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A T(1) THEOREM ON PRODUCT SPACES

SANDRA POTT AND PACO VILLARROYA

Abstract. We prove a new T(1) theorem for multiparameter singular integrals

1. Introduction

1.1. Historical introduction. In 1984 G. David and J.L. Journé (see [8]) published
their celebrated T (1) theorem, a result that characterizes the L2-boundedness of non-
convolution integral operators with a Calderón-Zygmund kernel. In their theorem, the
necessary and sufficient conditions for boundedness are expressed by the behaviour of
the operator when acting over particular families of funcions: the belonging to BMO of
properly defined T (1), T ∗(1) functions and the so-called weak boundedness property,
which is the fulfillment of L2 bounds when duality is tested over bump functions with
the same space localization.

Since then, many other proofs of this fundamental result in the theory of singular
integration have appeared, while it has also been extended to a large variety of settings.
Actually, only one year later Journé [20] established the extension to product spaces
when he proved an analogous result of L2-boundedness for multiparameter singular
integrals. Those are operators whose class of kernels is homogeneous with respect to
non-isotropic dilations of the form ρδ1,...,δn(x1, . . . , xn) = (δ1x1, . . . , δnxn) for xi ∈ Rdi

and δi > 0, where the number of parameters of the problem coincides with the quantity
of independent dilations. The simplest examples of such operators are convolution type
operators like the multiple Hilbert transform defined in Rn by

H1 · · ·Hn(f) = p.v.f ∗
1

x1 . . . xn

or the multiple Riesz transforms defined in
∏n

i=1R
di by

Rj1 · · ·Rjn(f) = f ∗ (
πj1(x1)

|x1|d1+1
· · ·

πjn(xn)

|xn|dn+1
)

where πji is the orthogonal projection from Rdi into R that ”keeps” the ji-coordinate.
A direct application of Fubini’s theorem shows that the multiple Hilbert transform is

bounded in all spaces Lp(Rn) for 1 < p < ∞. However, the situation is not so simple for
more general multiparameter singular integrals, specially if they are of non-convolution
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type. These multiparameter operators, even in the simplest cases, are very different
from their classical counterparts mainly because the singularities of their kernels lie not
only at the origin as in the case of standard Calderón-Zygmund kernels, but instead,
they are spread over larger subspaces. For example, in the case of multiple Hilbert
transform the set of singularities is the union of the coordinate axes xi = 0. As a
consequence, these operators are not in general weak type on L1(Rn) and moreover,
the strong maximal operator does not control their boundedness properties.

The main motivation to extend the theory of singular integration to operators
that commute with multiparameter families of dilations comes from their close re-
lationship with multiplier operators in Rn. Namely, in the same way the classi-
cal linear Hilbert transform is closely related to the Fourier partial sum operator
SN(f)(x) =

∑
|k|<N f̂(k)e2πikx, different multiparameter singular integrals are related

to different Fourier partial sum operators in several variables. In particular, the rect-
angular partial sums operator defined in Rn by

SN1,...,Nn(f)(x1, . . . , xn) =
n∑

j=1

∑

|kj |<Nj

f̂(k1, . . . , kn)e
2πikjxj

is controlled by the multiple Hilbert transform. In section 3 we apply our main result
to extend boundedness of product multiplier operators to the non-convolution setting.

We highlight the fact that although the issue about multiparametric singular in-
tegrals was intesively studied more than twenty years ago, the field has experienced
recently a renewed interest as it can be seen from the recent papers [1], [11], [24], [25],
[26].

1.2. On Journé’s theorem. Journé’s result is the first attempt to characterize L2

boundedness of non-convolution multiparameter singular integral operators. As stated
before, many of the classical techniques, like for example a proper Calderón-Zygmund
decomposition and the control of singular integrals by means of maximal functions,
are no longer available in the multiparameter setting. So, the method Journé chose to
overcome such difficulty was the use of vector valued Calderón-Zygmund theory. In
order to state his theorem in a simplified form, we require some notation.

Let ∆ be the diagonal in R2 and B be a Banach space. A continuous function
K : R2 \ ∆ → B is called a vector valued standard Calderón-Zygmund kernel, if for
some 0 < δ ≤ 1 and some constant C > 0 we have

‖K(x, t)‖B ≤ C|x− t|−1

‖K(x, t)−K(x′, t′)‖B ≤ C(|x− x′|+ |t− t′|)δ|x− t|−1−δ

whenever |x − x′| + |t − t′| ≤ |x − t|/2. In this context, |K| usually denotes the best
constant in both inequalities.

Definition 1.1. A continuous linear mapping T from C∞
0 (R)⊗C∞

0 (R) into its algebraic
dual is called a singular integral operator if there areK1, K2 : R2\∆ → L(L2(R), L2(R))



A T(1) THEOREM ON PRODUCT SPACES 3

vector valued C-Z kernels such that for f1, f2, g1, g2 ∈ C∞
0 (R) we have

〈T (f1 ⊗ f2), g1 ⊗ g2〉 =

∫

R2

∫

R2

f1(t1)g1(x1)〈K
1(x1, t1)f2, g2〉dt1dx1

whenever supp f1 ∩ supp g1 = ∅ and symmetrically for K2.

The definition of weak boundedness property makes use of the restricted operators:
given fi, gi ∈ C∞

0 (R) for i = 1, 2, let 〈T i(fi), gi〉 : C∞
0 (R) → C∞

0 (R)′ defined by

〈〈T 1(f2), g2〉f1, g1〉 = 〈〈T 2(f1), g1〉f2, g2〉 = 〈T (f1 ⊗ f2), g1 ⊗ g2〉

Notice that the kernel of T 1 for example is precisely 〈K1(x1, t1)(f2), g2〉.
Then, a singular integral operator T is said to satisfy the weak boundedness property

if for any bounded subset A of C∞
0 (R) there is a constant C > 0, that may depend on

A, such that for any f, g ∈ A we have that

‖〈T i(fx,R), gx,R〉‖CZ := ‖〈T i(fx,R), gx,R〉‖L2(R)→L2(R) + |Ki| ≤ C

where fx,R(y) = R−1/2f(R−1(y − x)) and the same for gx,R.
Finally, also associated with T we can define its partial adjoints as the adjoint

operators with respect to each variable, that is, the operator given by

〈T1(f1 ⊗ f2), g1 ⊗ g2〉 = 〈T (g1 ⊗ f2), f1 ⊗ g2〉

and analogously for T2. Notice that T2 = T ∗
1 .

With all these definitions we can state Journé’s result:

Theorem 1.2. Let T be a singular integral operator on R × R as described in def-
inition 1.1 satisfying the weak boundedness property and T (1), T ∗(1), T1(1), T ∗

1 (1) ∈
BMOprod(R2). Then T extends boundedly on L2(R2).

We would like to stress here how restrictive these conditions are, in particular the
definitions of singular integral operator and of the weak boundedness property. When
written in the language of vector valued Calderón-Zygmund theory they look quite
simple, but a more detailed description reveals all their complexity. The sufficient
hypotheses for T to be bounded on L2(R2) are the following ones:

a) TheKi are vector valued C-Z kernels. This condition implies thatK1(x1, t1) are
C-Z operators bounded on L2(R) and that, moreover, their C-Z norms defined
by ‖K1(x1, t1)‖CZ := ‖K1(x1, t1)‖L2(R)→L2(R) + |K1

x1,t1| satisfy

‖K1(x1, t1)‖CZ ≤ C|xi − ti|
−1

‖K1(x1, t1)−K1(x′
1, t

′
1)‖CZ ≤ C(|x1 − x′

1|+ |t1 − t′1|)
δ|x1 − t1|

−1−δ

whenever |x1 − x′
1|+ |t1 − t′1| ≤ |x1 − t1|/2 and the same for K2(x2, t2).

b) Weak boundedness property. This condition implies that 〈T 1(fs,R), gs,R〉 are
also C-Z operators bounded on L2(R) and moreover, their C-Z norms defined
as ‖〈T 1(fs,R), gs,R〉‖CZ := ‖〈T 1(fs,R), gs,R〉‖L2(R)→L2(R) + |K1| satisfy

‖〈T 1(fs,R), gs,R〉‖CZ ≤ C

and the same for T 2.
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c) T (1), T ∗(1), T̃1(1), T̃ ∗
1 (1) ∈ BMOprod(R2), the latter space being much more

complex that its one variable counterpart.

So, in order to conclude that the product operator is bounded, Journé’s theorem
assumes that ”some parts” of the operator, in particular the vector valued kernels and
the restricted operators, are known to be bounded a priori. This is quite a different
situation from the original T (1) theorem in which nothing is assumed to be bounded
a priori. However, for the same before mentioned reasons, the use of vector valued
theory was also adopted by other authors in later developments of singular integration
in product spaces (see [14], [15], [16], [20] and [21]).

Our purpose in the present paper is to state and prove a new T (1) theorem for
product spaces in which any hypothesis related to operators which need to be bounded
a priori disappear. Therefore, we give up with the use of vector valued Calderón-
Zygmund theory and instead, we seek other sufficient hypotheses for L2-boundedness
which are much closer to the spirit of the classical T (1) theorem of David and Journé:
conditions related with scalar decay estimates of the kernel and with the behaviour of
the operator over special families of functions. To get such new hypotheses, we combine
the three classical conditions (kernel estimates, weak boundedness condition and T (1) ∈
BMO) appropriately to their separated action over different parameters to generate a
range of new mixed conditions. For example, in the bi-parameter case we consider
new properties by combining two classical ones, namely kernel decay estimates in one
parameter and weak boundedness property in the other parameter, to get what we call
the mixed ’kernel’-’weak boundedness’ condition. As a result, we obtain nine different
conditions that cover all possible combinations. This procedure better preserves the
symmetry given by the product structure of the kernels and therefore, it is better suited
for the general multi-parameter situation.

Moreover, in lemma 8.1 we obtain a decomposition of the operators under consider-
ation which shows that the quantity and the statement of our conditions are the right
ones in the sense that they describe entirely their boundedness properties. We would
like to highlight the role played by some of those conditions that give sense to a new
class of paraproducts which do not appear in previous developments of the theory. We
plan a deeper study of such operators in forthcoming papers.

The main advantage of our approach is that, at least in principle, the result can
be applied to a larger family of operators since in our hypotheses no operator is ever
assumed to be bounded a priori. Actually, none of the examples treated in section 3
are under the scope of Journé’s theorem. Moreover, those new conditions should, again
in principle, be easier to be tested since there is no need to calculate operators norms.

As a minor advantage of our result we mention the fact that, due to the use of
vector-valued C-Z theory, Journé’s result needs to impose the following condition on
the kernel

∫
|x−y|>2k|x−x′| |K(x, y) − K(x′, y)|dy ≤ C2−k, which is slighlty less general

that the classical
∫
|x−y|>2|x−x′| |K(x, y)−K(x′, y)|dy ≤ C. In our case, some standard

arguments allow to apply our theorem to operators whose kernels satisfy the latter
condition.
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On the other hand, the prize to pay by adopting this new point of view is a larger
number of hypotheses, growing rapidly with the number of parameters. In the case of
n-parameter operators we have to deal with 3n hypotheses to ensure that the operator
is bounded. However, although Journé’s theorem only requires three conditions and
so its statement remains as concise as in the uni-parameter case, when the number of
parameters grows, these three hypotheses need to be applied iteratively. Then, one
might also say that the number of conditions also increases exponentially. From this
perspective, the vector valued formulation turns out to be a clever way to encode the
complicated structure of the problem and when one unfolds all the information, the
complexity always grows accordingly.

Finally, it has to be said that either Journé’s theorem and our result exhibit a
common weak point: the given sufficient conditions for boundedness of product singular
integrals are not necessary. This was first shown by Journé (see the same paper [20])
when he constructed an example of a bounded operator for which the partial adjoint
T1(1) is not in BMOprod(R2). The problem is that either in his theorem and in ours,
the stated conditions imply not only boundedness of T but also of T1 (and so in such
case T1(1) will have to be in BMOprod(R2)). The underlying reason for this is that the
partial adjoint of a bounded operator on L2(R2) is not necessarily bounded. Or in the
language of operator spaces, taking adjoints is not a completely bounded map.

The paper is organized as follows. In section 2 we define all the sufficient hypothe-
ses for L2-boundedness of biparameter singular integral operators and state our T (1)
theorem. We also state without proof the analogous results for multiparametric oper-
ators in several variables. In section 3 we apply our main result to prove boundedness
of non-convolution operators previoulsy studied by R. Fefferman and E. Stein in the
convolution setting.

We start the proof of our result in section 4 by the rigourous definition of the functions
T (1) and T (φI⊗1). In section 5 we obtain an appropriate estimate for the rate of decay
of the action of the operator over bump functions when special cancellation properties
are assumed. Sections 6 and 7 focus on the proof of L2 boundedness and the extension
to Lp spaces respectively, both of them under the special cancellation hypotheses. The
latter case makes use of new bi-parameter modified square functions whose boundedness
is a direct consequence of analogous uni-parameter modified square functions. Proof
of boundedness of these new square functions is provided in an appendix at the end of
the paper. Finally, in section 8 we construct the necessary paraproducts to prove the
result in the general case, that is, in absence of the cancellation assumptions.

In a sequel of the present paper, we plan to deal the endpoint case of boundedness
from L∞(R2) into BMOprod(R2).

We would like to thank Anthony Carbery and Jim Wright for valuable conversations
and helpful comments. We would also like to acknowledge the School of Mathematics
of the University of Edinburgh for the stimulating research environment provided under
which great part of this work was carried out.
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2. Definitions and statement of the main theorem

Definition 2.1. Let ∆ be the diagonal in R2. A function K : (R2 \∆)× (R2 \∆) → R
is called a product Calderón-Zygmund kernel, if for some 0 < δ ≤ 1 and some constant
C > 0 we have

|K(x, t)| ≤ C
∏

i=1,2

1

|xi − ti|

|K(x, t)−K((x1, x′
2), (t1, t

′
2))−K((x′

1, x2), (t′1, t2)) +K(x′, t′)| ≤ C
∏

i=1,2

(|xi − x′
i|+ |ti − t′i|)

δ

|xi − ti|1+δ

whenever 2(|xi − x′
i|+ |ti − t′i|) ≤ |xi − ti|.

