
ON FOURIER FRAMES

JOAQUIM ORTEGA-CERDÀ AND KRISTIAN SEIP

Abstract. We solve the problem of Duffin and Schaeffer (1952)
of characterizing those sequences of real frequencies which gener-
ate Fourier frames. Equivalently, we characterize the sampling se-
quences for the Paley-Wiener space. The key step is to connect the
problem with de Branges’ theory of Hilbert spaces of entire func-
tions. We show that our description of sampling sequences permits
us to obtain a classical inequality of H. Landau as a consequence
of Pavlov’s description of Riesz bases of complex exponentials and
the John-Nirenberg theorem. Finally, we discuss how to transform
our description into a working condition by relating it to an ap-
proximation problem for subharmonic functions. By this approach,
we determine the critical growth rate of a non-decreasing function
ψ such that the sequence {λk}k∈Z defined by λk + ψ(λk) = k is
sampling.

1. Introduction

Following Duffin and Schaeffer [DS52], we say that a system of com-
plex exponentials {eiλkx}, with Λ = {λk}k∈Z a sequence of real numbers,
is a Fourier frame if there exist positive constants A and B such that

A

∫ π

−π
|f(x)|2dx ≤

∞∑
k=−∞

∣∣∣∣∫ π

−π
f(x)e−iλkxdx

∣∣∣∣2 ≤ B

∫ π

−π
|f(x)|2dx

for all f ∈ L2(−π, π). The purpose of this paper is to give a description
of those sequences Λ that generate Fourier frames.

The main result of [DS52] is a sufficient density condition for {eiλkx}
to constitute a Fourier frame. Over the past two decades, the work
of Duffin and Schaeffer has been remarkably influential, but mainly so
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because of its description of abstract frame expansions as an alternative
to orthonormal bases; see, e.g., [Da92]. There has been little progress
on the problem of characterizing the original Fourier frames of Duffin
and Schaeffer.

Our work relies on several profound results. Specifically, it may be
seen as an interplay between three themes:

1) de Branges’ Hilbert spaces of Entire Functions. Our main
theorem is based on de Branges’ theory [dB68]. The Hilbert space of
interest to us is the classical Paley-Wiener space, the prime example
of a de Branges space. We denote this space by PW ; it consists of
all entire functions of exponential type at most π whose restrictions
to R are square-integrable. We say that a sequence of real numbers
Λ = {λk}k∈Z is sampling for PW if there exist positive constants A
and B such that

A

∫ ∞
−∞
|f(x)|2 dx ≤

∞∑
k=−∞

|f(λk)|2 ≤ B

∫ ∞
−∞
|f(x)|2 dx

holds for all f ∈ PW . By the Paley-Wiener theorem, Λ is sampling
for PW if and only if {eiλkx} is a Fourier frame. In other words, our
task is to describe the sampling sequences for PW .

The Paley-Wiener space is a Hilbert space when equipped with its
standard norm, the L2(R)-norm. The symbol PW will stand for this
particular Hilbert space. However, if Λ is a sampling sequence, we
may equip the Paley-Wiener space with an equivalent norm given by√∑

k |f(λk)|2. In this way, we obtain a different Hilbert space, which
is again a de Branges space. This simple observation has the amazing
consequence that several basic results of de Branges’ theory apply to
our problem. In particular, two results of de Branges about norm
identities may be combined to yield a result about norm equivalence
(Theorem 1 below).

The required background on de Branges spaces is reviewed in Section
2, and then our main theorem - a necessary and sufficient condition for
sampling - is stated and proved in Section 3.

2) Riesz bases of complex exponentials. Fourier frames are inti-
mately connected with Riesz bases of complex exponentials, or equiv-
alently, sampling sequences are intimately connected with complete
interpolating sequences (see below for definition). This is of interest
to us, because there exists a beautiful description of the latter kind of
sequences, due to Pavlov [Pa79]; see [HNP81] for an extensive account
and [LS97] for some recent progress on this topic.
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We say that Λ is a complete interpolating sequence for PW if the
interpolation problem f(λk) = ak has a unique solution f ∈ PW when-
ever {ak} is square summable, or equivalently, if it is sampling but fails
to be so on the removal of any one of the points λk. Thus a complete
interpolating sequence is a sampling sequence with no “redundant”
points. The sequence of integers is of course the leading example of
such a sequence.

Some additional terminology is required to state Pavlov’s theorem.
Let us assume that λk ≤ λk+1 for all k. A sequence Λ is separated if
q = infk(λk+1 − λk) > 0; q is referred to as the separation constant of
Λ. With a separated sequence Λ we associate a distribution function
nΛ(t) defined such that for a < b

nΛ(b)− nΛ(a) = #(Λ ∩ (a, b]),

and normalized such that nΛ(0) = 0. There is clearly a one-to-one
correspondence between Λ and nΛ. It is plain that all complete inter-
polating sequences are separated.

