hard to show that

(1.2) S1
Q
→ 0, S∗1

Q
e → 0 as ℓ(Q) → ∞

uniformly on compact subsets, where cubes Q are centered at 0.

It is also easy to see that S̃1 = 0, but unfortunately S̃∗1 6= 0. However, it is easy to modify

S̃ to make S̃∗1 = 0.
Namely, let ϕ be a function on the cube [0, 1)N taking values ±1 and such that

´

Q ϕdx = 0

and let ϕ
Q
(x) = ϕ((x − x

Q
)/ℓ(Q)), where x

Q
is the base of Q, i.e. the point in Q with

smallest coordinates.
Define the square function S̃ by

S̃f(k, ω, x) := ϕ
Q
(x)UQ∆Qf ∈ C

2N ,

where Q ∈ D(ω) is the cube of size 2k containing x.

The function ϕ
Q

in the definition of S̃ is introduced to insure that S̃∗1 = 0. Now it is easy

to show that S̃1 = 0, S̃∗1 = 0 (in the sense of (1.2)).
Calderón–Zygmund operators satisfying T1 = 0 and T ∗1 = 0 map H1 → H1. To show

that one, for example can consider matrix of such an operator in the wavelet basis. It was
shown in [6] that under rather mild assumption about wavelet basis, the coefficient space of
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H1 in this basis is the Triebel–Lizorkin space ḟ0,21 ; see Appendix (Section 3) for the definition.
In [6] the scalar-valued case was treated, but one can easily see that everything works for the

Hilbert-space valued case, and one just get the vector-valued space ḟ
0,2
1 . Moreover, in [5] the

H1 spaces with values in UMD Banach spaces were characterized in terms of coefficient in
the wavelet basis; in the Hilbert-space-valued case the result gives exactly ḟ

0,2
1 with values in

the Hibert space.
Using the standard estimates with Calderón–Zygmund kernels one can see that if a Cald-

erón–Zygmund operator T (even with the operator-valued kernel) satisfies T1 = 0, T ∗1 = 0,

then its matrix in the wavelet basis is what is called in [3] almost diagonal for ḟ0,qp , 1 ≤ p, q <
∞; cf. Section 3 below for the definition.

And it was shown in [3] that almost diagonal operators are bounded on all ḟ0,qp , 1 ≤ p, q <
∞. Since the almost diagonality is a condition on the magnitude of the entries, the result
holds for vector-valued Triebel–Lizorkin spaces. Of course, instead of considering a wavelet
basis, one can consider a frame decomposition, given by what is called in [3] ϕ-transform; all
the estimates will be the same.

2. Proof for the multi-parameter case

Proof of the main result for multi-parameter case (Theorem 0.2) follows the lines of the
proof for the one parameter.

Without loss of generality we can assume that the probability space Ω is represented as a
product, (Ω,P) = (Ω1 × Ω2 × . . .× Ωn,P1 × P2 × . . .× Pn) and that the random dyadic grid
Dk(ω) on Xk depends only on ωk.

For a dyadic lattice D = D1×D2× . . .×Dn on X1×X2× . . .×Xn define the vector-valued
square function SD taking values in ℓ2(Zn)

SDf(k, x) := ∆D
k f(x), k ∈ Z

n, x ∈ R
N

Consider the space L = L1(ℓ2(Zn)⊗ L2(Ω,P)),

‖f‖L :=

ˆ

RN

(
ˆ

Ω

∑

k∈Zn

|f(k, ω, x)|2dP(ω)

)1/2

dx.

It is an L1 space with values in the Hilbert space ℓ2(Zn)⊗ L2(Ω,P). Note, that this Hilbert
space can be decomposed as ℓ2(Zn)⊗L2(Ω,P) = (ℓ2⊗L2(Ω1,P1))⊗ (ℓ2⊗L2(Ω2,P2))⊗ . . .⊗
(ℓ2 ⊗ L2(Ωn,Pn)); here ℓ2 = ℓ2(Z).

Define the vector-valued square function, taking values in the space ℓ2(Zn)⊗ L2(Ω,P) by

Sf(k, ω, x) = SD(ω)f(k, x), x ∈ R
N , k ∈ Z

n, ω ∈ Ω.