Remark 2.1. The second hypothesis is satisfied if we assume the stronger smoothness
condition

|∂t1∂t2K(x, t)|+ |∂t1∂x2
K(x, t)|+ |∂x1

∂t2K(x, t)|+ |∂x1
∂x2

K(x, t)| ≤ C
∏

i=1,2

|xi − ti|
−1−δ

(notice that the derivatives ∂t1∂x1
K(x, t) and ∂t2∂x2

K(x, t) do not appear in this con-
dition). This is due to the trivial inequality

|K(x, t)−K((x1, x
′

2), (t1, t
′

2))−K((x′

1, x2), (t
′

1, t2)) +K(x′, t′)|

≤ |K(x, t)−K((x1, x2), (t1, t
′

2))−K((x1, x2), (t
′

1, t2)) +K(x, t′)|

+|K((x1, x2), (t1, t
′

2))−K((x1, x
′

2), (t1, t
′

2))−K((x1, x2), (t
′

1, t
′

2)) +K((x1, x
′

2), (t
′

1, t
′

2))

+|K((x1, x2), (t
′

1, t2))−K((x1, x2), (t
′

1, t
′

2))−K((x′

1, x2), (t
′

1, t2)) +K((x′

1, x2), (t
′

1, t
′

2))

+|K(x, t′)−K((x1, x
′

2), (t
′

1, t
′

2))−K((x′

1, x2), (t
′

1, t
′

2)) +K(x′, t′)|

Moreover, as in the classical setting, the same result can be achieved assuming the
weaker integral conditions

∫

2|xi−x′
i|≤|xi−ti|

|K(x, t)−K((x1, x
′
2), t)−K((x′

1, x2), t) +K(x′, t)|dt1dt2 ≤ C

and
∫

2|ti−t′i|≤|xi−ti|

|K(x, t)−K(x, (t1, t
′
2))−K(x, (t′1, t2)) +K(x, t′)|dx1dx2 ≤ C

Given a bilinear form Λ : S(R2)×S(R2) → C, we define associated linear operators
T , adjoint bilinear forms Λi, and restricted linear forms Λi, in the following way:

Definition 2.2. (Dual operators). Given a bilinear form Λ, we define linear operators
T , T ∗ through duality:

〈T (f), g〉 = 〈f, T ∗(g)〉 = Λ(f, g)
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Definition 2.3. (Adjoint bilinear forms). We define the adjoint bilinear forms Λi such
that for f = f1 ⊗ f2, g = g1 ⊗ g2 functions of tensor product type, we have

Λ1(f, g) = Λ(g1 ⊗ f2, f1 ⊗ g2), Λ2(f, g) = Λ(f1 ⊗ g2, g1 ⊗ f2)

and then extended by linearity and continuity.

These new bilinear forms are also associated with linear operators T1, T2 via duality

〈Ti(f), g〉 = 〈f, T ∗
i (g)〉 = Λi(f, g)

which in the case of tensor products, f = f1 ⊗ f2, g = g1 ⊗ g2, satisfy

〈T1(f1 ⊗ f2), g1 ⊗ g2〉 = Λ1(f, g) = Λ(g1 ⊗ f2, f1 ⊗ g2) = 〈T (g1 ⊗ f2), f1 ⊗ g2〉

Notice that T2 = T ∗
1 and T ∗

2 = T1.
From now we will sometimes denote Λ0 = Λ and T0 associated to Λ0.

Definition 2.4. (Restricted bilinear forms). We define the restricted bilinear forms by

〈Λ1(f2, g2)f1, g1〉 = 〈Λ2(f1, g1)f2, g2〉 = Λ(f1 ⊗ f2, g1 ⊗ g2)

We will call restricted operators T i to the linear operators associated with the restricted
bilinear form Λi through duality Λi(fj , gj) = 〈T i(fj), gj〉.

Notice that the kernels of the forms Λi depend on the variables of the functions fj , gj
and so we will often write Λi

tj ,xj
. The same holds for the restricted operators. Also

notice that most ot the times we use subindexes to denote the partial adjoint operators
or forms while we use superindexes to denote the restricted ones.

Definition 2.5. A bilinear form Λ : S(R2) × S(R2) → C is said to be associated
with a product Calderón-Zygmund kernel K if it satisfies the following three integral
representations:

(1) for all Schwartz functions f, g ∈ S(R2) such that f(·, t2), g(·, x2) and f(t1, ·), g(x1, ·)
have respectively disjoint supports, we have

Λ(f, g) =

∫

R2

∫

R2

f(t)g(x)K(x, t) dx dt

(2) for all Schwartz functions f1, f2, g1, g2 ∈ S(R) such that f1 and g1 have disjoint
supports, we have

Λ(f, g) =

∫

R2

∫

R2

f1(t1)g1(x1)Λ
1(f2, g2) dt1 dx1

(3) analogous representation for Λ2.

If the form is continuous on S(R2)×S(R2) then it will be called a bilinear Calderón-
Zygmund form.

With a small abuse of notation, we will say that a bilinear form is bounded on
Lp(R2) if there is a constant C > 0 such that |Λ(f, g)| ≤ C‖f‖Lp(R2)‖g‖Lp′(R2) for all
f, g ∈ S(R2).
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As mentioned in the introduction, boundedness of the bilinear form Λ implies bound-
edness of the dual linear operators T and T ∗, but it does not imply boundedness of any
of the adjoint bilinear forms Λi nor their corresponding associated adjoint operators
Ti, T ∗

i . In other words, boundedness of Λ on L2(R2)
∣∣∣Λ(

∑

n

fn1
1 ⊗ fn2

2 ,
∑

m

gm1
1 ⊗ gm2

2 )
∣∣∣ ≤ C

∥∥∥
∑

n

fn1
1 ⊗ fn2

2

∥∥∥
2

∥∥
∑

m

gm1
1 ⊗ gm2

2

∥∥∥
2

implies boundedness of Λ1 only on L2(R)⊗̂L2(R):
∣∣∣Λ1(

∑

n

fn1
1 ⊗ fn2

2 ,
∑

m

gm1
1 ⊗ gm2

2 )
∣∣∣ =

∣∣∣
∑

n,m

Λ(gm1
1 ⊗ fn2

2 , fn1
1 ⊗ gm2

2 )
∣∣∣

≤ C
∑

n,m

‖gm1
1 ‖2‖f

n2
2 ‖2‖f

n1
1 ‖2‖g

m2
2 ‖2 = C

∑

n

‖fn1
1 ⊗ fn2

2 ‖2
∑

m

‖gm1
1 ⊗ gm2

2 ‖2

Definition 2.6. For every interval I ⊂ R we denote its centre by c(I) its and length
by |I|. Then, a L2(R)-normalized bump function adapted to I with constant C > 0 and
order N ∈ N, is a Schwartz function φ such that

|φ(n)(x)| ≤ C|I|−1/2−n(1 + |I|−1|x− c(I)|)−N , 0 ≤ n ≤ N

We will call standard cube to the cube in Rd of measure one centered at the origin.
A bump function φ adapted to the standard cube of order N is a Schwartz function
satisfying

|∂αφ(x)| ≤ C(1 + |x|)−N , 0 ≤ |α| ≤ N

A bump function φ is said to be adapted to a box R in Rd, if for any affine linear
transformation A transforming the standard cube into the box R, the function

| det(A)|1/2φ(Ax)

is a bump function adapted to the standard cube. This definition does not depend on
the finite choice of the linear transformation.

Observe that all these bump functions are normalized to be uniformly bounded in
L2(Rd). The order of the bump functions will always be denoted by N , even though its
value might change from line to line. It is also worthy to say that we usually reserve
the greek letter φ, ϕ for general bump functions while we reserve the use of ψ to denote
bump functions with mean zero.

Definition 2.7. We say that a bilinear form Λ satisfies the weak boundedness condi-
tion, if for any rectangle R and every pair φR, ϕR of L2-normalized bump functions
adapted to R with constant C, we have

|Λ(φR, ϕR)| ≤ C

Definition 2.8. We say that a bilinear form Λ satisfies the mixed weak boundedness-
Calderón Zygmund condition, if for any interval I and every pair φI , ϕI of L2-normalized
bump functions adapted to I with constant C, we have

|Λi
tj ,xj

(φI , ϕI)| ≤ C|tj − yj |
−1
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|(Λi
tj ,xj

− Λi
t′j ,x

′
j
)(φI , ϕI)| ≤ C(|xj − x′

j |+ |tj − t′j |)
δ|tj − xj |

−(1+δ)

whenever 2(|xj − x′
j |+ |tj − t′j |) < |tj − xj | for all i, j ∈ {1, 2}.

Obviously, the second condition is implied by the smoothness condition

|∂tjΛ
i
tj ,xj

(φI , ϕI)|+ |∂xj
Λi

tj ,xj
(φI , ϕI)| ≤ C|tj − xj |

−(1+δ)

Finally, we notice that, in order to simplify notation, from now being the space
product BMO, that is, the dual of H1(R2) will be simply denote by BMO(R2).

We can now state our main result,

Theorem 2.9. (bi-parameter T(1) theorem). Let Λ be a bilinear Calderón-Zygmund
form satisfying the mixed WB-CZ conditions. Then, the following are equivalent:

(1) Λi are bounded bilinear forms on L2(R2) for all i = 0, 1, 2,
(2) Λ satisfies the weak boundedness condition and the special cancellation condi-

tions:
a) T (1), T ∗(1), T1(1), T ∗

1 (1) ∈ BMO(R2),
b) 〈T (φI⊗1), ϕI⊗·〉, 〈T (1⊗φI), ·⊗ϕI〉, 〈T ∗(φI⊗1), ϕI⊗·〉, 〈T ∗(1⊗φI), ·⊗ϕI〉 ∈

BMO(R) for all φI , ϕI bump functions adapted to I with norms uniformly
bounded in I.

We remark that boundedness of those operators Ti and Tj for i /= j are not equivalent.
A way to show this is by considering Carleson’s example that proves BMOrec(R2) !
BMO(R2). In [2], he described a recursive process to construct a sequence of func-
tions such that ‖bn‖BMOrec(R2) = 1 while ‖bn‖BMOprod(R2) ≥ Cn where (Cn)n∈N was an
unbounded sequence of positive numbers. Then, we can consider paraproducts associ-
ated with that sequence of functions

Tn(f) =
∑

I

〈bn, ψR〉〈f, ψ
2
R〉ψR

in such a way that ‖Tn‖L2(R2)→L2(R2) ≈ ‖bn‖BMOprod(R2) ≥ Cn while ‖T ∗
n‖L2(R2)→L2(R2) ≈

‖bn‖BMOrect(R2) ≤ C. This shows again that none of the conditions T1(1) ∈ BMO(R2),
T ∗
1 (1) ∈ BMO(R2) are necessary for boundedness of T .

We end this section by stating the analogous result in the multiparameter case. We
simplify the notation as much as possible.

Let m ≤ n and n1, . . . , nm such that n =
∑m

i=1 ni. Let K :
∏m

i=1(R
ni\∆ni

) → R be
such that

|K(x, t)| ≤ C
m∏

i=1

|xi − ti|
−ni

|∇ti1
· · ·∇timK(x, t)| ≤ C

m∏

i=1

|xi − ti|
−(ni+δ)

where xi, ti ∈ Rni, 0 < δ ≤ 1.
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Definition 2.10. (Restricted bilinear forms). Let N1, N2 ⊂ {1, . . . , m} such that N1 ∪
N2 = {1, . . . , m} disjointly. Given a bilinear form Λ, we define the restricted bilinear
forms by

〈ΛN1(⊗j∈N1
fj,⊗j∈N1

gj)⊗j∈N2
fj,⊗j∈N2

gj〉 = Λ(f, g)

for f = ⊗m
i=1fi, g = ⊗m

i=1gi with fi, gi ∈ S(Rni), and then extended by linearity and
continuity.

We will call restricted operators to the linear operators associated with the restricted
bilinear forms by duality.

Notice that the kernels of the forms ΛN1 depend on the variables of the functions
⊗j∈N2

fj , ⊗j∈N2
gj and so we can write ΛN1

tj ,xj
.

Definition 2.11. A bilinear form Λ : S(Rn)×S(Rn) → C is said to be associated with a
product Calderón-Zygmund kernelK if it satisfies the following integral representations:

(1) for all Schwartz functions f, g ∈ S(Rn) such that f(·, t2), g(·, x2) and f(t1, ·), g(x1, ·)
have respectively disjoint supports, we have

Λ(f, g) =

∫

R2

∫

R2

f(t)g(x)K(x, t) dx dt

(2) for every N1, N2 ⊂ N such that N1 ∪ N2 = {1, . . . , m} disjointly and for all
Schwartz functions fi, gi ∈ S(R) such that fj and gj with j ∈ N2 have disjoint
supports, we have the integral representation

Λ(f, g) =

∫

R
nN2

∫

R
nN2

⊗j∈N2
fj(tj)⊗j∈N2

gj(xj)ΛN1
(⊗j∈N1

fj ,⊗j∈N1
gj) dtj dxj

with nN2
=

∑
j∈N2

nj.