Let

Py[h](x) =
y

π

∫ ∞
−∞

h(t)

(x− t)2 + y2
dt

denote the Poisson extension of h to the upper half-plane y > 0, and
let u 7→ ũ stand for the usual conjugation operator. The following
theorem, with the Helson-Szegö condition appearing in slight disguise,
is a reformulation (see [HNP81, p. 286]) of Pavlov’s original result.

Theorem A (Pavlov; Hruščev, Nikol’skĭı, Pavlov). A separated se-
quence Λ of real numbers is a complete interpolating sequence for PW
if and only if h(t) = nΛ(t) − t is a function in BMO(R) such that
P1[h](x) = ũ(x) + v(x) + C, with u, v ∈ L∞(R) and ‖v‖∞ < 1/4.

To see what is the problem of relating this result to sampling se-
quences, we begin by stating two density conditions for sampling. The
first is a fairly elementary result: Λ is sampling if there exist positive
constants ε and C such that

nΛ(b)− nΛ(a) ≥ (1 + ε)(b− a)− C

for all a < b. This is essentially what was obtained by Duffin and
Schaeffer (see also Theorem 2.1 of [Se95]). A more profound result is
the following inequality1 of Landau [La67].

1In [La67], the inequality is given in the following more general form. Let Ω
be a finite union of intervals with |Ω| = 2π and PW (Ω) the subspace of L2(R)
consisting of functions whose Fourier transforms vanish outside Ω; define sampling
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Theorem B (Landau). If Λ is a separated sampling sequence for PW ,
then

nΛ(b)− nΛ(a) ≥ b− a− A log+(b− a)−B
when a < b, with constants A and B independent of a, b.

Landau’s inequality is best possible, as shown by an example in
Section 4. We shall see that Theorem A and our main theorem (The-
orem 1) imply that Landau’s inequality is a consequence of the John-
Nirenberg theorem for BMO functions. This result will be proved in
Section 4 below.

The two inequalities just recorded have the following consequence.
Set

D−(Λ) = lim
R→∞

minx(nΛ(x+R)− nΛ(x))

R
,

which is the Beurling lower uniform density of Λ. Then Λ is sampling
if D−(Λ) > 1 and fails to be sampling if D−(Λ) < 1. (See also [Ja91]
for a somewhat different formulation.) It was proved in [Se95] that
when D−(Λ) > 1, there exists a subsequence Λ′ ⊂ Λ such that Λ′

is a complete interpolating sequence, but an example was given of a
sampling sequence Λ for which no subsequence is a complete interpolat-
ing sequence. The latter type of sampling sequences are the only ones
which are essentially different from complete interpolating sequences.
The third theme of this paper is what is needed to explore their subtle
properties.

3) Approximation of subharmonic functions. We have in mind
the following general type of problem. Given a subharmonic function
U , find an entire function f such that log |f | is in some sense a good
approximation to U . Our main theorem becomes a working condition
only if we are able to solve certain problems of this kind. An exhaustive
discussion of the solutions relevant for our sampling condition seems
impracticable. Instead, we use an approach of Lyubarskii and Malin-
nikova [LM99] to elaborate an illustrative example. In Section 5, we
determine the critical growth rate of a non-decreasing function ψ such
that Λ = {λk}k∈Z defined by λk + ψ(λk) = k is sampling. Roughly
speaking, we obtain that if ψ(x) = 0 for x < 0, ψ is sufficiently regular,
and ψ(x) → ∞ when x → ∞, then Λ is sampling if and only if ψ(x)
tends to ∞ at least as fast as log+ x.

This result may seem surprising: A sequence is sampling if and only
if it constitutes a sufficiently large deviation from Z. The central point
here is that the sampling condition implies that we need to solve the

sequences for PW (Ω) as above. Then the inequality remains true if we replace PW
by PW (Ω).
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above approximation problem for the logarithmic potential of the mea-
sure dψ. Then difficulties arise if the measure is too much “spread
out”.

2. Preliminaries on de Branges spaces

A Hilbert space H of entire functions is a de Branges space if the
following conditions are met:

(H1) Whenever f is in the space and has a nonreal zero ζ, the func-
tion g(z) = f(z)(z− ζ̄)/(z− ζ) is in the space and has the same
norm as f .

(H2) For every nonreal ζ the linear functional defined on the space
by f 7→ f(ζ) is continuous.

(H3) The function f ∗(z) = f(z̄) belongs to the space whenever f
belongs to the space and f ∗ has the same norm as f .