Note, that S can be decomposed as a tensor product S = S1 ⊗S2 ⊗ . . .⊗Sn, where Sk is the
one parameter square function defined by (1.1) in variables xk ∈ Xk = R

Nk , ωk ∈ Ωk.
Clearly, as in the one parameter case, we have for the multi-parameter square functions

‖Sf‖1 =
´

X

[
Eω(|SD(ω)f(x)|

2)
]1/2

dx.

Similarly, for the square function S̃ one can construct its vector version S̃ with values

in H = H1 ⊗ H2 ⊗ . . . ⊗ Hn, Hk = ℓ2 ⊗ L2(Ωk,Pk) ⊗ C
2Nk . Again, it is easy to see that

‖S̃f‖L1(X;H) =
´

X

[
Eω(|S̃D(ω)f(x)|

2)
]1/2

dx.

As it was already discussed in Section 1.2, operators Sk are (Hilbert-space-valued) one-
parameter Calderón–Zygmund operators, so S is the tensor product of such operators. And
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it is probably immediately clear to experts, that such operators map H1(X1⊗X2⊗ . . .⊗Xn)
to L1.

One way to see that is to notice that S is a trivial case of multi-parameter Calderón–
Zygmund operators, and according to Theorem 2.2 in [7] such operators map H1(X1 ⊗X2 ⊗
. . . ⊗Xn) to L1. Of course, one needs to use a Hilbert space valued version of the theorem,
but it is clear to the specialists, that the proof from [7] works in this case. It is also clear that
while Theorem 2.2 in [7] is stated for R×R× . . .×R, the proof works for X1⊗X2⊗ . . .⊗Xn,
Xk = R

Nk .
For the reader who is not well familiar with multi-parameter H1 spaces we present below

an alternative proof, which exploits the tensor product structure of S = S1 ⊗ S2 ⊗ . . .⊗ Sn;
it uses only theory of one parameter H1-spaces. Of course, we will need the theory of H1-
spaces with values in a Hilbert space, but we need the vector valued theory in the above
multi-parameter reasoning as well.

There is one more reason for the presenting the one-parameter proof below: the reasoning

above gives the estimate
´

X

[
Eω(|SD(ω)f(x)|

2)
]1/2

dx ≤ C‖f‖H1(X). The opposite estimate

follows from the inequality ‖f‖H1 ≤
´

X |SDf(x)|dx, which is trivial in one-parameter case. In
multi-parameter case, the same estimate, while true and known to specialists, requires some
some work to prove it. The one-parameter approach presented below gives a reasonably
simple proof of this estimate.

2.1. Multi-parameter H1-spaces. Recall, cf [10, III.4.4] that for for one-parameter Hardy
space H1(RN ) the norm ‖SLf‖1, where SL is the Lusin square function (aka Lusin Area
Integral)

SLf(x) =

ˆ

Γx

|∇f(y, t)|2t1−ndydt

(here Γx := {(y, t) : y ∈ R
N , t ≥ 0, |y − x| < t}, and f(y, t) is the harmonic extension of f

from R
N to R

N+1
+ := R

N ×R+ = {(x, t) : x ∈ R
N , t ∈ R+}) gives an equivalent norm.

One can consider the vectorization SL of SL as follows. Let Γ = Γ0 and define

SLf(x, y, t) = t(1−n)/2∇f(x+ y, t), x ∈ R
N , (y, t) ∈ Γ.

By construction SLf(x, · , · ) ∈ L2(Γ) ⊗ C
2 and ‖SLf(x, · , · )‖L2(Γ)⊗C2 = SLf(x), therefore

‖SLf‖L1(L2(Γ)) = ‖SLf‖1.

One can define multi-parameter square functions ~SL and ~SL by

~SLf(x1, x2, . . . , xn) :=[
ˆ

Γx1×Γx2×...×Γxn

|∇1∇2 . . .∇nf(y1, t1, y2, t2, . . . , yn, tn)|
2×

× t1−N1
1 t

(1−N2)
2 . . . t1−Nn

n dy1dt1dy2dt2 . . . dyndtn

]1/2
;

here f(y1, t1, y2, t2, . . . , yn, tn) is the harmonic in each variable (yk, tk), yk ∈ R
Nk , tk ∈ R+

extension of f from R
N1 × R

N2 × . . . × R
Nn to R

N1+1
+ × R

N2+1
+ × . . . × R

Nn+1
+ and ∇k is the

gradient in the variable (yk, tk).