Definition 2.12. We say that a bilinear form Λ satisfies the weak boundedness con-
dition if for any box R ⊂ Rn and every φR, ϕR L2(Rn)-normalized bump functions
adapted to R with constant C we have

|Λ(φR, ϕR)| ≤ C

Definition 2.13. Let WB,CZ ⊂ {1, . . . , m} such that WB∪CZ = {1, . . . , m} disjointly.
We say that a bilinear form Λ satisfies the mixed weak boundedness-Calderón Zygmund
condition if for any R =

∏
i∈WB Ri and every φR, ϕR bump functions L2(R

∑
i∈WB ni)-

normalized and adapted to R with constant C > 0, we have

|ΛWB
tij ,xij

(φR, ϕR)| ≤ C
∏

j∈CZ

|tij − yij |
−1

|(ΛWB
tij ,xij

− Λi
t′ij

,x′
ij

)(φR, ϕR)| ≤ C
∏

j∈CZ

(|tij − t′ij |+ |xij − x′
ij |)

δ|tij − xij |
−(nj+δ)

Theorem 2.14. (m-parameter T (1) theorem). Let Λ be a bilinear Calderón-Zygmund
form with associated kernel K satisfying the mixed WB-CZ conditions.

Then, the following are equivalent:
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(1) Λi are bounded bilinear forms on L2(Rn) for all i,
(2) Λ satisfies the weak boundedness condition and the following sequence of spe-

cial cancellation conditions: for every k ∈ {n1, n1 + n2, . . . , n} and all bump
functions φRi

, ϕRi
∈ S(Rni) both adapted to Ri ⊂ Rni we have

〈T (1⊗ . . .⊗ 1⊗ ΦRn−k), Φ̃Rn−k〉 ∈ BMO(Rk)

where ΦRn−k = φR1
⊗ . . . ⊗ φRn−k

and Φ̃Rn−k = ϕR1
⊗ . . . ⊗ ϕRn−k

with norms

uniformly bounded when varying over the boxes Rn−k =
∏n−k

i=1 Ri. The same
condition applies for all possible permutations of the entries in 1⊗. . .⊗1⊗ΦRn−k

(in total ( n
n− k ) 2k conditions).

3. Application

We give now an example of how our results can be applied to the study of bound-
edness of operators defined by product kernels.

In [17], R. Fefferman and E. Stein explain that in some boundary-value problems, in
particular in the ∂̄-Neuman problem, one faces convolution operators defined in Rn+1

with kernels like

Kk(t, tn+1) =
tk

(|t|2 + t2n+1)
(n+1)/2

1

|t|2 + itn+1

with t ∈ Rn and tn+1 ∈ R, which are product of two kernels with different types of
homogeneity. With this motivation in mind they prove the following

Theorem 3.1. Let K be a kernel defined in Rn ×Rm by K(t) = K1(t)K2(t) such that
K1 is homogeneous of degree −n with respect the family of dilations t → (δt1, δat2) for
all δ > 0 and fixed a > 0 while K2 is homogeneous of degree −m with respect the family
of dilations t → (δbt1, δt2) for all δ > 0 and fixed b > 0.

It is also assumed that K1(t1, 0) has mean zero on the unit sphere of Rn, K2(0, t2)
has mean zero on the unit sphere of Rm and

∣∣∣
∫

α1<|t1|<β1,α2<|t2|<β2

K(t)dt
∣∣∣ ≤ A

for all 0 < αi < βi. Then, for all 1 < p < ∞,

‖K ∗ f‖Lp(Rn×Rm) ≤ Cp‖f‖Lp(Rn×Rm)

where the constant Cp depends on A and p.

In their paper, Theorem 3.1 appears as a corollary of the following more general
result:

Theorem 3.2. Let K : Rn × Rm → R be an integrable function that satisfies

(1) the kernel conditions: for t = (t1, t2), h = (h1, h2),
(a) |K(t)| ≤ A|t1|−n|t2|−m

(b) |K(t1 + h1, t2)−K(t)| ≤ A|h|δ1 |t1|−n−δ1 |t2|−m whenever 2|h1| < |t1|
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(c) |K(t1, t2 + h2)−K(t)| ≤ A|h|δ2 |t1|−n|t2|−m−δ2 whenever 2|h| < |t2|
(d) |K(t+h)−K(t1+h1, t2)−K(t1, t2+h2)+K(t)| ≤ A|h1|δ1 |h2|δ2 |t1|−n−δ1 |t2|−m−δ2

whenever 2|h1| < |t1|, 2|h2| < |t2|

(2) the cancellation condition:
∣∣∣
∫
αi<|ti|<βi

K(t)dt
∣∣∣ ≤ A for all 0 < αi < βi

(3) the mixed kernel-cancellation conditions:
(a) if K1(t1) =

∫
α2<|t2|<β2

K(t1, t2)dt2 then

(i) |K1(t1)| ≤ A|t1|−n

(ii) |K1(t1 + h1)−K1(t1)| ≤ A|h|δ1 |t1|−n−δ1 whenever 2|h1| < |t1|
(b) similar conditions for K2(t2) =

∫
α1<|t1|<β1

K(t1, t2)dt1.

Then, for all 1 < p < ∞,

‖f ∗K‖Lp(Rn×Rm) ≤ Ap‖f‖L
p(Rn × Rm)

with Ap depending only on A and p.

It is not difficult to see that that conditions of Theorem 3.2 imply the hypotheses
of Theorem 2.9. Conditions (1) − a) and (1) − d) imply K is a product Calderón-
Zygmund standard kernel while (2) implies that the convolution operator T with kernel
K satisfies weak boundedness condition and T (1), T ∗(1), T1(1), T ∗

1 (1) ∈ BMO(Rn ×
Rm). On the other hand, the mixed type hypotheses of Theorem 2.9, that is, the
mixed WB-CZ condition and mixed T(1)-CZ conditions follow from (1)− b), (1)− c);
and (3) respectively.

Even more, Theorem 2.9 allow us two extend Theorem 3.2 to the case of non-
convolution kernels, a result that is stated below.

Definition 3.3. Let K(x, t) with x, t ∈ Rn×Rm be an integrable function that satisfies

(1) the kernel conditions:
(a) |K(x, t)| ≤ A|t1|−n|t2|−m

(b) |K((x′
1, x2), (t′1, t2)) − K(x, t)| ≤ A(|x1 − x′

1| + |t1 − t′1|)
δ1 |t1|−n−δ1|t2|−m

whenever 2(|x1 − x′
1|+ |t1 − t′1|) < |t1|

(c) |K((x1, x′
2), (t1, t

′
2)) − K(x, t)| ≤ A(|x2 − x′

2| + |t2 − t′2|)
δ2 |t1|−n|t2|−m−δ2

whenever 2(|x2 − x′
2|+ |t2 − t′2|)| < |t2|

(d) |K(x′, t′)−K((x′
1, x2), (t′1, t2))−K((x1, x′

2), (t1, t
′
2)) +K(x, t)|

≤ A(|x1 − x′
1|+ |t1 − t′1|)

δ1(|x2 − x′
2|+ |t2 − t′2|)

δ2|t1|−n−δ1|t2|−m−δ2

whenever 2(|xi − x′
i|+ |ti − t′i|) < |ti| for i = 1, 2

(2) the cancellation condition:
∣∣∣
∫
α1<|t1|<β1,α2<|t2|<β2

K(x, t)dt
∣∣∣ ≤ A

(3) the mixed kernel-cancellation conditions:
(a) if K1(x, t1) =

∫
α2<|t2|<β2

K(x, t1, t2)dt2 then

(i) |K1(x, t1)| ≤ A|t1|−n

(ii) |K1((x′
1, x2), t′1)−K1(x, t1)| ≤ A(|x1 − x′

1|+ |t1 − t′1|)
δ1 |t1|−n−δ1

whenever 2(|x1 − x′
1|+ |t1 − t′1|) < |t1|

(b) similar conditions for K2(x, t2) =
∫
α1<|t1|<β1

K(x, t1, t2)dt1.
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Definition 3.4. We say that an operator T is associated with K if

T (f)(x) =

∫

Rn×Rm

f(x− t)K(x, t)dt

whenever x /∈ sup (f).

Then, we have

Theorem 3.5. Let T be an operator associated with K satisfying all the conditions of
definition 3.3. Then, For all 1 < p < ∞,

‖T (f)‖Lp(Rn×Rm) ≤ Ap‖f‖L
p(Rn × Rm)

with Ap depending only on A and p.

Sketch of proof. To give a flavour of the ideas involved on dealing with non con-
volution kernels in the product seeting, we outline how hypotheses of Theorem 3.5
imply the ones in Theorem 2.9. In particular, we partially show how the mixed weak
boundedness Calderón-Zygmund condition |〈T 1

x1,t1(φI), ϕI〉| ≤ C|x1 − t1|−n and the
cancellation property 〈T (φI ⊗ 1), ϕI ⊗ ·〉 ∈ BMO(R) are checked.

Let I be a fixed interval. We consider φI = |I|−1/2
∑

k akχIk to be an approximation
by step functions of a general bump function adapted to I, where the intervals Ik are
pairwise disjoint and of the same lenght |Ik| < ε as small as we want. We consider a
similar description for ϕI . Then,

〈T 1
x1,t1(φI), ϕI〉 = lim

ε→0
|I|−1

∑

k,j∈Z

akbj

∫

|x2−t2|>ε

χIk(x2)χIj (t2)K(x, x− t)dt2dx2

so we just need to bound

|I|−1
∑

k,j∈Z

akbjTk,j

where Tk,j denotes the integral in the sum, independently of ε > 0 and |I|.
When k = j,

Tk,k =

∫
|x2 − c(Ik)| < |Ik|/2
|t2 − c(Ik)| < |Ik|/2

|x2 − t2| > ε

K(x, x−t)dt2dx2 =

∫
|x2| < |Ik|/2
|t2| < |Ik|/2
|x2 − t2| > ε

K(x1, x2−c(Ik), x−t)dt2dx2

=

∫

|x2| < |Ik|/2

∫

|x2 − t2| < |Ik|/2
|t2| > ε

K(x1, x2 − c(Ik), x1 − t1, t2)dt2dx2

=

∫

0 < x2 < |Ik|/2

(∫

|x2 − t2| < |Ik|/2
|t2| > ε

K(x1, x2 − c(Ik), x1 − t1, t2)dt2

+

∫

| − x2 − t2| < |Ik|/2
|t2| > ε

K(x1,−x2 − c(Ik), x1 − t1, t2)dt2
)
dx2
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By addition and substraction the inner sum in last expression equals
(3.1)∫

|x2 − t2| < |Ik|/2
|t2| > ε

K(x1, x2−c(Ik), x1−t1, t2)dt2+

∫

| − x2 − t2| < |Ik|/2
|t2| > ε

K(x1, x2−c(Ik), x1−t1, t2)dt2

+

∫

| − x2 − t2| < |Ik|/2
|t2| > ε

(
K(x1,−x2 − c(Ik), x1 − t1, t2)−K(x1, x2 − c(Ik), x1 − t1, t2)

)
dt2

The first two terms can be rewritten with a symmetric domain of integration as
∫

|x2 − |Ik|/2| < |t2| < |x2 + |Ik|/2|

K(x1, x2 − c(Ik), x1 − t1, t2)dt2

+2

∫

ε < |t2| < |x2 − |Ik|/2|

K(x1, x2 − c(Ik), x1 − t1, t2)dt2

where the second integral is zero if |x2−|Ik|/2| ≤ ε. Then, by the hypothesis 3.a.i) with
α2 = |x2 − |Ik|/2|, β2 = |x2 + |Ik|/2| for the first integral and α2 = ε, β2 = |x2 − |Ik|/2|
for the second one, we can bound them by 3A|x1 − t1|−n.

Meanwhile, the last term in expression (3.1) can be treated by condition 1.c) and
bounded by

∫

| − x2 − t2| < |Ik|/2
|t2| > ε

2|x2|
δ2 |x1 − t1|

−n|t2|
−m−δ2dt2 ≤ C|x2|

δ2 |x1 − t1|
−n

With both things we get
∣∣∣
∫

|x2 − c(Ik)| < |Ik|/2
|t2 − c(Ik)| < |Ik|/2

|x2 − t2| > ε

K(x− t)dt2dx2

∣∣∣ ≤
∫

0 < x2 < |Ik|/2

3A(1 + |x2|
δ2)|x1 − t1|

−ndx2

≤ 3A|x1 − t1|
−n(1 + |Ik|

δ)|Ik|/2 ≤ 3A|x1 − t1|
−n(1 + ε)|Ik|/2

Finally, since we may assume |bk| ≤ 1 and
∑

k∈Z |ak||Ik| ≤ C|I|, we end this case
with the following bounds:

|I|−1
∑

k∈Z

|ak||bk|Tk,k| ≤ C|I|−1
∑

k∈Z

|ak||bk|CA|x1 − t1|
−n|Ik| ≤ CA|x1 − t1|

−n

The case k /= j is technically more complex since we need to consider several terms
together in order to get the same kind of symmetry in the domain of integration.
Despite this, the same type of ideas apply: the kernel decay estimates allow to obtain
a similar result and prove this way the mixed WB-CZ condition.

On the other hand, let ψJ an atom. Then,

〈T (φI ⊗ 1), ϕI ⊗ ψJ〉

= lim
λ→∞

lim
ε→0

∫∫

|x2 − t2| > ε

χλI(x2)ψJ(t2)|I|
−1

∑

k,j∈Z

akbj

∫∫

|x1 − t1| > ε

χIk(x1)χIj (t1)K(x, x−t)dtdx
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= lim
λ→∞

lim
ε→0

∫∫

|x2 − t2| > ε

χλI(x2)ψJ(t2)|I|
−1

∑

k,j∈Z

akbjTk,j(x2, t2)dx2dt2

and we bound the last expression independently of λ > 0. By using the mean zero of
ψJ this is equal to

lim
ε→0

∫∫

|x2 − t2| > ε

χλI(x2)ψJ (t2)
(
|I|−1

∑

k,j∈Z

akbjTk,j(x2, t2)dx2−|I|−1
∑

k,j∈Z

akbjTk,j(x2, 0)
)
dx2dt2

now by a similar argument as before but using the smoothness condition instead the
decay we can bound by

lim
ε→0

∫
|ψJ(t2)|

∫

|x2 − t2| > ε

|χλI(x2)|CA|x2 − t2|
−(n+δ)dx2dt2 ≤ CA‖ψJ‖L1(R)

4. Definition of T (1), 〈T (φI ⊗ 1), ϕI〉 and 〈T (φI ⊗ 1), ϕJ〉

In this section we give a rigorous definition of T (1), 〈T (φI⊗1), ϕI〉 and 〈T (φI⊗1), ϕJ〉
as distributions modulo constants. The approach is similar to the uni-parametric case
and so we will follow some of the arguments in [28].