The simplest model example of a de Branges space is PW . A wider
class of examples can be constructed via functions from the Hermite-
Biehler class of entire functions. We denote this class by HB; it consists
of all entire functions E with no zeros in the upper half-plane and
satisfying |E(z)| ≥ |E(z)| whenever Im z > 0. To every function E ∈
HB we associate a Hilbert space H(E), which consists of all entire
functions f such that both f(z)/E(z) and f ∗(z)/E(z) belong to H2 of
the upper half-plane; the H(E)-norm of f is given by

‖f‖2
E =

∫ ∞
−∞

|f(t)|2

|E(t)|2
dx.

It is clear that H(E) is a de Branges space. The following fundamental
theorem of de Branges says that all de Branges spaces arise in this way
[dB68, p. 57].

Theorem C. A Hilbert space H whose elements are entire functions,
which satisfies (H1), (H2), and (H3), and which contains a nonzero
element, is equal isometrically to some space H(E).

It follows from condition (H2) that for each nonreal ζ there exists
a reproducing kernel K(ζ, z) for the space H(E). The kernel has the
following representation, which also defines it for real ζ [dB68, p. 50].

Theorem D. For each ζ ∈ C the function

(1) KE(ζ, z) =
i

2

E(z)E(ζ)− E∗(z)E∗(ζ)

π(z − ζ̄)
,
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considered as a function of z, belongs to H(E) and it is the reproducing
kernel of H(E), i.e.

〈f,KE(ζ, ·)〉E =

∫ ∞
−∞

f(t)KE(ζ, t)

|E(t)|2
dt = f(ζ).

for each f ∈ H(E).

For x ∈ R, write E(x) as

E(x) = |E(x)|e−iϕ(x),

where ϕ(x) is some continuous function in R such that E(x)eiϕ(x) is
real for all x ∈ R. If E(x) 6= 0, then (1) yields

(2) ‖KE(x, ·)‖2
E = KE(x, x) =

1

π
ϕ′(x)|E(x)|2.

We say that ϕ is a phase function of E. If there is a need to distinguish
ϕ from phase functions of other functions in HB, then we set ϕ = ϕE.

We shall make use of the following remarkable extension of the
Plancherel identity [dB68, p. 55].

Theorem E. Let H(E) be a de Branges space and ϕ a phase function
associated with E. Suppose α is a real number and let Γ = {γk} be
the sequence of real numbers such that ϕ(γk) = α + kπ, k ∈ Z. Then
if eiαE − e−iαE∗ 6∈ H(E), then the normalized reproducing kernels
KE(γk, z)/‖KE(γk, ·)‖E constitute an orthonormal basis for H(E). In
particular,

‖f‖2
E =

∑
k

π|f(γk)|2

ϕ′(γk)|E(γk)|2

for all f ∈ H(E); eiαE − e−iαE∗ ∈ H(E) holds for at most one α,
modulo π.

The following theorem will also be crucial [dB60]:

Theorem F. Let µ be a non-negative measure on R and E some func-
tion belonging to HB. Then∫

R
|f(t)/E(t)|2 dµ(t) =

∫
R
|f(t)/E(t)|2 dt

for all f ∈ H(E) if and only if there exists a bounded holomorphic func-
tion A in the upper half-plane C+ such that ‖A‖∞ = supz∈C+ |A(z)| ≤ 1
and

y

π

∫
R

dµ(t)

(t− x)2 + y2
= Re

E + E∗A

E − E∗A
.



ON FOURIER FRAMES 7

We write H(E) = H(F ) if H(E) and H(F ) coincide when considered
as sets and the norm of H(F ) is equivalent to the norm of H(E). The
functions E ∈ HB with the property that PW = H(E) have been
characterized in [LS99].

3. Main theorem

If Λ is a sampling sequence, then there exists a separated subsequence
Λ′ which is also sampling (cf. Lemma 3.11 of [Se95]). Hence without
loss of generality, we may restrict our attention to separated sequences
Λ.

Theorem 1. A separated sequence Λ of real numbers is sampling for
PW if and only if there exist two entire functions E,F ∈ HB such
that

(i) H(E) = PW
(ii) Λ constitutes the zero sequence of EF + E∗F ∗.

The following notation will be used repeatedly below: We write f .
g if there is a constant K such that f ≤ Kg; we write f ' g if both
f . g and g . f .

Proof. Let us assume first that Λ is a sampling sequence. This means
that the Paley-Wiener space equipped with the norm

√∑
k |f(λk)|2 is

a de Branges space. Therefore, Theorem C provides us with a function
E ∈ HB such that H(E) = PW and∑

k

|f(λk)|2 =

∫
R

|f(t)|2

|E(t)|2
dt.