Following [1] we say that f ∈ H1(X) = H1(X1 ⊗ X2 ⊗ . . . ⊗ Xn) if ~SLf ∈ L1(X) and

‖~SLf‖1 defines one of the possible equivalent norms in H1(X).
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We also define the vector-valued linear square function ~SL as ~Sf(x) = SL
1 ⊗ SL

2 ⊗ . . . ⊗
SL
nf(x) ∈ H = H1⊗H2⊗ . . .⊗Hn, where S

L
k it one-parameter square function defined above

taken in the variable xk, Hk = L2(Γk)⊗C
2 and Γk is the cone in R

Nk+1
+ with the vertex at 0.

Again, by the construction ‖~SLf(x)‖H = |~SLf(x)|, so ‖~SLf‖L1(X;H) gives the norm in

H1(X).

We will use ~SL to define multi-parameter H1 with values in a Hilbert space K; in this case
~SLf(x) ∈ H × K. We introduced such spaces only for notational purposes, so while most of
the theory of multi-parameter H1-spaces can be transfered to the Hilbert-space-valued case,
we do not need this.

2.2. Proof of estimate
´

X

[
Eω(|SD(ω)f(x)|

2)
]1/2

dx ≤ C‖f‖H1(X). Consider a multi-param-

eter square function S̃2 ⊗ . . . ⊗ S̃n, where each S̃k, 2 ≤ k ≤ n is either one-parameter SL or
one-parameter “random” square function S, defined in (1.1), taken in the variable xk.

Assume that the choice of S̃k is fixed. For a scalar-valued f the function S̃2 ⊗ . . . ⊗ S̃nf

takes values in H̃1 := H̃2⊗ . . .⊗H̃n, where each H̃k is either L2(Γk)⊗C2 or ℓ2 ⊗L2(Ωk,Pk),

depending on what square function S̃k is.
Let SL

k , Sk be the Lusin and “random” square functions, taken in the variable xk, and let
Hk := L2(Γk)⊗ C

2 and H′
k := ℓ2 ⊗ L2(Ωk,Pk) be the corresponding target spaces.

Lemma 2.1.
ˆ

X
‖S1 ⊗ S̃2 ⊗ . . .⊗ S̃nf(x)‖

H′

1⊗H̃1
dx ≤ C

ˆ

X
‖SL

1 ⊗ S̃2 ⊗ . . . ⊗ S̃nf(x)‖
H1⊗H̃1

dx

Since the tensor products of square functions we consider does not depend on the order
(the square functions, taken in different variables obviously commute), the above lemma tells

us that one can replace a factor SL
k by Sk in S̃1 ⊗ S̃2 ⊗ . . . ⊗ S̃nf and increase the norm by

at most the factor C.
Starting with SL

1 ⊗SL
2 ⊗ . . .⊗SL

nf and applying Lemma 2.1 successively to each factor, we
get

ˆ

X
‖S1 ⊗ S2 ⊗ . . .⊗ Snf(x)‖H′

dx ≤ C

ˆ

X
‖SL

1 ⊗ SL
2 ⊗ . . .⊗ SL

nf(x)‖Hdx,

which is exactly the desired estimate (here H′ = H′
1 ⊗ H′

2 ⊗ . . . ⊗ H′
n and H = H1 ⊗ H2 ⊗

. . .⊗Hn).

Proof of Lemma 2.1. Let us introduce notation x = (x1, x
1) ∈ X = X1 × X1, where x1 =

(x2, x3, . . . , xn) ∈ X1 := X2 × . . .×Xn.
Consider the vector-valued function

SL
1 ⊗ S̃2 ⊗ . . .⊗ S̃nf = SL

1 ⊗ (S̃2 ⊗ . . .⊗ S̃n)f.

If
ˆ

X
‖SL

1 ⊗ (S̃2 ⊗ . . .⊗ S̃n)f(x)‖
H′

1⊗H̃1
dx < ∞,

we conclude that for almost all x1

(2.1) S̃2 ⊗ . . .⊗ S̃nf( · , x
1) ∈ H1(X1; H̃

1),



12 SERGEI TREIL

and
ˆ

X
‖SL

1 ⊗ (S̃2 ⊗ . . .⊗ S̃n)f(x)‖
H1⊗H̃1

dx(2.2)

=

ˆ

X1

‖S̃2 ⊗ . . .⊗ S̃nf( · , x
1)‖

H1(X1;H̃1)
dx1.