We start with the technical lemma that gives sense to T (1) (and also the partial
adjoints Ti(1)). The condition T (1) ∈ BMO(R2) means that the following inequality

|〈T (1), f〉| ≤ C‖f‖H1(R2)

holds for all f that belong to a dense subset of H1(R2). In our case, such dense subset
will be the family of Schwartz functions f compactly supported with mean zero in each
variable, meaning

∫
R f(x, t)dx =

∫
R f(x, t)dt = 0. Then, in order to give a proper sense

to the left hand side of previous inequality we use the following lemma:

Lemma 4.1. Let Φ ∈ S(R2) such that Φ(x) = 1 for ‖x‖ ≤ 1 and Φ(x) = 0 for
‖x‖ > 2. Let Λ be a Calderón-Zygmund bilinear form with associated kernel K. Let
S be a rectangle and f ∈ S(R2) with compact support in S and mean zero in each
variable. Then, the limit

L(f) = lim
k1,k2→∞

Λ(Tc(S)D2k1 |S1|,2k2 |S2|Φ, f)

exists. Moreover, we have the error bound

|L(f)− Λ(Tc(S)D2k1 |S1|,2k2 |S2|Φ, f)| ≤ C2−δ(k1+k2)‖f‖L1(R2)

where δ is the parameter in the Calderon-Zygmund property of the kernel K and the
constant depends only on Φ and Λ.

Proof. For simplicity of notation we shall assume that S is centered at the origin.
For k ∈ N2 with ki ≥ 1, we set ψk = D2k1 |S1|,2k2 |S2|Φ − D2k1−1|S1|,2k2−1|S2|Φ and we

estimate |Λ(ψk, f)|.
Since the supports of ψk and f are disjoint, we use the kernel representation

Λ(ψk, f) =

∫
ψk(t)f(x)K(x, t) dtdx
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Due to the support of f we may restrict the domain of integration to |xi| < |Si|/2 while
due to the support of ψk we have 2ki−1|Si| < |ti| < 2ki+1|Si|.

Using the mean zero of f in each xi variable we rewrite the above integral as
∫
ψk(t)f(x)(K(x, t)−K((x1, 0), t)−K((0, x2), t) +K(0, t)) dtdx

Since 2|xi| < |Si| < |ti| we use the properties of product C-Z kernel to estimate the
last display by

C

∫
|ψk(t)||f(x)|

|x1|δ

|t1|1+δ

|x2|δ

|t2|1+δ
dtdx

and using again the restriction on the variables we estimate now by

C

∫

|ti|<2k|Si|

|f(x)|
1

2k1(1+δ)

1

|S1|

1

2k2(1+δ)

1

|S2|
dtdx ≤ C2−k1δ2−k2δ‖f‖L1(R2)

This estimate proves that the sequence (Λ(D2k1 |S1|,2k2 |S2|Φ, f))k>0 is Cauchy and so the
existence of the limit L(f).

Now the explicit rate of convergence stated in the lemma follows by summing geo-
metric series: for every k ∈ N2, and every 0 < ε < 2−(k1+k2)δ‖f‖L1(R2) let m ∈ N2 be
with modulus big enough so that 2−(m1+m2)δ‖f‖L1(R2); then,

|L(f)− Λ(D2k1 |S1|,2k2 |S2|Φ, f)| ≤ |L(f)− Λ(D2m1 |S1|,2m2 |S2|Φ, f)|+
m1∑

k′1=k1

m2∑

k′2=k2

|Λ(ψk′, f)|

≤ ε+ C
m1∑

k′1=k1

m2∑

k′2=k2

2−(k′1+k′2)δ‖f‖L1(R2) ≤ C2−(k1+k2)δ‖f‖L1(R2)

and the proof is finished.

It can be easily proved that the definition of T (1) is independent of the translation
selected proving that L is invariant under scaling and translation. Moreover, it can
also be shown that the definition is independent of the chosen cutoff function Φ.

We notice that, since we have only worked with smooth atoms, strictly speaking we
haven’t finished the definition of T (1). To do it rigorously, we should prove that the
sequence (T (D2k1 ,2k2Φ))k∈Z2 is uniformly bounded in BMO(R2). Then, using that the
unit ball of the dual of Banach space is weak∗-compact, we can extract a subsequence
of previous sequence which converges to L(f) for functions f in C∞(R2) with compact
support. Finally, since these functions are dense in H1(R2), we can deduce that pre-
vious functional can properly been extended to all H1(R2) and that T (1 ⊗ 1) is the
unique limit in BMO(R2) of the previous sequence. We will not get into any further
detail about this.

We move now to the definition of 〈T (φI ⊗1), ϕI ⊗·〉 following the previous schedule.
The condition 〈T (φI ⊗ 1), ϕI ⊗ ·〉 ∈ BMO(R) means the fulfillment of the following
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inequality

|〈T (φI ⊗ 1), ϕI ⊗ f〉| ≤ C‖f‖H1(R)

for all f that belong to a dense subset of H1(R). In this case, such dense subset will
be the family of Schwartz functions f compactly supported with mean zero. Then,
in order to give a proper sense to the left hand side of previous inequality we use the
following lemma:

Lemma 4.2. Let Φ ∈ S(R) such that Φ(x) = 1 for |x| ≤ 1 and Φ(x) = 0 for |x| ≥ 2.
Let S be a rectangle and φS1

, ϕS1
be two L2-normalized bump functions adapted to S1.

Let f ∈ S(R) be supported in S2 with mean zero. Then, the limit

LφS1
,ϕS1

(f) = lim
k→∞

Λ(φS1
⊗ Tc(S2)D2k |S2|Φ, ϕS1

⊗ f)

exists. Moreover, we have the error bound

|LφS1
,ϕS1

(f)− Λ(φS1
⊗ Tc(S)D2k |S2|Φ, ϕS1

⊗ f)| ≤ C2−δk‖f‖L1(R)

where δ is the parameter in the Calderon-Zygmund property of the kernel K and C
depends only on Φ and Λ.

Proof. We mimic the proof of previous lemma and for simplicity of notation we assume
that S2 is centered at the origin. For k ≥ 1, we set ψk = D2k|S2|Φ−D2k−1|S2|Φ. We will
estimate |Λ(φS1

⊗ ψk, ϕS1
⊗ f)|.

Since the supports of ψk and f are disjoint we use the kernel representation of the
restricted operator T 2

t2,x2

Λ(φS1
⊗ ψk, ψS1

⊗ ψS2
) =

∫
ψk(t2)f(x2)〈T

2
t2,x2

(φS1
), ϕS1

〉 dt2dx2

Due to the supports of f and ψk we have |x2| < |S2|/2 and 2k−1|S2| < |t2| < 2k+1|S2|
respectively. Using the mean zero of f we write the above integral as

∫
ψk(t2)f(x2)〈(T

2
t2,x2

− T 2
t2,0)(φS1

), ϕS1
〉 dt2dx2

Since 2|x2| < |S2| < |t2|, by the mixed WB-CZ properties we can estimate the last
expression by ∫

|ψk(t2)||f(x2)|C
|x2|δ

|t2|1+δ
dt2dx2

and finally due to the restriction on the variables we can estimate by

C

∫

|t2|<2k|S2|

|f(x2)|
1

2k(1+δ)

1

|S2|
dt2dx2 ≤ C2−kδ‖f‖L1(R)

As before this estimate is summable in k, which proves that the sequence (Λ(φS1
⊗

D2k |S2|Φ, ϕS1
⊗ f))k>0 is Cauchy and so, the existence of the limit L(f). The explicit

rate of convergence stated in the lemma follows again by summing a geometric series.
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Notice that the functional LφS1
,ϕS1

may be indistinctly denoted by Λ(φS1
⊗1, ϕS1

⊗·),
〈T (φS1

⊗ 1), ϕS1
⊗ ·〉, 〈〈T 1(1), ·〉φS1

, φS1
〉 or 〈T 2(φS1

), ϕS1
〉1 since

Λ(φS1
⊗ 1, ϕS1

⊗ f) = 〈T (φS1
⊗ 1), ϕS1

⊗ f〉

= 〈〈T 1(1), f〉φS1
, ϕS1

〉

= 〈〈T 2(φS1
), ϕS1

〉1, f〉

Notice that this way the condition LφS1
,ϕS1

≡ 0 turns into 〈T 2(φS1
), ϕS1

〉 ≡ 0 for all
φS1

, ϕS1
adapted to S1. On the other hand, the condition LφS1

,ϕS1
∈ BMO(R) turns

into 〈T 2(φS1
), ϕS1

〉1 ∈ BMO(R) or 〈T (φS1
⊗ 1), ϕS1

〉x1
(x2) ∈ BMO(R) for all φS1

, ϕS1

adapted to S1.

Finally we define 〈T (1 ⊗ φI), · ⊗ ψJ〉 when φI , ψJ have disjoint support and ψJ has
mean zero. We follow similar schedule as before by mixing the two previous cases. The
condition 〈T (1⊗ φI), · ⊗ ψJ〉 ∈ BMO(R) means that

|〈T (1⊗ φI), f ⊗ ψJ〉| ≤ C‖f‖H1(R)

for all f that belong to a dense subset of H1(R). Again, the dense subset will be the
family of Schwartz functions f compactly supported with mean zero. Then, in order
to give a proper sense to the left hand side of previous inequality we use the following
lemma:

Lemma 4.3. Let Φ ∈ S(R) such that Φ(x) = 1 for |x| ≤ 1 and Φ(x) = 0 for |x| ≥ 2.
Let φR2

, ψS2
be L2-normalized bump functions adapted and supported to the dyadic

intervals R2, S2 respectively, such that |R2| ≥ |S2|, |R2| < diam(R2, S2) and ψS2
has

mean zero.
Let f ∈ S(R) be supported in a dyadic interval S1 with mean zero. Then, the limit

L(f) = lim
k→∞

Λ(Tc(S1)D2k|S1|Φ⊗ φR2
, f ⊗ ψS2

)

exists. Moreover, we have the error bound

|L(f)−Λ(Tc(S1)D2k |S1|Φ⊗φR2
, f⊗ψS2

)| ≤ C2−δk
( |S2|

|R2|

)1/2+δ
(|R2|

−1diam(R2∪S2))
−(1+δ)‖f‖L1(R)

where δ is the parameter in the Calderon-Zygmund property of the kernel K and C
depends only on Φ and Λ.

Proof. Again for simplicity of notation we assume that S1 is centered at the origin.
For k ≥ 1, we set ψk = D2k|S1|Φ−D2k−1|S1|Φ. We will estimate |Λ(ψk⊗φR2

, f⊗ψS2
)|.

Since the supports of ψk and f and the supports of φR2
and ψS2

and are respectively
disjoint we use the kernel representation

Λ(ψk ⊗ φR2
, f ⊗ ψS2

) =

∫
ψk(t1)φR2

(t2)f(x1)ψS2
(x2)K(x, t)dtdx
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Due to the supports of the functions ψk and f we may restrict the domain of integration
to 2k−1|S1| < |t1| < 2k+1|S1|, |x1| < |S1|/2 while, by hypothesis, we have |t2 − c(S2)| >
diam(R2 ∪ S2), |x2 − c(S2)| < |S2|/2.

Using the mean zero of f and ψS2
we write the above integral as

∫
ψk(t1)φR2

(t2)f(x1)ψS2
(x2)(K(x, t)−K((x1, c(S2)), t)−K((0, x2), t)+K((0, c(S2)), t)dtdx

Since 2|x1| < |S1| < |t1| and 2|x2− c(S2)| < |S2| < |R2| < diam(R2∪S2) < |t2− c(S2)|,
by the kernel properties we can estimate the last expression by
∫

|x1| < |S1|/2
|t1| < 2k |S1|

∫

|x2 − c(S2)| < |S2|/2
|x2 − t2| > diam(R2 ∪ S2)

|ψk(t1)||φR2
(t2)||f(x1)||ψS2

(x2)|C
|x1|δ

|t1|1+δ

|x2 − c(S2)|δ

|t2|1+δ
dtdx

which, due to the restriction on the variables, we can estimate by

C

∫

|t1|<2k|S1|

|f(x1)|
1

2k(1+δ)

1

|S1|
dt1dx1

|S2|δ

diam(R2 ∪ S2)1+δ

∫
|φR2

(t2)||ψS2
(x2)|dt2dx2

= C2−kδ‖f‖L1(R)
|S2|δ

diam(R2 ∪ S2)1+δ
‖φR2

‖L1(R)‖ψS2
‖L1(R)

≤ C2−kδ‖f‖L1(R)
|S2|δ

diam(R2 ∪ S2)1+δ
|R2|

1/2|S2|
1/2

≤ C2−kδ‖f‖L1(R)

( |S2|

|R2|

)1/2+δ
(|R2|

−1diam(R2 ∪ S2))
−(1+δ)

As before this estimate is summable in k, which proves that the sequence (Λ(D2k|S1|Φ⊗
φR2

, f ⊗ ψS2
))k>0 is Cauchy and so, the existence of the limit L(f). The explicit rate

of convergence stated in the Lemma follows again by summing a geometric series.

5. Λ applied to bump functions

In this section we study the action of Λ on bump functions to obtain good estimates
of the dual pair in terms of the space and frequency (or scale) localization of the bump
functions.