Since the measure µ =
∑

k |E(λk)|2δλk meets the hypothesis of The-
orem F, there exists a bounded holomorphic function A in the upper
half-plane with norm ‖A‖∞ ≤ 1 and a real number a such that

(3) −i
∑
k

|E(λk)|2
(

1

z − λk
+

1

λk

)
+ ia =

E(z) + E∗(z)A(z)

E(z)− E∗(z)A(z)
.

Note that the right-hand side is a holomorphic function defined in
the upper half-plane, but the left hand-side is a meromorphic function
defined in the whole plane. We denote this meromorphic function by
M . The following relationship holds when Im z > 0:

A =
M − 1

M + 1

E

E∗
.
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The function M − 1 has poles at the points λk as we can see from (3),
and it vanishes whenever E∗ vanishes. Setting

G(z) =
∏
k

(
1− z

λk

)
ez/λk ,

we may therefore write

M − 1 = −E
∗F ∗

G
,

with F an entire function. We also have M∗ = −M and G∗ = G, and
consequently M+1 = EF/G. It follows that F ∗/F = −A in the upper
half-plane and F has no zeros in Im z > 0. Since |A| is bounded by 1,
it follows that F ∈ HB.

We will now see that G = (EF + E∗F ∗)/2, which means that Λ is
the zero sequence of EF + E∗F ∗. We know that G = −MG+ EF . If
x ∈ R, then G(x) is real and M(x)G(x) is an imaginary number. Thus
G is the real part of EF for real z, whence G(z) = (EF +E∗F ∗)/2 for
all z ∈ C.

We next prove the converse implication. The function E has no zeros
in the real axis since PW = H(E). We may assume that F has no

real zeros. If this were not the case, then F = SF̃ , where F̃ ∈ HB
without real zeros and S is an entire function, with real zero set Z(S)
and moreover S∗ = S. Therefore Λ = Λ1 ∪ Z(S) and Λ1 will be the

zero set of EF̃ + E∗F̃ ∗. If we prove that Λ1 is a sampling sequence,
then Λ is a also a sampling sequence.

Given α ∈ (0, π] we let Λα be the sequence of points λα,k such that
ϕEF (λα,k) = α + kπ, k ∈ Z. Observe that since Λ is the zero sequence
of EF + E∗F ∗, and E and F have no real zeros, we have Λ = Λπ/2.
For α 6= π/2 the sequence Λα is interlaced with the sequence Λ. Hence
since Λ is a separated sequence, Λα can be expressed as the union of two
separated sequences, each with separation constant not smaller than
that of Λ. Thus the Plancherel-Pólya inequality [Yo80, pp. 96–98]
implies that

(4)
∑
k

|f(λα,k)|2 ≤ C‖f‖2
PW ,

with C independent of α. Moreover, for all values of α except possibly
one, Theorem E implies that for every g ∈ H(EF ) the following relation
holds: ∫

R

|g(t)|2

|E(t)F (t)|2
dt =

∑
k

|g(λα,k)|2

|E(λα,k)|2|F (λα,k)|2ϕ′EF (λα,k)
.
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For every f ∈ H(E) the function g = Ff belongs to H(EF ) with
‖f‖H(E) = ‖Ff‖H(EF ). Therefore, for every f ∈ PW we have
(5)

‖f‖2
PW '

∫
R

∣∣∣ f(t)

E(t)

∣∣∣2 dt =

∫
R

∣∣∣ g(t)

E(t)F (t)

∣∣∣2 dt =
∑
k

|f(λα,k)|2

|E(λα,k)|2ϕ′EF (λα,k)
.

Since H(E) = PW , E does not vanish for x ∈ R and therefore by (2)

1 = sup
f∈PW
‖f‖2PW≤1

|f(x)|2 ' sup
f∈H(E)
‖f‖2E≤1

|f(x)| = KE(x, x) =
1

π
ϕ′E(x)|E(x)|2

for x ∈ R. Since ϕ′EF = ϕ′E + ϕ′F ≥ ϕ′E, we obtain from (5) the
inequality

‖f‖2
PW ≤ C

∑
k

|f(λα,k)|2,

where the constant C does not depend on α. This inequality may
fail for one α ∈ [0, π). We may assume it fails for α = π/2, because
otherwise we have proved that Λ is sampling. Take a sequence αn →
π/2. Then λαn,k → λk for all k, and by (4) we may apply Lebesgue’s
dominated convergence theorem to conclude that the inequality holds
also for α = π/2. �

If Λ is a complete interpolating sequence, then there exists an E ∈
HB such that H(E) = PW and Λ constitutes the zero sequence of
E+E∗. This follows from Theorems C and E. Therefore, we may view
the function F of Theorem 1 as accounting for the “redundancy” in Λ.
There is a trivial case in which this is particularly transparent: Suppose
Λ = Λ′ ∪ (Λ \ Λ′), with Λ′ being a complete interpolating sequence.
(Such a decomposition holds whenever D−(Λ) > 1, cf. Theorem 2.3 of
[Se95].) Then the condition of Theorem 1 is met if we choose F to be
the generating function of the “redundant” sequence Λ \ Λ′, i.e., if we
set

F (z) =
∏

λk∈Λ\Λ′

(
1− z

λk

)
ez/λk .