Note, that we have in (2.1) the usual one-parameter H1-space (although vector-valued).
As we discussed above in Section 1.2, S1 is a vector-valued Calderón–Zygmund operator,

so it maps one-parameter H1 to L1 (even in the Hilbert-space-valued case), so for almost all
x1 we have

ˆ

X1

‖S1 ⊗ (S̃2 ⊗ . . .⊗ S̃n)f(x1, x
1)‖

H′

1⊗H̃1
dx1(2.3)

≤ C‖S̃2 ⊗ . . .⊗ S̃nf( · , x
1)‖

H1(X1;H̃1)

= C

ˆ

X1

‖SL
1 ⊗ (S̃2 ⊗ . . .⊗ S̃n)f(x1, x

1)‖
H1⊗H̃1

dx1

Integrating over X1 and taking into account (2.2), we get the conclusion of the lemma. �

2.3. Estimate ‖f‖
H1(X)

≤ C
´

X |SDf(x)|dx. Proof of this estimate follows the lines of Sec-

tion 2.2 almost word by word. It is based on the following analogue of Lemma 2.1, which
allows us replace one-parameter Lusin square functions by the dyadic ones.

Consider again a multi-parameter square function S̃2 ⊗ . . . ⊗ S̃n, where now each S̃k,
2 ≤ k ≤ n is either one-parameter SL or one-parameter dyadic square function SDk

, defined
in (1.1), taken in the variable xk. We assume here that in each Xk dyadic lattices Dk are
fixed.

We will use the same notation as in Section 2.2, with the only exception that now H′
k = ℓ2

Lemma 2.2.
ˆ

X
‖SL

1 ⊗ S̃2 ⊗ . . .⊗ S̃nf(x)‖
H1⊗H̃1

dx ≤ C

ˆ

X
‖SD1 ⊗ S̃2 ⊗ . . .⊗ S̃nf(x)‖

H′

1⊗H̃1
dx.

Applying Lemma 2.1 successively to each variable, as we did in Section 2.2, we get
ˆ

X
‖SL

1 ⊗ SL
2 ⊗ . . .⊗ SL

nf(x)‖Hdx ≤ C

ˆ

X
‖SD1 ⊗ SD2 ⊗ . . . ⊗ SDnf(x)‖H′

dx,

which is exactly what we need.

Proof of Lemma 2.2. Similarly to (2.2) we get
ˆ

X
‖SD1 ⊗ (S̃2 ⊗ . . .⊗ S̃n)f(x)‖

H1⊗H̃1
dx(2.4)

=

ˆ

X1

‖S̃2 ⊗ . . .⊗ S̃nf( · , x
1)‖

H1
D1

(X1;H̃1)
dx1.

We will now use the fact that for Hilbert-space-valued functions ‖ϕ‖H1 ≤ C‖ϕ‖H1
D

. Again,

as in the scalar-valued case, it follows from H1-BMO duality ((H1)∗ = BMO, (H1
D)

∗ =
BMOD) and the trivial inclusion BMO ⊂ BMOD, which imply the inclusion H1

D ⊂ H1 with
the desired estimates of the norms.

Using this inequality we get that for almost all x1

‖S̃2 ⊗ . . .⊗ S̃nf( · , x
1)‖

H1(X1;H̃1)
≤ C‖S̃2 ⊗ . . . ⊗ S̃nf( · , x

1)‖
H1
d
(X1;H̃1)

.
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Integrating over X1 and using (2.2), (2.4) we get the conclusion of the lemma. �

3. Appendix: some facts about H1 and BMO spaces.

3.1. Hilbert-space-valued BMO spaces. Let us recall that a function on X = R
N with

values in a Hilbert space H belongs to the space BMO = BMO(X,H) if

(3.1) ‖f‖BMO := sup
Q

ˆ

Q
‖f(x)− f

Q
‖
H
dx < ∞;

here f
Q
:= |Q|−1

´

Q f(x)dx and the supremum is taken over all cubes Q ⊂ R
N .

If we fix a dyadic lattice D and take the supremum in(3.1) only over dyadic cubes Q ∈ D,
we get the dyadic space BMOD associated with this lattice.