Before starting we state and prove two lemmata about localization properties of
bump functions. Both results will be frequently used in proposition 5.3, the main
result of this section. In particular, Lemma 5.1 will be used when we apply weak
boundedness condition away from the origin while Lemma 5.2 will be mostly used
when we need to use the cancellation condition T (1) = 0 and weak boundedness close
to the origin.

Lemma 5.1. Let I, J be two intervals such that |I| ≥ |J |. Let 0 < θ < 1, λ =
(|J |−1diam(I ∪ J))θ ≥ 1 and λJ the interval with same center as J and lenght λ|J |.

Let ΦλJ be the usual L∞-normalized function adapted to λJ . Let φJ be a L2-
normalized bump function adapted to J with constant C and order N .
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Then, φJ(1− ΦλJ ) is a L2-normalized bump function adapted to I with constant

C
( |J |
|I|

)(θN−1)/2
(|I|−1diam(I ∪ J))−θN/2

and order θN/4.

Proof. We first study the decay of φJ(x)(1−ΦλJ )(x). Because of the support of 1−ΦλJ

we have |x− c(J)| ≥ λ|J | and so

|J |−1|x− c(J)| ≥ λ = (|J |−1diam(I ∪ J))θ > (|I|−1diam(I ∪ J))θ

This implies
|I|−1|x− c(I)| ≤ |I|−1(|x− c(J)|+ |c(I)− c(J)|)

≤ |I|−1|x− c(J)|+ |I|−1diam(I ∪ J) ≤ |J |−1|x− c(J)|+ (|J |−1|x− c(J)|)1/θ

≤ 2(|J |−1|x− c(J)|)1/θ

where the last inequality holds because |J |−1|x− c(J)| ≥ λ ≥ 1 and θ ≤ 1. Then,

1 + |I|−1|x− c(I)| ≤ 1 + 2(|J |−1|x− c(J)|)1/θ

≤ 2(1 + (|J |−1|x− c(J)|)1/θ) ≤ 2(1 + |J |−1|x− c(J)|)1/θ

With all this together with the inequalities |x− c(J)| ≥ λ|J | and 1+λ ≥ 2, we have

|φJ(x)(1− ΦλJ(x))| ≤ C|J |−1/2 1

(1 + |J |−1|x− c(J)|)N

≤ C|J |−1/2 1

(1 + λ)3N/4

1

(1 + |J |−1|x− c(J)|)N/4

≤ C
( |J |
|I|

)−1/2

λ−N/2 1

(1 + λ)N/4
|I|−1/2 2θN/4

(1 + |I|−1|x− c(I)|)θN/4

≤ C
( |J |
|I|

)−1/2
(|J |−1diam(I ∪ J))−θN/2 2θN/4

(1 + λ)N/4
|I|−1/2 1

(1 + |I|−1|x− c(I)|)θN/4

≤ C
( |J |
|I|

)θN/2−1/2
(|I|−1diam(I ∪ J))−θN/2|I|−1/2 1

(1 + |I|−1|x− c(I)|)θN/4

This proves the result for the decay of the bump function. The same ideas prove the
corresponding decay for the derivatives of the bump function.

Lemma 5.2. Let I, J be two dyadic intervals such that |I| ≥ |J | and J is centered
at the origin. Let Ĩ the interval centered at the origin with |Ĩ| = |I|. Let ΦĨ be the
usual L∞-normalized function supported in Ĩ and φI be a L2-normalized bump function
adapted to I with constant C and order N .

Then, φI(0)ΦĨ is a L∞-normalized bump function adapted to I with constant

C|I|−1/2(|I|−1diam(I ∪ J))−N/2

and order N/2.
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Proof. Since φI is L2-adapted to I, we have by definition

|ΦĨ(x)φI(0)| ≤ C|I|−1/2 1

(1 + |I|−1|c(I)|)N

Now, J is centered at the origin and so we have |I| + |c(I)| = |I| + |c(I) − c(J)| ≥
diam(I ∪ J). This implies 1 + |I|−1|c(I)| ≥ |I|−1diam(I ∪ J).

On the other hand, because of the support of ΦĨ we have |x| ≤ |I|/2. Then, |x −
c(I)| ≤ |I|/2+ |c(I)| and so 1+ |I|−1|x−c(I)| ≤ 3/2+ |I|−1|c(I)| ≤ 3/2(1+ |I|−1|c(I)|).

Finally, since I is dyadic, we have that |c(I)| ≥ |I|/2 and so, also 1+|I|−1|c(I)| > 3/2.
With these three inequalities, we have

|ΦĨ(x)φI(0)| ≤ C|I|−1/2 1

(1 + |I|−1|c(I)|)N/2

1

(1 + |I|−1|c(I)|)N/4

1

(1 + |I|−1|c(I)|)N/4

≤ C|I|−1/2(|I|−1diam(I ∪ J)−N/2 1

(1 + |I|−1|c(I)|)N/4

(3/2)N/4

(1 + |I|−1|x− c(I)|)N/4

≤ C|I|−1/2(|I|−1diam(I ∪ J)−N/2 1

(1 + |I|−1|x− c(I)|)N/4

Again, the same ideas also prove the corresponding decay for the derivatives of the
bump function.

Now we state and prove the technical lemma that describes the action of the operator
when it satisfies the special cancellation properties.

Proposition 5.3. (Bump lemma) Let K be a product Calderon-Zygmund kernel with
parameter δ. Let Λ be a bilinear Calderon-Zygmund form with associated kernel K
which satisfies the mixed WB-CZ conditions.

Assume that Λ also satisfies the weak boundedness condition and the special cancella-
tion conditions Λ(1⊗1, ψS) = 0 for all ψ ∈ S(R2) with mean zero and Λ(f1⊗1, g1⊗ψ) =
Λ(1⊗ f2, ψ ⊗ g2) = 0 for all fi, gi, ψ ∈ S(R) with ψ of mean zero.

Let R, S be rectangles such that |Ri| ≥ |Si| for i = 1, 2. Let φ1 be a bump function
L2-adapted to R and ψ2 a bump function L2-adapted to S with mean zero.

Then, for any 0 < δ′ < δ

|Λ(φ1, ψ2)| ≤ Cδ′

(
|S|

|R|

)1/2+δ′ 2∏

i=1

(
|Ri|

−1diam(Ri ∪ Si)
)−(1+δ′)

Notice that with some abuse of notation, whenever we use this estimate we will
simply write δ instead of δ′.

By symmetry on the arguments one can prove the following

Corollary 5.4. Let Λ a bilinear form that satisfies all the requested previous properties
and the following special cancellation conditions:

Λ(1⊗ 1, ψ) = Λ(ψ, 1⊗ 1) = Λ(ψ1 ⊗ 1, 1⊗ ψ2) = Λ(1⊗ ψ2, ψ1 ⊗ 1) = 0
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for all ψ ∈ S(R2), ψi ∈ S(R) with mean zero; and

Λ(f1 ⊗ 1, g1 ⊗ ψ) = Λ(1⊗ f2, ψ ⊗ g2) = Λ(ψ ⊗ f2, 1⊗ g2) = Λ(f1 ⊗ ψ, g1 ⊗ 1) = 0

for all smooth functions fi, gi, ψ ∈ S(R) with ψ of mean zero.
Let R, S be rectangles and let ψ1, ψ2 be bump functions L2-adapted to R and S

respectively with mean zero. Then, for any 0 < δ′ < δ,
(5.1)

|Λ(ψ1, ψ2)| ≤ C
2∏

i=1

(
min(|Ri|, |Si|)

max(|Ri|, |Si|)

)1/2+δ′ (
max(|Ri|, |Si|)

−1diam(Ri ∪ Si)
)−(1+δ′)

Proof of Proposition 5.3. For simplicity of notation we shall assume that Si are both
centered at the origin. For each rectangle R and λ ∈ R2, we denote by λR the dilated
rectangle (λ1R1)× (λ2R2) that shares the same centre as R and has measure |λ||R|.

Let ΦRi
be the usual L∞-normalized function adapted to the interval Ri and let

ΦR = ΦR1
⊗ ΦR2

.
We denote ψ(t, x) = φ1(t)ψ2(x) and truncate the function as follows.
We start by splitting ψ in the xi variables iteratively, first in x1 and later in x2. Let

λi = (|Si|−1diam(Ri ∪ Si))ε, with 0 < ε < 1. Then, ψ = ψin + ψout where

ψin(t, x) = (ψ(t, x)− c1(t, x2))Φλ1S1
(x1)

and
ψout(t, x) = ψ(t, x)(1− Φλ1S1

(x1)) + c1(t, x2)Φλ1S1
(x1)

with c1(t, x2) chosen so that both ψin and ψout have mean zero in the variable x1. Notice
that both ψin and ψout have mean zero in the variable x2. Now, ψin = ψin,in + ψin,out,
where

(5.2) ψin,in(t, x) = (ψin(t, x)− c2(t, x1))Φλ2S2
(x2)

and
ψin,out(t, x) = ψin(t, x)(1− Φλ2S2

(x2)) + c2(t, x1)Φλ2S2
(x2)

with c2(t, x1) chosen so that both ψin,in and ψin,out have mean zero in the x2 variable.
Meanwhile ψout = ψout,in + ψout,out, where

(5.3) ψout,in(t, x) = (ψout(t, x)− c3(t, x1))Φλ2S2
(x2)

and
ψout,out(t, x) = ψout(t, x)(1− Φλ2S2

(x2)) + c3(t, x1)Φλ2S2
(x2)

where c3(t, x1) chosen so that both ψout,in and ψout,out have mean zero in the x2 variable.
Notice that for example

(5.4) c2(t, x1) = −c|S2|
−1

∫
ψin(t, x)(1− Φλ2S2

(x2))dx2

We see now that the four functions ψout,in, ψout,out,... have mean zero in each variable
xi. This is obvious in the variable x2, since c2 and c3 have been chosen to accomplish
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this. Moreover, we know that ψin and ψout have mean zero in the variable x1. Because
of this, we have for each x2, t:

(5.5)

∫
ψin,in(t, x)dx1Φλ2S2

(x2) = −

∫
c2(t, x)dx1Φλ2S2

(x2)

= −c|S2|
−1

∫ ∫
ψin(t, x)dx1(1− Φλ2S2

(x2))Φλ2S2
(x2)dx2 = 0

An analogous argument also proves mean zero of ψout,out in each variable xi. Mean zero
of both ψin,in, ψout,out imply the same for ψin,out and ψout,in.

Now we split the four functions in the ti variables. For ψout we only decompose the
first two terms to get ψout,in(t, x) = ψ1,2(t, x) + ψ1,3(t, x), ψin,out(t, x) = ψ2,1(t, x) +
ψ3,1(t, x) and ψout,out(t, x) = ψ1,1(t, x) where

ψ1,2(t, x) = ψout,in(t, x)Φµ2R̃2
(t2), ψ1,3(t, x) = ψout,in(t, x)(1− Φµ2R̃2

(t2))

ψ2,1(t, x) = ψin,out(t, x)Φµ1R̃1
(t1), ψ3,1(t, x) = ψin,out(t, x)(1− Φµ1R̃1

(t1))

ψ1,1(t, x) = ψout,out(t, x)

with R̃i the translate of Ri centered at the origin and µi = |Ri|−1diam(Ri ∪ Si). The
reason for notation ψi,j will become clear later.

Finally, for ψin,in we repeat the first type of decomposition to get the following four
terms:

ψin(t, x) = ψin,in(x, t)ΦµR̃(t)

+ ψin,in(x, t)Φµ1R̃1
(t1)(1− Φµ2R̃2

(t2))

+ ψin,in(x, t)(1− Φµ1R̃1
(t1))Φµ2R̃2

(t2)

+ ψin,in(x, t)(1− Φµ1R̃1
(t1))(1− Φµ2R̃2

(t2))

= ψ2,2(t, x) + ψ2,3(t, x) + ψ3,2(t, x) + ψ3,3(t, x)

A carefull look at all these terms reveals that they can be described by

ψ1,2(t, x) = ψ(t, x)(1− Φλ1S1
(x1))Φλ2S2

(x2)Φµ2R̃2
(t2) + c11 + c13

ψ1,3(t, x) = ψ(t, x)(1− Φλ1S1
(x1))Φλ2S2

(x2)(1− Φµ2R̃2
(t2)) + c21 + c23

ψ2,1(t, x) = ψ(t, x)Φλ1S1
(x1)(1− Φλ2S2

(x2))Φµ1R̃1
(t1) + c31 + c32

ψ3,1(t, x) = ψ(t, x)Φλ1S1
(x1)(1− Φλ2S2

(x2))(1− Φµ1R̃1
(t1)) + c41 + c42

ψ1,1(t, x) = ψ(t, x)(1− Φλ1S1
(x1))(1− Φλ2S2

(x2)) + c51 + c53
ψ2,2(t, x) = ψ(t, x)ΦλS(x)ΦµR̃(t) + c61 + c62

ψ2,3(t, x) = ψ(t, x)ΦλS(x)Φµ1R̃1
(t1)(1− Φµ2R̃2

(t2)) + c71 + c72

ψ3,2(t, x) = ψ(t, x)ΦλS(x)(1 − Φµ1R̃1
(t1))Φµ2R̃2

(t2) + c81 + c82

ψ3,3(t, x) = ψ(t, x)ΦλS(x)(1 − Φµ1R̃1
(t1))(1− Φµ2R̃2

(t2)) + c91 + c93
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where the functions cij are error terms that ensure that all functions ψi,j have mean zero
in the variables x1, x2. We notice that ci1 = ci1(t, x2), ci2 = ci2(t, x1) and ci3 = ci3(t, x2).
At the end we will prove that the functions cij are small and have the right support
to allow us to assume that the main terms have the stated zero averages. We will call
denote the main terms again by ψi,j. Also notice that they are of tensor product type.
Moreover, with a small abuse of notation, we will write the action of the dual pair over
ψi,j as Λ(ψi,j).