A somewhat different way of seeing F as measuring the ”redun-
dancy” in Λ is as follows. The notion of a complete interpolating se-
quence may be extended in a natural way: We say that Λ is a complete
interpolating sequence for a de Branges space H if the interpolation
problem f(λk) = ak has a unique solution f ∈ H whenever∑

k

|ak|2

K(λk, λk)
<∞.
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Then Theorem 1 says that if Λ is sampling for PW, then Λ is a complete
interpolating sequence for H(EF ), and H(E) (with H(E) = PW ) is
isometrically embedded into H(EF ) by the map f → Ff . This in-
terpretation of Theorem 1 has an interesting relation to the result of
[Se95] which says that we can not in general obtain from Λ a com-
plete interpolating sequence for PW by making the sequence thinner :
Instead, we can make the space bigger so that Λ becomes a complete
interpolating sequence for the bigger space.

We note in passing that Theorem 1 solves the following problem of
norm equivalence for PW : Which non-negative measures µ on R have
the property that the L2(R, dµ)-norm yields a norm for PW equivalent
to the standard L2(R)-norm? To apply Theorem 1 to this problem,
we need a way of associating sampling sequences with such measures.
Given a non-negative measure µ and two positive numbers r, δ, define

Λµ(δ, r) = {kr : k ∈ Z and µ([kr, (k + 1)r)) ≥ δ}.
Then the Bernstein and the Plancherel-Pólya inequalities imply (see
[Or98]):

Proposition. The L2(R, µ)-norm yields an equivalent norm for PW
if and only if the following holds:

(i) There exists a positive constant C such that µ([x, x + 1)) ≤ C
for all x ∈ R.

(ii) For all sufficiently small r > 0 there exists a δ = δ(r) > 0 such
that Λµ(r, δ) is sampling for PW .

Problems about norm equivalence for spaces of entire functions of
exponential type in one and several variables have been studied by
many authors. See, e.g., [Li65] and [LLS92] for an extensive historical
account.

4. Landau’s inequality and the John-Nirenberg theorem

The following corollary says that a sampling sequence is “everywhere
denser” than some complete interpolating sequence.

Corollary 1. If Λ is a separated sampling sequence for PW , then there
exists a complete interpolating sequence Γ = {γk}∞k=−∞ such that for
every k ∈ Z there is at least one point λ ∈ Λ such that γk ≤ λ < γk+1.

Proof. If Λ is a sampling sequence, then Λ consists of those points such
that ϕEF (λ) = π/2 + kπ for some k ∈ Z. On the other hand, ϕE is
an increasing function which grows more slowly than ϕEF . Thus the
sequence Γα which consists of those points such that ϕE(γ) = α+kπ for
some k ∈ Z, has the claimed property. Since H(E) = PW , Theorem
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E implies that Γα is a complete interpolating sequence for all values of
α except possibly one, mod π. Since the choice of α is at our disposal,
the proof is complete. �

Let us return to Landau’s inequality, which is stated as Theorem B
above. To begin with, let us show by an example that the inequality
is best possible. Set Λ = {k + log+ |k|}k∈Z. This sequence is sampling,
because the function

F (z) = lim
R→∞

∏
|λk|<R

(1− z/λk)

is a sine-type function, i.e., |F (z)|e−π| Im z| ' 1 for | Im z| > 1. Thus a
classical theorem of Levin [HNP81, p. 250] implies that Λ is a complete
interpolating sequence. (Alternatively, note that this means v = 0 in
Theorem A.) On the other hand, it is clear that nΛ(R) = R− logR +
O(1) and −nΛ(−R) = R + logR +O(1) when R→∞.

Claim. Landau’s inequality is a consequence of the John-Nirenberg the-
orem for BMO functions.

Proof. Suppose Λ is a sampling sequence, and let Γ be an associated
complete interpolating sequence as described in Corollary 1. By Corol-
lary 1 and Theorem A,

nΛ(b)− nΛ(a) ≥ nΓ(b)− nΓ(a)− 1 ≥ b− a+ h(b)− h(a)− 1,

where h ∈ BMO of a special form. (For this proof we will only need
the fact that h ∈ BMO.) Set I = [a, b]. Then the triangle inequality
in the form

|h(b)− h(a)| ≤ |h(b)− hI |+ |h(a)− hI |,
gives

(6) nΛ(b)− nΛ(a) ≥ b− a− 2 max
t∈I
|h(t)− hI | − 1.