It is well known that (H1(RN ;H))∗ = BMO(RN ;H) and (H1
D(R

N ;H))∗ = BMOD(R
N ;H);

any standard proof of H1-BMO duality would work for the Hilbert-space-valued functions.

3.2. Triebel–Lizorkin spaces ḟ
α,q
p and equivalence of ‖Sf‖1 and ‖S̃f‖1. In this section

we fix a dyadic lattice D, for example take for D the standard dyadic lattice.

3.2.1. Spaces ḟ
α,q
p . Following [3] define the space ḟ

α,q
p , (α ∈ R, 1 ≤ p, p < ∞, consisting of

sequences s = {s
Q
}
Q∈D

such that

‖s‖
ḟ
α,q
p

:=

∥∥∥∥∥∥∥



∑

Q∈D

(|Q|−α/n|s
Q
| · |Q|−1/21Q)

q




1/q
∥∥∥∥∥∥∥
Lp

< ∞

For p = ∞ the norm is defined using BMO-like norm

‖s‖
ḟ
α,q
∞

:= sup
P∈D


 1

|P |

ˆ

P

∑

Q∈D,Q⊂P

(|Q|−α/n|s
Q
| · |Q|−1/21Q)

q




1/q

We are interested in the case when the smoothness parameter α = 0; to simplify the
notation in this case we will use ḟ

q
p := ḟ

0,q
p .

We will need the following facts about duality for spaces ḟα,qp :

(ḟα,qp )∗ = ḟ
−α,q′

p′ , 1 ≤ p, q < ∞;

here 1/p + 1/p′ = 1, 1/q + 1/q′ = 1.

3.2.2. Almost diagonal operators. Following [3] we say that an operator A with matrix

{a
Q,P

}
Q,P∈D

is almost diagonal (for spaces ḟ
q
p = ḟ

0,q
p ) if there exists ε > 0 and C < ∞,

such that

|a
Q,P

| ≤ C

(
1 +

|x
P
− x

Q
|

max{ℓ(P ), ℓ(Q)}

)−N−ε

× min

[(
ℓ(Q)

ℓ(P )

)(N+ε)/2

,

(
ℓ(P )

ℓ(Q)

)(N+ε)/2
]

(the definition is a bit more complicated for ḟ s,qp with s 6= 0)

It was shown it [3] that an almost diagonal operator is bounded in all ḟ qp spaces, 1 ≤, q, p <
∞.
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3.2.3. Equivalence of ‖Sf‖1 and ‖S̃f‖1. From the above result one can easily obtain the

equivalence of ‖Sf‖1 and ‖S̃f‖1. First, since maxQ |∆Qf |
2 ≤ 2NEQ(|∆Qf |

2) we have point-

wise estimate Sf(x) ≤ 2N/2S̃f(x) and so ‖Sf‖1 ≤ 2N/2‖S̃f‖1.

To get the estimate ‖S̃f‖1 ≤ C‖Sf‖1 let us express the conditions Sf ∈ L1, S̃f ∈ L1 in

terms of Triebel-Lizorkin space ḟ21 . Namely, with each function f ∈ L1
loc let us associate 2

sequences a = {a
Q
}
Q∈D

and b = {b
Q
}
Q∈D

a
Q
=
[(

E
Q
|∆

Q
f |2
)
(x)
]1/2

, b
Q
=
(
∆

R
f
)
(x),

where R is the “parent” of Q and x is an arbitrary point in Q (the result does not depend
on x). Then clearly

‖S̃f‖1 = ‖a‖
ḟ21
, ‖Sf‖1 = ‖b‖

ḟ21
.

Note that

a
R
=


2−N

∑

Q is child of R

|b
Q
|2




1/2

≤ 2−N/2
∑

Q is child of R

|b
Q
| =: T |b|,

where |b| := {|b
Q
|}

Q∈D
and for s = {s

Q
}
Q∈D

(Ts)
R
:= 2−N/2

∑

Q is child of R

s
Q
.

The operator T is almost diagonal (it has only finitely many “diagonals”), so

‖S̃f‖1 = ‖a‖
ḟ21

≤ ‖T |b|‖
ḟ21

≤ C‖ |b| ‖
ḟ21

= C‖b‖
ḟ21

= C‖Sf‖1.

�
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