We call (1) the use of weak boundedness condition away from the origin, the mean
zero in the variables x1, x2 and rate of decay of ψ; (2) the use of the special cancellation
condition T i(1) ≡ 0, the weak boundedness condition close to the origin and the mean
zero of ψ in the xi variable; and (3) the use of the integral representation, the properties
of the Calderón-Zygmund kernel and the mean zero of ψ in the variable xi. We call
(i) × (j) the combined use of (i) in the variables t1, x1 and (j) in the variables t2, x2.
Then, we plan to bound Λ(ψ) dealing each term Λ(ψi,j) by means of (i)× (j).

a) We start with ψ1,1(t, x) = ψ(t, x)(1−Φλ1S1
(x1))(1−Φλ2S2

(x2)) with mean zero in
variables x1, x2, for which we will prove the decay by using weak boundedness in these
variables.

We know that ψ is adapted to R×S and so, by lemma 5.1, ψ1,1 is adapted to R×R
with a gain in the constant of at least

C

(
|S|

|R|

)εN ∏

i=1,2

(
|Ri|

−1diam(Ri ∪ Si)
)−εN

Then, by the weak boundedness condition we have

|Λ(ψ1,1)| ≤ C

(
|S|

|R|

)εN ∏

i=1,2

(
|Ri|

−1diam(Ri ∪ Si)
)−εN

b) To bound, ψ2,2(t, x) = ψ(t, x)ΦλS(x)ΦµR̃(t) we first argue the fact that we are
allowed to make the extra assumption ψ2,2(0, x) = 0 for any x.

The assumption comes from the subtitution by

ψ̃2,2(t, x) = ψ2,2(t, x)−D|R1|,|R2|Φ(t)ψ2,2(0, x)

and we just need to prove that the substracted term satisfies the same bounds we want
to prove. By lemma 5.2, the function D|R1|,|R2|Φ(t)ψ2,2(0, x) is L∞ × L2-adapted to
R× S just like ψ, with a gain of constant of at least

C|R|−1/2
∏

i=1,2

(|Ri|
−1diam(Ri ∪ Si))

−N
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Then, using the special cancellation condition Λ(1⊗ 1, ψS1
⊗ψS2

) = 0 and the explicit
estimate of Lemma 4.1, we see that

|Λ(D|R1|,|R2|Φ(t), ψ2,2(0, x))| = |Λ(D |R1|
|S1|

|S1|,
|R2|
|S2|

|S2|
Φ(t), ψ2,2(0, x))− Λ(1⊗ 1, ψ2,2(0, x))|

≤ C|R|−1/2
∏

i=1,2

(|Ri|
−1diam(Ri ∪ Si))

−N

(
|R1|

|S1|

)−δ ( |R2|

|S2|

)−δ

‖ψ2,2(0, ·)‖1

≤ C|R|−1/2
∏

i=1,2

(|Ri|
−1diam(Ri ∪ Si))

−N

(
|S|

|R|

)δ

|S|1/2

= C

(
|S|

|R|

)δ+1/2 ∏

i=1,2

(|Ri|
−1diam(Ri ∪ Si))

−N

and the right hand side is no larger than the desired bound.
Now with this assumption, we can prove ψ2,2 is adapted to S × S with constant

C|R|−3/2|S|
∏

i=1,2(|Ri|−1diam(Ri, Si))−N . In order to do so we prove that, in S × S,
ψ2,2 is bounded by this quantity, while the work for the derivatives can be done in a
similar way. By the extra assumption,

|ψ2,2(t, x)| =
∣∣∣
∫ t1

0

∫ t2

0

∂t1∂t2ψ2,2(t, x) dt
∣∣∣

≤ C|t1||t2|‖∂t1∂t2ψ2,2(·, x)‖∞ ≤ C|S|‖∂t1∂t2ψ2,2(·, x)‖∞

and by the definition of a bump function

‖∂t1∂t2ψ2,2(·, x)‖∞ ≤ C|R|−3/2
∏

i=1,2

(|Ri|
−1diam(Ri ∪ Si))

−ND|S1|,|S2|Φ(t)φ(x)

where φ is an L2-normalized bump function adapted to S. This shows the bound

|ψ2,2| ≤ C|S||R|−3/2
∏

i=1,2

(|Ri|
−1diam(Ri ∪ Si))

−ND|S1|,|S2|Φ(t)φ(x)

Finally then, by the weak boundedness property of Λ we get

|Λ(ψ2,2)| ≤ C|S||R|−3/2
∏

i=1,2

(|Ri|
−1diam(Ri ∪ Si))

−N |S|1/2

= C

(
|S|

|R|

)3/2 ∏

i=1,2

(|Ri|
−1diam(Ri ∪ Si))

−N

c) Now we consider ψ3,3(t, x) = ψ(t, x)ΦλS(x)(1 − Φµ1R̃1
(t1))(1 − Φµ2R̃2

(t2)) which
will be bounded by the integral representation and the properties of the CZ kernel.

On the support of the ψ3,3, we have that |ti| > C−1µi|Ri| = C−1diam(Ri ∪ Si) while
|xi| ≤ Cλi|Si| = C|Si|1−εdiam(Ri ∪ Si)ε. Since |Si|−1diam(Ri ∪ Si) ≥ 1, the previous
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two inequalities imply |xi| < |ti| and so, the support of ψ3,3 is disjoint with the diagonal.
This allow us to use the Calderón-Zygmund kernel representation

Λ(ψ3,3) =

∫
ψ3,3(t, x)K(x, t) dtdx

Now using the mean zero of ψ3,3 in the variable x, the above integral equals
∫
ψR(t)ψS(x)(K(x, t)−K((x1, 0), t)−K((0, x2), t) +K(0, t)) dtdx

Moreover, since 2|xi| < |ti| we can use the property of a product CZ kernel and estimate
the last expression by

C

∫
|ψ3,3(t, x)|

|x1|δ

|t1|1+δ

|x2|δ

|t2|1+δ
dtdx

Finally, since |ti| > C−1diam(Ri, Si) and |xi| < C|Si|1−εdiam(Ri, Si)ε, we estimate by

C
∏

i=1,2

|Si|
(1−ε)δdiam(Ri, Si)

εδdiam(Ri, Si)
−1−δ‖ψ3,3‖1

≤ C
∏

i=1,2

|Si|
(1−ε)δdiam(Ri, Si)

−1−δ+εδ|Ri|
1/2|Si|

1/2

= C
∏

i=1,2

(|Si|/|Ri|)
1/2+(1−ε)δ(diam(Ri ∪ Si)/|Ri|)

−1−(1−ε)δ

This proves the desired estimate for Λ(ψ3,3).

d) Once finished the three ”pure” cases, we move to the proof of the ”mixed”
ones. We start with ψ1,2(t, x) = ψ(t, x)(1 − Φλ1S1

(x1))Φλ2S2
(x2)Φµ2R̃2

(t2) which will
be bounded by the use of weak boundedness in t1, x1 and the special cancellation
properties in t2, x2.

First, we impose the extra assumption ψ1,2((t1, 0), x) = 0 for any t1, x. The assump-
tion is possible by the substitution

ψ̃1,2(t, x) = ψ1,2(t, x)−D|R2|Φ(t2)ψ1,2((t1, 0), x)

and we first need to show that the substracted term also satisfies the stated bounds.
Due to the constant t2 variable and the decay of ψ1 away from S1, we can apply

Lemma 5.2 in the variable t2 and Lemma 5.1 in the variable x1, to deduce that the
function D|R2|Φ(t2)ψ1,2((t1, 0), x) is adapted to (R1 × R2) × (R1 × S2) with a double
gain of constant of at least

|R2|
−1/2(|R2|

−1diam(R2, S2))
−N

( |S1|

|R1|

)εN

(|R1|
−1diam(R1, S1))

−εN

Now, we make use of the special cancellation condition Λ(φR1
⊗ 1, ϕR1

⊗ ψS2
) = 0

for all bump functions φR1
, ϕR1

and all bump functions ψS2
of mean zero. Since

ψ1,2((t1, 0), x) is adapted to R1 × (R1 × S2) and ψ1,2 is of tensor product type we
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can write ψ1,2((t1, 0), x) = φR1
(t1)ψR1

(x1)ψS2
(x2) and then use the explicit estimate of

Lemma 4.2 to get
|Λ(φR1

(t1)Φ|R2|(t2), ψR1
(x1)ψS2

(x2))|

= |Λ(φR1
(t1)D |R2|

|S2|
|S2|

Φ(t2), ψR1
(x1)ψS2

(x2))− Λ(φR1
⊗ 1, ψR1

⊗ ψS2
)|

≤ C|R2|
−1/2(|R2|

−1diam(R2∪S2))
−N

( |S1|

|R1|

)εN
(|R1|

−1diam(R1∪S1))
−εN

(
|R2|

|S2|

)−δ

‖ψS2
‖1

≤ C|R2|
−1/2(|R2|

−1diam(R2∪S2))
−N

( |S1|

|R1|

)εN

(|R1|
−1diam(R1∪S1))

−εN

(
|S2|

|R2|

)δ

|S2|
1/2

= C

(
|S1|

|R1|

)εN

(|R1|
−1diam(R1 ∪ S1))

−εN

(
|S2|

|R2|

)δ+1/2

(|R2|
−1diam(R2 ∪ S2))

−N

≤ C

(
|S|

|R|

)δ+1/2 ∏

i=1,2

(|Ri|
−1diam(Ri ∪ Si))

−N

which is no larger than the desired bound.
This proves that we can make the assumption ψ1,2((t1, 0), x) = 0. Now we prove

that ψ1,2 is adapted to (R1 × S2)× (R1 × S2) with constant

(5.6) C

(
|S1|

|R1|

)εN (
|R1|

−1diam(R1, S1)
)−εN

|R2|
−3/2|S2|(|R2|

−1diam(R2, S2))
−N

We only prove that, in (R1 × S2) × (R1 × S2), the function |ψ1,2(t, x)| is bounded
appropriately. As before, with the extra assumption we have

|ψ1,2(t, x)| =
∣∣∣
∫ t2

0

∂t2ψ1,2(t, x) dt
∣∣∣ ≤ C|t2|‖∂t2ψ1,2(t1, ·, x)‖∞ ≤ C|S2|‖∂t2ψ1,2(t1, ·, x)‖∞

and by definition of a bump function

‖∂t2ψ1,2(t1, ·, x)‖∞ ≤ C|R2|
−3/2(|R2|

−1diam(R2 ∪ S2))
−ND|S2|Φ(t2)φ(t1, x)

where, φ is a L2-normalized bump function adapted to R1 × (S1 × S2). This implies
that ψ1,2 can be bounded by

C|S2||R2|
−3/2(|R2|

−1diam(R2 ∪ S2))
−ND|S2|Φ(t2)φ(t1, x)

Moreover, by the factor 1−Φλ1S1
of ψ1,2 and Lemma 5.1, we can assume φ to be adapted

to R1×(R1×S2) with a gain of constant of at most C(|S1|/|R1|)εN (|R1|−1diam(R1, S1))
−εN .

proving the bound (5.6). Similar work for the derivatives shows the claim that ψ1,2 is
adapted to (R1 × S2)× (R1 × S2) with the constant stated in (5.6).

Then, by the weak boundedness property of Λ we finally get

|Λ(ψ1,2)| ≤ C

(
|S1|

|R1|

)εN (
|R1|

−1diam(R1 ∪ S1)
)−εN |S2|

|R2|3/2
(|R2|

−1diam(R2∪S2))
−N |S2|

1/2

= C

(
|S1|

|R1|

)εN (
|R1|

−1diam(R1 ∪ S1)
)−εN

(
|S2|

|R2|

)3/2

(|R2|
−1diam(R2 ∪ S2))

−N
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Notice that the factor |S2|1/2 at the end of first inequality comes from the L∞ normal-
ization of D|S2|Φ.

e) We now consider ψ1,3(t, x) = ψ(t, x)(1−Φλ1S1
(x1))Φλ2S2

(x2)(1−Φµ2R̃2
(t2)) which

will be work out by the use of weak boundedness and the kernel representation.
By lemma 5.1 in the variable x1, we have that ψ1,3 is adapted to (R1×R2)×(R1×S2)

with a gain in the constant of at least

C

(
|S1|

|R1|

)εN (
|R1|

−1diam(R1 ∪ S1)
)−εN

This way we can assume ψ1,3(t, x) = φR1
(t1)φR2

(t2)ϕR1
(x1)ψS2

(x2) with ψS2
of zero

mean. Moreover, on the support of ψ2 we have that |t2| > C−1diam(S2 ∪ R2) while
|x2| < C|S2|1−εdiam(R2∪S2)ε. This implies |x2| < |t2| and so by the integral represen-
tation of the restricted operator T 2

t2,x2
, we have

Λ(ψ1,3) =

∫
φR2

(t2)ψS2
(x2)〈T

2
t2,x2

(φR1
), ϕR1

〉 dt2dx2

Using the mean zero of ψS2
we obtain for the above integral

∫
φR2

(t2)ψS2
(x2)〈(T

2
t2,x2

− T 2
t2,0)(φR1

), ϕR1
〉 dt2dx2

Since 2|x2| < |t2|, by the mixed WB-CZ property of Λ and the gain in the constant,
we estimate the integral by

(5.7)

∫
|ψR2

(t2)||ψS2
(x2)|C

( |S1|

|R1|

)εN
(|R1|

−1diam(R1 ∪ S1))
−εN |x2|δ

|t2|1+δ
dt2dx2

which, using the restriction on the variables, we bound by

C
( |S1|

|R1|

)εN
(|R1|

−1diam(R1 ∪ S1))
−εN

|S2|
(1−ε)δdiam(R2, S2)

εδdiam(S2 ∪R2)
−(1+δ)‖ψR2

ψS2
‖L1(R2)

≤ C
( |S1|

|R1|

)εN−1/2 ∏

i=1,2

(|R1|
−1diam(R1 ∪ S1))

−εN

|S2|
(1−ε)δdiam(R2 ∪ S2)

εδdiam(S2 ∪ R2)
−(1+δ)|R2|

1/2|S2|
1/2

= C
( |S1|

|R1|

)εN
(|R1|

−1diam(R1∪S1))
−εN

( |S2|

|R2|

)(1/2+(1−ε)δ)
(|R2|

−1diam(R2∪S2))
−(1+(1−ε)δ)

f) The last term we work with is ψ2,3(t, x) = ψ(t, x)ΦλS(x)Φµ1R̃1
(t1)(1 − Φµ2R̃2

(t2))
by using the special cancellation and the kernel representation.