Define

J = {t ∈ I; |h(t)− hI | ≥ A log |I|}.
Then the John-Nirenberg theorem (cf. [JN61], [Ga81, p. 230]) implies

|J | ≤ Ce−
cA log |I|
‖h‖∗ |I| ≤ C/|I|

for some sufficiently big A, with C, c absolute positive constants. But
h′(t) is bounded, in fact equal to −1 for t 6∈ Λ, and so if the right-hand
side is smaller than the separation distance of Λ, then |h(t) − hI | ≤
A log |I| + B for all t ∈ I. Plugging this into (6), we obtain Landau’s
inequality. �
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It should be stressed that we do not pretend to have given an easier
proof of Landaus’s inequality, as the John-Nirenberg theorem is admit-
tedly a more sophisticated result. However, we find the link between
the two results quite intriguing.

5. Sampling sequences and approximation of subharmonic
functions

In Section 3, we explained how Theorem 1 could be interpreted in
the trivial case in which there exists a subsequence Λ′ ⊂ Λ being a
complete interpolating sequence. The purpose of this section is to
demonstrate the applicability of our condition when D−(Λ) = 1 and
no such subsequence Λ′ exists.

To obtain positive results from Theorem 1, one needs information
about those E ∈ HB for which H(E) = PW . As mentioned at the
end of Section 2, such functions are described in [LS99]. However, we
will not use this description, which involves a rather delicate statement
about the location of the zeros of E. In fact, we will obtain precise
results by using only the evident fact that H(E) = PW if |E(z)| '
eπ Im z for Im z ≥ 0.

We will assume ψ ∈ C1(R) is a non-decreasing function satisfying
ψ(∞) − ψ(−∞) = ∞ and ψ′(x) = o(1) as |x| → ∞. We associate
with ψ a sequence Λ(ψ) = {λk}k∈Z defined by λk + ψ(λk) = k. In
other words, with [x] denoting the integer part of the real number x
and ψ(0) = 0, this means that nΛ(ψ)(t) = [t + ψ(t)]. All sequences
Λ(ψ) are sets of uniqueness of infinite excess, but none of them contain
subsequences being complete interpolating sequences, cf. Theorem 2.7
in [Se95]. We introduce the potential

Uψ(z) =

∫ ∞
−∞

[log |1− z/t|+ Re z/t] dψ(t),

with the integral taken in the principal value sense. This function is
subharmonic because ψ′(t) ≥ 0.

We will now demonstrate how our sampling condition is related to
the problem of approximating Uψ by log |f |, with f an entire function.

Corollary 2. A sequence Λ(ψ) is sampling for PW if there exists an
f ∈ HB such that ϕ′f (x) = o(1) when |x| → ∞ and

(7) |Uψ(z)− log |f(z)|| . 1 for Im z ≥ 0.

Proof. If we could find e ∈ HB such that

ϕe(x) = πx+ πψ(x)− ϕf (x),
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we would be done, because then Λ would constitute the zero sequence
of ef + e∗f ∗, and |e(z)| ' eπ Im z for Im z ≥ 0. In general, however, it is
impossible to find such an e. Instead, we will appeal to the following
perturbation argument: If a separated sequence Γ = {γk} is sampling,
then Γ′ = {γk + δk} is sampling whenever all γk + δk are distinct and
δk → 0 as |k| → ∞. (This follows from Lemma III in [DS52] and the
elementary fact that Γ is sampling if δk = 0 except for finitely many
integers k.) Thus it is enough to construct an E ∈ HB such that

(8) ϕE(x)− πx− πψ(x) + ϕf (x) = o(1)

when |x| → ∞ and |E(z)| ' eπ Im z for Im z ≥ 0, because then the
perturbation argument applies with the zero sequence of Ef + E∗f ∗

playing the role of Γ and Γ′ = Λ.
We may assume the function ω(x) = x + ψ(x) − ϕf (x)/π satisfies

ω′(x) ' 1. Partition the real line into a sequence of disjoint intervals
Ik = [xk, xk+1], k ∈ Z, with x0 = 0, such that∫

Ik

ω′(t)dt = 1

for all k, and choose γk ∈ Ik so that

γk =

∫
Ik

tω′(t)dt.

We set

A(z) = lim
R→∞

∏
|γk|<R

(1− z/γk)

and Γ = {γk}. Then by Lemma 3 in [OS99],

|A(z)|e−Uω(z) ' min(1, dist(z,Γ)).

Now choose two monomials P and Q of the same degree and with only
real zeros such that B(z) = A(z− 1/2)P (z)/Q(z) is an entire function
and the zeros of A and B are interlaced. Then according to a theorem
of Mĕıman (see [Le80, p. 314]), we have either A − iB ∈ HB or
A + iB ∈ HB; we may set E = A− iB and assume E ∈ HB because
P may be replaced by −P .

It remains to be shown that E satisfies (8). Consider the sequence
of functions Ak(z) = A(z − x2k). A normal family argument shows
that there exists a sequence ck ' 1 such that Ak(x) − ck cosπx → 0
uniformly on compact subsets of the real line. Similarly, if we set
Bk(z) = B(z−x2k), we obtain that Bk(x)−ck sinπx→ 0 uniformly on
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compact subsets of the real line. Then it follows from the construction
of E that

E(x) = |E(x)|ei(π(x+ψ(x))−ϕf (x)+o(1))

when x→∞, with |E(x)| ' 1. �

To solve the approximation problem for Uψ, we shall adapt an ap-
proach from a recent paper by Lyubarskii and Malinnikova [LM99],
which contains rather conclusive results about the possibility of ap-
proximating an arbitrary subharmonic function by log |f | with f an
entire function.

To ease the exposition, we set ψ(x) = 0 for x ≤ 0. (It is not difficult
to modify the construction below to get a corresponding result when
both ψ(∞) = ∞ and ψ(−∞) = −∞.) Let {tn}∞n=0 be the sequence
such that t0 = 0 and ψ(tn) = n, n = 1, 2, 3, ...; set dn = tn − tn−1. We
will say that ψ induces a logarithmically regular partition if dn ' dn+1

and

sup
x>0

∑
x/2<tn<2x

d2
n

(x− tn)2 + d2
n

<∞.

Theorem 2. Suppose ψ(x) = 0 for x ≤ 0. Then

(i) If ψ′(x) = 1/O(x) when x → ∞, and ψ induces a logarithmi-
cally regular partition, then Λ(ψ) is sampling for PW .

(ii) If ψ′(x) = o(1/x) when x→∞, then Λ(ψ) is not sampling for
PW .

We note that ψ(x) =
√
x for x ≥ 0 corresponds to the example

of [Se95] showing the existence of a sampling sequence containing no
subsequence being a complete interpolating sequence.

Case (i) is proved by means of Corollary 2, while case (ii) is proved
by a direct argument. The point of case (ii) is to show that the growth
condition ψ′(x) = 1/O(x) is critical. Thus Theorem 2 indicates that
the condition of Corollary 2 is in a sense close to being necessary.

Proof. We consider first statement (i). According to Corollary 2, we
need to show that the assumptions on ψ ensure the existence of a
function f ∈ HB such that (7) holds when Im z ≥ 0.

The zeros of f are determined as follows. Define rn ∈ (tn−1, tn) by

(9) log rn =

∫ tn

tn−1

log t dψ(t),

and then

zn = rne
−icdn/rn
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with c > 0 so small that cdn/rn ≤ π/4 for all n. We choose f in such
a way that it satisfies

log |f(z)| =
∞∑
n=1

∫ rn

rn−1

(
log

∣∣∣∣1− z

zn

∣∣∣∣+ Re
z

t

)
dψ(t).

Clearly f belongs to HB. We set V = Uψ − log |f |; it satisfies the
following relation:
(10)

V (z) =
∞∑
n=1

∫ rn

rn−1

(
log
∣∣∣1− z

t

∣∣∣− log

∣∣∣∣1− z

zn

∣∣∣∣) dψ(t) =
∞∑
n=1

jn(z).

We see that it is enough to prove that the series converges uniformly
on compact sets in C, and that V (z) = O(1) for Im z ≥ 0.

The proof is a simplified version of an argument from [LM99]. We
shall therefore be brief and refer to [LM99] for further details.

Given z ∈ C, we let n(z) be a positive integer n such that rn−1 <
|z| ≤ rn. Then if Im z ≥ 0, it is plain that the smoothness of ψ ensures
that

n(z)+1∑
n=n(z)−1

jn(z) ' 1.

Next let n−(z) be the positive integer n such that rn−1 < |z|/2 ≤ rn,
and n+(z) be the positive integer n such that rn−1 < 2|z| ≤ rn. Then
for z ∈ C we see that

∞∑
n=n+(z)+1

jn(z) ' 1.

After observing that by (9) we may write

jn(z) =

∫ rn

rn−1

(
log

∣∣∣∣1− t

z

∣∣∣∣− log
∣∣∣1− zn

z

∣∣∣) dψ(t),

we obtain
n−(z)−1∑
n=1

jn(z) ' 1

in a similar way. Thus we have in particular established the uniform
convergence on compact sets.