As before, we first impose the extra assumption ψ2,3((0, t2), x) = 0 for any t2 ∈ R,
x ∈ R2. The assumption comes the substitution

ψ̃2,3(t, x) = ψ2,3(t, x)−D|R1|Φ(t1)ψ2,3((0, t2), x)
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and we again need to prove that the substracted term satisfies the stated bounds.
We know that ψ2,3 is adapted to R × S. But due to the constant coordinate in

the variable t1 we have by Lemma 5.2 applied in the variable t1 that the function
D|R1|Φ(t1)ψ2,3((0, t2), x) is also adapted to R× S with a gain of constant of at least

|R1|
−1/2(|R1|

−1diam(R1 ∪ S1))
−N

Then, we can then writeD|R1|Φ(t1)ψ2,3((0, t2), x) = φS1
(0)D|R1|Φ(t1)φR2

(t2)ψS1
(x1)ψS2

(x2)
where φR1

is a bump function adapted to R1 and φR2
, ψS2

are bump functions supported
and adapted to R2, S2 respectively, such that ψS2

has mean zero and R2 ∩ S2 = ∅.
This way, by the special cancellation condition Λ(1⊗φR2

, ψS1
⊗ψS2

) = 0, the explicit
estimate of Lemma 4.3 and the gain in the constant, we have that

|Λ(φS1
(0)D|R1|Φ⊗ φR2

⊗, ψS1
⊗ ψS2

)|

= |Λ(φS1
(0)D |R1|

|S1|
|S1|

Φ⊗ φR2
, ψS1

⊗ ψS2
)− Λ(1⊗ φR2

, ψS1
⊗ ψS2

)|

≤ C|R1|
−1/2(|R1|

−1diam(R1∪S1))
−N

(
|R1|

|S1|

)−δ ( |S2|

|R2|

)1/2+δ′ ( diam(R2 ∪ S2)

max(|R2|, |S2|)

)1+δ′

‖ψS1
‖1

≤ C|R1|
−1/2(|R1|

−1diam(R1∪S1))
−N

(
|S1|

|R1|

)δ ( |S2|

|R2|

)1/2+δ′ ( diam(R2 ∪ S2)

max(|R2|, |S2|)

)1+δ′

|S1|
1/2

= C

(
|S1|

|R1|

)δ+1/2

(|R1|
−1diam(R1 ∪ S1))

−N
( |S2|

|R2|

)(1/2+δ′)
(|R2|

−1diam(R2 ∪ S2))
−(1+δ′)

which is no larger than the desired bound.
Now with the assumption ψ2,3((0, t2), x) = 0, we can show that ψ2,3 is adapted to

(S1 × R2) × (S1 × S2) with constant C|R1|−3/2|S|(|R1|−1diam(R1 ∪ S1))−N . We only
prove that, ψ2,3 satisfies the necessary bound in (R1 × S2) × (S1 × S2). This follows
from

|ψ2,3(t, x)| =
∣∣∣
∫ t1

0

∂t1ψ2,3(t, x) dt
∣∣∣ ≤ C|t1|‖∂t1ψ2,3((·, t2), x)‖∞ ≤ C|S1|‖∂t1ψ2,3((·, t2), x)‖∞

and by the definition of a bump function

‖∂t1ψ2,3((·, t2), x)‖∞ ≤ C|R1|
−3/2(|R1|

−1diam(R1 ∪ S1))
−ND|S1|Φ(t1)φ(t2, x)

where φ is an L2-normalized bump function adapted to R2 × S. This implies that

|ψ2,3(t, x)| ≤ C|S1||R1|
−3/2(|R1|

−1diam(R1 ∪ S1))
−ND|S1|Φ(t1)φ(t2, x)

Analogous estimates work for the derivatives.
This way we can assume ψ2,3(t, x) = φS1

(t1)φR2
(t2)ψS1

(x1)ψS2
(x2) with bump func-

tions adapted to the corresponding intervals and ψSi
of zero mean. Moreover, in the

support of ψ2,3 we have that |t2| > C−1diam(S2 ∪ R2) while |x2| < C|S2|1−εdiam(R2 ∪
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S2)ε. This implies |x2| < |t2| and so by the integral representation of the restricted
operator T 2

t2,x2
we have

Λ(ψ2,3) =

∫
φR2

(t2)ψS2
(x2)〈T

2
t2,x2

(φS1
), ψS1

〉 dt2dx2

Using the mean zero of ψS2
we obtain for the above integral

∫
φR2

(t2)ψS2
(x2)〈(T

2
t2,x2

− T 2
t2,0)(φS1

), ψS1
〉 dt2dx2

Since 2|x2| < |t2|, by the mixed WB-CZ property we can bound this by
∫

|ψR2
(t2)||ψS2

(x2)|C|S1||R1|
−3/2(|R1|

−1diam(R1 ∪ S1))
−N |x2|δ

|t2|1+δ
dt2dx2

and using the restriction on the variables we can estimate as we did from (5.7) by

C
( |S1|

|R1|

)3/2
(|R1|

−1diam(R1 ∪ S1))
−N

( |S2|

|R2|

)(1/2+(1−ε)δ)
(|R2|

−1diam(R2 ∪ S2))
−(1+(1−ε)δ)

We end the proof of Proposition 5.3 by dealing with the error terms. We only
check that the factors c51(t, x2) = c1(t, x2)Φλ1S1

(x1)(1 − Φλ2S2
(x2)) and c53(t, x1) =

c3(t, x1)Φλ2S2
(x2) are small enough being analogous all the other ones. In a similar

way we obtained equality (5.4), we now have

c3(t, x1) = −c|S2|
−1

∫
ψout(t, x)(1− Φλ2S2

(x2))dx2

and so
∫
c3(t, x1)dx1 = 0. Since also

∫
ψ1,1(t, x)dx1 = 0 we have

c1(t, x2)(1−Φλ2S2
(x2))

∫
Φλ1S1

(x1)dx1 = −(1−Φλ2S2
(x2))

∫
ψ(t, x)(1−Φλ1S1

(x1))dx1

and thus

|c1(t, x2)|λ1|S1| ≤

∫

|x1|>λ1|S1|

|ψ(t, x)|dx1

≤ C|S1|
−1/2

∫

|x1|>λ1|S1|
(1 + |S1|

−1|x1|)
−Ndx1 φ(t, x2)

≤ Cλ1
−N |S1|

1/2 φ(t, x2)

that is,

|c1(t, x2)| ≤ Cλ1
−N |S1|

−1/2 φ(t, x2)

where φ is a L2-normalized bump function adapted to R× S2. With this we have that

|c1(t, x2)Φλ1S1
(x1)| ≤ Cλ−N

1 φ(t, x2)|S1|
−1/2Φλ1S1

(x1)
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with |S1|−1/2Φλ1S1
a bump function L2-adapted to S1. By lemma 5.1, this shows that

|c1(t, x2)Φλ1S1
(x1)(1− Φλ2S2

(x2))| is adapted to R× R with a gain of constant of

Cλ−N
1

( |S2|

|R2|

)εN
(|R2|

−1diam(R2 ∪ S2))
−εN

and by the definition of λi this equals

C(|S1|
−1diam(R1 ∪ S1))

−εN
( |S2|

|R2|

)εN

(|R2|
−1diam(R2 ∪ S2))

−εN

= C
( |S|
|R|

)εN ∏

i=1,2

(|Ri|
−1diam(Ri ∪ Si))

−εN

which is smaller than the required bounds.
Symmetrically we have that since also

∫
ψ1,1(t, x)dx2 = 0,

c3(t, x1)

∫
Φλ2S2

(x2)dx2 = −(1− Φλ1S1
(x1))

∫
ψ(t, x)(1− Φλ2S2

(x2))dx2

−Φλ1S1
(x1)

∫
c1(t, x2)(1− Φλ2S2

(x2))dx2

The first term in the right hand side can be treated in a similar way we did before and
obtain

|(1− Φλ1S1
(x1))

∫
ψ(t, x)(1− Φλ2S2

(x2))dx2| ≤ Cλ2
−N |S2|

1/2 (1− Φλ1S1
(x1))φ(t, x1)

For the second term, we use the definition of c1(t, x2) = −c|S1|−1
∫
ψ(t, x)(1−Φλ1S1

(x1))dx1

to bound by
∣∣∣
Φλ1S1

(x1)

λ1|S1|

∫ ∫
ψ(t, x)(1− Φλ1S1

(x1))dx1(1− Φλ2S2
(x2))dx2

∣∣∣

≤
Φλ1S1

(x1)

λ1|S1|

∫

|xi|>λi|Si|

|ψ(t, x)|dx1dx2

≤ C
Φλ1S1

(x1)

λ1|S1|
|S1|

−1/2|S2|
−1/2

∫

|xi|>λi|Si|

(1 + |S2|
−1|x2|)

−N(1 + |S2|
−1|x2|)

−Ndx1dx2 φ(t)

≤ C
Φλ1S1

(x1)

λ1|S1|
λ1

−Nλ2
−N |S1|

1/2|S2|
1/2 φ(t)

where φ is a L2-normalized bump function adapted to R.
Both things together imply

|c3(t, x1)|λ2|S2| ≤ Cλ2
−N |S2|

1/2 (1−Φλ1S1
(x1))φ(t, x1)+C

Φλ1S1
(x1)

λ1|S1|
λ1

−Nλ2
−N |S1|

1/2|S2|
1/2 φ(t)

and so

|c3(t, x1)| ≤ Cλ2
−N |S2|

−1/2 φ(t, x1) + Cλ1
−Nλ2

−N |S1|
−1/2|S2|

−1/2 Φλ1S1
(x1)φ(t)
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With this we have that

|c3(t, x1)Φλ2S2
(x2)| ≤ Cλ−N

2 φ(t, x1)(1− Φλ1S1
(x1))|S2|

−1/2Φλ2S2
(x2)

+Cλ1
−Nλ2

−N |S1|
−1/2Φλ1S1

(x1)|S2|
−1/2Φλ2S2

(x2)φ(t)

with |Si|−1/2ΦλiSi
a bump function L2-adapted to Si. This shows that the function is

adapted to R ×R with constant

Cλ−N
2

( |S1|

|R1|

)εN
(|R1|

−1diam(R1 ∪ S1))
−εN + Cλ−N

1 λ−N
2

where we have used Lemma 5.1 for the first term, which is analogous to the previous
case. The second one is also all right since by definition of λi we have

Cλ−N
1 λ−N

2 = C
∏

i=1,2

(|Si|
−1diam(Ri ∪ Si))

−εN

= C
( |S|
|R|

)εN ∏

i=1,2

(|Ri|
−1diam(Ri ∪ Si))

−εN

6. Proof of the main result

Theorem 6.1. (L2 boundedness). Let Λ be a bilinear Calderón-Zygmund form satis-
fying the mixed WB-CZ condition.

We also assume that Λ satisfies the weak boundedness condition, and the special
cancellation conditions

Λ(1, ψR ⊗ ψS) = Λ(ψR ⊗ ψS, 1) = Λ(ψR ⊗ 1, 1⊗ ψS) = Λ(1⊗ ψR, ψS ⊗ 1) = 0

for all bump functions ψR, ψS adapted to intervals R, S with mean zero and

Λ(φR⊗1, ϕR⊗ψS) = Λ(1⊗φS, ψR⊗ϕS) = Λ(ψR⊗φS, 1⊗ϕS) = Λ(φR⊗ψS , ϕR⊗1) = 0

for all bump functions φR, φS, ϕR, ϕS and all bump functions ψR, ψS with mean zero.
Then Λ0,Λ1,Λ2 are bounded bilinear forms on L2.

Proof. Because of the symmetry on the hypothesis it is clear that we only need to prove
the result for Λ. We decompose the frequency plane in the standard way to obtain first
a Littlewood-Paley decompositon and later a wavelet decomposition.

Let φ ∈ S(R) be an even function such that φ̂ is supported in {ξ ∈ R : |ξ| ≤ 2} and
equals 1 on {ξ ∈ R : |ξ| ≤ 1}. Let ψ be the function ψ(x) = φ(x) − φ(x/2). Then ψ̂
is supported on the annulus {ξ ∈ R : 2−1 ≤ |ξ| ≤ 2} and moreover

∑
k∈Z ψ̂(ξ/2

k) ≈ 1,
for all ξ /= 0. We define the Littlewood-Paley projection operators in R given by
Pk(f) = f ∗ D1

2−kψ and P≤k(f) = f ∗ D1
2−kφ. We observe that limk→∞ P≤k(f) = f

while limk→∞ P≤−k(f) = 0 where in both cases the convergence is understood in the
topology of S(R).

We consider now their counterparts in the biparameter case: for k ∈ Z2,

Pk(f) = f ∗ (D1
2−k1ψ ⊗D1

2−k2ψ) P≤k1,k2(f) = f ∗ (D1
2−k1φ⊗D1

2−k2ψ)

Pk1,≤k2(f) = f ∗ (D1
2−k1

ψ ⊗D1
2−k2

φ) P≤k(f) = f ∗ (D1
2−k1

φ⊗D1
2−k2

φ)
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which satisfy limk→∞ P≤k(f) = f in the topology of S(R2) while the other three oper-
ators tend to zero in the same sense.