We set

N(z) = {n−(z), n−(z)+1, ..., n+(z)−1, n+(z)}\{n(z)−1, n(z), n(z)+1}
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(the set of “essential indices”) and split the corresponding sum into
two parts,

V1(z) + V2(z) =
∑

n∈N(z)

∫ rn

rn−1

(
log
∣∣∣1− z

t

∣∣∣− log

∣∣∣∣1− z

rn

∣∣∣∣) dψ(t)+

+
∑

n∈N(z)

(log |z − rn| − log |z − zn|)

now assuming that Im z ≥ 0.
To estimate V1, introduce the function

L(ω) = log(1− ze−ω),

which for each n ∈ N(z) is analytic in a domain containing those ω
such that eω ∈ [tn−1, tn]. Therefore,

L(ω)−L(ωn) = (ω−ωn)L′(ωn)+

∫ ω

ωn

L′′(σ)(ω−σ)dσ = (ω−ωn)L′(ωn)+Qn(z, t),

where t = eω ∈ [tn−1, tn] and eωn = rn. By (9), we obtain

V1(z) = Re
∑

n∈N(z)

∫ tn

tn−1

Qn(z, t)dψ(t).

A direct estimate gives

sup
t∈[tn−1,tn]

|Qn(z, t)| . d2
n

|z − rn|2
.

Using the assumption that ψ induces a logarithmically regular parti-
tion, we obtain that V1(z) ' 1.

To deal with V2, we write

log |z − rn| − log |z − zn| = Re

∫ rn

zn

dζ

ζ − z
.

Integrating along the arc ζ = rne
−iθ, 0 ≤ θ ≤ cdn/rn, we obtain from

this

|log |z − rn| − log |z − zn|| .
d2
n

|z − rn|2
.

Using again the assumption that ψ induces a logarithmically regular
partition, we have also proved that V2(z) ' 1, and are done with the
proof of (10).

We consider next statement (ii). Our plan is to construct a sequence
of functions fn ∈ PW for which

∑
|fn(λk)|2/‖fn‖2

PW → 0.
Let tn be the sequence such that ψ(tn) = n, n = 1, 2, 3, ..., and

suppose n is sufficiently big for the following construction to be feasible.
We require ξn ∈ (tn, tn+1/2) to be such that ψ(ξn) = n+1/2+εn, where
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εn will be chosen below. Define a bounded, continuous function φn such
that φn(t) = −t when |t| < 1/2, φn(t) = ψn(t)−n−1/2 for tn < t < ξn
and φn(t) = ψ(t) − n − 3/2 for 2ξn < t < tn+1, and otherwise φn is
linear. We choose εn such that∫ ξn

tn

φn(x)

x
dx = 0.

It is clear that εn → 0 when n→∞.
Define a subharmonic function Un by

Un(z) = lim
R→∞

∫ R

−R
[log |1− z/t|](1 + φ′n(t))dt.

A direct computation gives us the estimate

Un(x) =

∫ |x|
0

φn(t)− 1/2

t
dt+O(1),

when |x| → ∞. From this and the assumption φ′n(t) = o(1/t), we
see that there exists an interval [(1 − o(1))ξn, 2ξn] such that Un(x) +
(1/2) log x ' 1 when |x| ∈ [(1 − o(1))ξn, 2ξn]. On the other hand,
for |x| 6∈ [tn, tn+1] we have Un(x) = − log |x| + O(1). Setting Ωn =
[tn, ξn] ∪ [2ξn, tn+1], we observe that

(11)

∫
Ωn

e2Un(x)dx→∞,

but

(12)

∫
R\Ωn

e2Un(x)dx . 1.

Thus eUn belongs to L2(R), but its L2-norm tends to ∞. Likewise, if
a sequence of real numbers Γ = {γk}∞k=−∞ satisfies γk+1 − γk ' 1, we
have

(13)
∑

γ∈R\Ωn

e2Un(γk) . 1.

The construction of fn is now identical to the construction of the
function A in the proof of Corollary 2, with ω′ replaced by φ′n + 1.
Thus we we obtain

fn(z) = lim
R→∞

∏
|γk|<R

(1− z/γk)

with Γ = {γk} a separated real sequence and such that

|fn(z)|e−Un(z) ' min(1, dist(z,Γ)).
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This fn is of exponential type π. By (12), fn ∈ PW , but also ‖fn‖PW →
∞, in view of (11).

Observe that dist(λk,Γ) → 0 uniformly for λk ∈ Ωn, when n → ∞,
and that γk = k for all k < 0. Along with (13) and our estimates
for fn, this implies that

∑
k |f(λk)|2/‖f‖2

PW → 0, so that Λ is not
sampling. �

Acknowledgements. We are indebted to Yurii Lyubarskii and Michael
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