For N ∈ N, let ΛN be the bilinear form given by

ΛN(f, g) =
∑

|ki|,|ji|≤N

Λ(Pjf, Pkg)

where k, j ∈ Z2. We see that for all f, g ∈ S(R2) we have Λ(f, g) = limN→∞ ΛN(f, g):
unfolding the sum in ΛN , we have

ΛN(f, g) = Λ(P≤(N,N)f, P≤(N,N)g)− Λ(P≤(−(N−1),−(N−1))f, P≤(N,N)g)

−Λ(P≤(N,N)f, P≤(−(N−1),−(N−1))g) + Λ(P≤−(N−1,N−1)f, P≤−(N−1,N−1)g)

and by the continuity of Λ we have that the first term tends to Λ(f, g) while the other
three tend to zero.

Let us now consider the family of intervals ωki = [−2ki+1,−2ki−1] ∪ [2ki−1, 2ki+1].
Since Pk(f) has Fourier support in ωk = ωk1 × ωk2, we have by Shannon’s sampling
theorem that

Pk(f) =
∑

R

〈f, ψR, ωk
〉ψR, ωk

where the sum runs over all dyadic rectangles R = R1 × R2 such that |Ri| = |ωki|
−1

and the convergence is understood in the topology of S(R2). Moreover, the functions
ψR, ωk

satisfy that ψR, ωk
= ψR1, ωk1

⊗ψR2, ωk2
where ψRi, ωki

are Schwartz functions such

that supp ψ̂Ri, ωki
⊂ ωki and e−2πic(ωki

)ψRi, ωki
are bump functions adapted to Ri. From

now we drop the index ωk in the notation of ψR.
Then by continuity of Λ in S(R2), we can write

Λ(f, g) =
∑

k,j

Λ(Pjf, Pkg) =
∑

R,S

〈f, ψR〉〈g, ψS〉Λ(ψR, ψS)

where now the sums run over the whole family of dyadic rectangles in R2. From now
we work to obtain bounds of the last expression when the sum runs over finite families
of dyadic rectangles in such way that the bounds are independent of the particular
families of rectangles. Because of the rate of decay of Corollary 5.4, we parametrize
the sums according to eccentricities and relative positions of the rectangles:

∑

R,S

〈f, ψR〉〈g, ψS〉Λ(ψR, ψS) =
∑

i=1,2

∑

ei∈Z

∑

mi∈N

∑

R

∑

S ∈ Re,m

〈f, ψR〉〈g, ψS〉Λ(ψR, ψS)

where for fixed eccentricities ei, relative distances mi and every given rectangle R, we
define the family

Re,m = {S : |Ri| = 2ei|Si|, mi ≤ max(|Ri|, |Si|)
−1diam(Ri ∪ Si) < mi + 1 for i = 1, 2}

Notice that by symmetry the product family {(R, S) : S ∈ Re,m} can be also parame-
terized as {(R, S) : R ∈ S−e,m} with analogous definition for S−e,m.
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We denote by
∑

P the three first sums over parameters. By Lemma 5.3 and Cauchy’s
inequality, we bound the previous quantity by

∑

P

∑

R

∑

S ∈ Re,m

|Λ(ψR, ψS)||〈f, ψR〉||〈g, ψS〉|

!
∑

P

∑

R

∑

S ∈ Re,m

2−(|e1|+|e2|)(1/2+δ)(m1m2)
−(1+δ)|〈f, ψR〉||〈g, ψS〉|

≤
∑

P

2−|e1+e2|(1/2+δ)(m1m2)
−(1+δ)

(∑

R

∑

S∈Re,m

|〈f, ψR〉|
2
)1/2(∑

S

∑

R∈S−e,m

|〈g, ψS〉|
2
)1/2

Now, for every fixed Ri and each mi ∈ N there are 2max(ei,0) dyadic intervals Si such
that |Ri| = 2ei|Si| and mi ≤ max(|Ri|, |Si|)−1diam(Ri∪Si) < mi+1. This implies that
the cardinal of Rei,mi

is 2max(e1,0)2max(e2,0). For the same reason, the cardinal of S−e,m

is 2max(−e1,0)2max(−e2,0) = 2−min(e1,0)2−min(e2,0). Then previous expression coincides with
∑

P

2−|e1+e2|(1/2+δ)(m1m2)−(1+δ)
(
2max(e1,0)2max(e2,0)

∑

R

|〈f, ψR〉|
2
)1/2

(
2−min(e1,0)2−min(e2,0)

∑

S

|〈g, ψS〉|
2
)1/2

≤
∏

i=1,2

∑

ei∈Z

2−|ei|(1/2+δ)2max(ei,0)/22−min(ei,0)/2
∑

mi∈N

m−(1+δ)
i ‖f‖2‖g‖2

=
(∑

e∈Z

2−|e|δ
∑

m∈N

m−(1+δ)
)2
‖f‖2‖g‖2

since 2max(ei,0)2−min(ei,0) = 2|ei|.

7. Extension to Lp spaces

As said in the introduction, the weak L1 estimates are no longer true in the multi-
parameter case. So, in order to prove Lp bounds we cannot apply to our operator the
classical method of interpolating between L2 and the weak L1 estimates. Instead, we
follow the steps of the previous proof and perform again a decomposition of the dual pair
which will be controlled by multi-parameter square functions whose Lp boundedness
follows from weak L1 bounds in the uni-parameter case.

Definition 7.1. Given a L2(R2)-normalized basis (ψR)R, we define the double square
function by

SS(f) =
(∑

R

|〈f, ψR〉|2

|R|
χR

)1/2

where the sum runs over all dyadic rectangles R in R2.
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See [6] and specially [17] for a proof of boundedness of SS on Lp(R2) with 1 < p < ∞.

We also need to consider the following modified double square function

Definition 7.2. Let k ∈ Z2, n ∈ N2. For every dyadic rectangle, R, we select a unique
dyadic rectangle S such that |Ri| = 2ki|Si| and ni ≤

diam(Ri∪Si)
max(|Ri|,|Si|)

< ni + 1. Then, with
such a choice, we define

SSk,n(f)(x) =
(∑

R

〈f, ψR〉2

|S|
χS(x)

)1/2

Obviously what we are defining here is a family of operators depending on the partic-
ular choice of the rectangles S. However, we will see that their bounds are independent
of this particular choice. Moreover, we notice that the choice does not depend on the
point x. The double square function corresponds to the values ki = 0, ni = 1.

We state in the proposition below boundedness of this modified square function. Its
proof follows directly from the analogous result in the uni-parameter case and so, for
the sake of completeness, at the end of the paper we include an appendix in which a
proof of this result in the uni-parameter case can be found (see Proposition 9.3).

Proposition 7.3. For every 1 < p < ∞,

‖SSk,n(f)‖Lp(R2) ≤ Cp

∏

i=1,2

(2−ki sign(
2
p
−1) log(ni) + 1)|

2
p
−1|‖f‖Lp(R2)

Proof. Given k ∈ Z2 and n ∈ N2, let TTk,n be the operator defined by

TTk,n(f)(x) =
∑

S

〈f, ψR〉ψS(x)

where the relationship between R and S is the same one given in the definition of the
modified square function. Now we see that the double square function of TTk,n(f)
coincides with SSk,n(f):

SS(TTk,n(f))(x) =
(∑

S

〈f, ψR〉2

|S|
χS(x)

)1/2
=

(∑

R

〈f, ψR〉2

|S|
χS(x)

)1/2
= SSk,n(f)(x)

and so
‖SSk,n(f)‖Lp(R2) = ‖SS(TTk,n(f))‖Lp(R2) ≈ ‖TTk,n(f)‖Lp(R2)

Moreover, by linearity

TTk,n(f)(x) =
∑

S

〈f, ψR〉ψS(x) =
∑

S1

〈
∑

S2

〈f, ψR2
〉ψS2

(x2), ψR1
〉ψS1

(x1)

= Tk1,n1
(Tk2,n2

(f)(·, x2))(x1)

where Tki,ni
(g) is defined in the obvious way

Tki,ni
(g)(xi) =

∑

Ri

〈g, ψRi
〉ψSi

(xi)
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while Tk2,n2
(f)(x1, x2) = Tk2,n2

(fx1
)(x2) and fy1(y2) = f(y1, y2).

Proposition 9.3 gives us the boundedness result in the uni-parameter case,

‖Tki,ni
(f)‖Lp(R) ≤ Cp‖Ski,ni

(f)‖Lp(R) ≤ Cp(2
−kisni + 1)|

2
p
−1|‖f‖Lp(R)

where s = sign(2p − 1). Then, we have

‖TTk,n(f)‖Lp(R2) =
(∫

R
‖Tk1,n1

(Tk2,n2
(f)(·, x2))‖

p
Lp(R)dx2

)1/p

≤
(∫

R

Cp
p (2

−k1sn1 + 1)|
2
p
−1|p‖Tk2,n2

(f)(·, x2)‖
p
Lp(R)dx2

)1/p

= Cp(2
−k1sn1 + 1)|

2
p
−1|

(∫

R

‖Tk2,n2
(f)(x1, ·)‖

p
Lp(R)dx1

)1/p

= Cp(2
−k1sn1 + 1)|

2
p
−1|

(∫

R

‖Tk2,n2
(fx1

)‖pLp(R)dx1

)1/p

≤ Cp(2
−k1sn1 + 1)|

2
p
−1|

(∫

R

Cp
p (2

−k2sn2 + 1)|
2
p
−1|p‖fx1

‖pLp(R)dx1

)1/p

= Cp(2
−k1sn1 + 1)|

2
p
−1|(2−k2sn2 + 1)|

2
p
−1|‖f‖Lp(R2)

Now we turn to the main result of this section.

Theorem 7.4. (Lp boundedness). Let Λ be a bilinear Calderón-Zygmund form satis-
fying the mixed WB-CZ condition.

We also assume that Λ satisfies the weak boundedness condition, and the special
cancellation conditions

Λ(1, ψR ⊗ ψS) = Λ(ψR ⊗ ψS, 1) = Λ(ψR ⊗ 1, 1⊗ ψS) = Λ(1⊗ ψR, ψS ⊗ 1) = 0

for all bump functions ψR, ψS adapted to intervals R, S with mean zero and

Λ(φR⊗1, ϕR⊗ψS) = Λ(1⊗φS, ψR⊗ϕS) = Λ(ψR⊗φS, 1⊗ϕS) = Λ(φR⊗ψS , ϕR⊗1) = 0

for all bump functions φR, ϕS and all bump functions ψR with mean zero.
Then Λ0,Λ1,Λ2 are bounded bilinear forms on Lp.

Proof. Again, we prove the result only for Λ. As in previous theorem, we use a L2-
normalized wavelet expansion of the functions appearing in the dual pair, we parame-
trize the terms accordingly with eccentricity and relative distances in exactly the same
way and we apply Lemma 5.4 to obtain

|Λ(f, g)| ≤
∑

R,S

|Λ(ψR, ψS)||〈f, ψR〉||〈g, ψS〉|

≤ C
∑

i=1,2

∑

ei∈Z

∑

mi∈N

2−|e1+e2|(1/2+δ)(m1m2)
−(1+δ)

∑

(R, S) ∈ Pe,m

|〈f, ψR〉||〈g, ψS〉|

where Pe,m is the set of pairs of dyadic rectangles (R, S) such that |Ri| = 2ei|Si| and
ni ≤

diam(Ri∪Si)
max(|Ri|,|Si|)

< ni + 1. Notice that (R, S) ∈ Pe,m if and only if (S,R) ∈ P−e,m.
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Now, we denote by K = K1×K2 the rectangle minimum, that is, such that Ki = Ri

if |Ri| ≤ |Si| and Ki = Si otherwise. This way, the inner sum can be rewritten as
∑

(R, S) ∈ Pe,m

∫

R2

|〈f, ψR〉|

|K|1/2
|〈g, ψS〉|

|K|1/2
χK(x)dx

(7.1) ≤

∫

R2

( ∑

(R, S) ∈ Pe,m

|〈f, ψR〉|2

|K|
χK(x)

)1/2( ∑

(S,R) ∈ P−e,m

|〈g, ψS〉|2

|K|
χK(x)

)1/2
dx

In order to build up the modified square functions, we denote by k, k′ ∈ Z2 the
scale parameters ki = max(ei, 0), k′

i = −min(ei, 0) and by n, n′ ∈ Z2 the translation
parameters ni = mi, n′

i = 1 if ei ≥ 0 while ni = 1, n′
i = mi if ei ≤ 0. Notice that

2max(ei,0)2−min(ei,0) = 2|ei| and nin′
i = mi.

We show how to bound the first factor. By the choice of K we have that |Ri|, |Si| ≥
|Ki|. If ki ≥ 0 then Ki = Ri and there is nothing to show. So, we may assume ki ≤ 0
and K = S in which case

S̃k,n(f)(x) =
( ∑

(R,S)∈Pk,n

〈f, ψR〉2

|S|
χS(x)

)1/2

=
(∑

R

〈f, ψR〉
2

∑

S
(R, S) ∈ Pk,n

χS(x)

|S|

)1/2

=
(∑

R

〈f, ψR〉
2 χS̃(x)

2−k|S̃|

)1/2

= 2(k1+k2)/2SS0,n(f)(x)

where S̃ is the dyadic rectangle such that |S̃i| = |Ri| and |Ri|−1diam(S̃i ∪ Ri) = ni.
This implies that expression 7.1 is equal to

∫

R2

2max(e1,0)/22max(e2,0)/2SS0,n(f)(x)2
−min(e1,0)/22−min(e2,0)/2SS0,n′(g)(x)dx

≤ 2(|e1|+|e2|)/2‖SS0,n(f)‖Lp(R2)‖SS0,n′(g)‖Lp′(R2)

According to the boundedness of the modified double square functions given by Propo-
sition 7.3, this can be bounded by

Cp 2
(|e1|+|e2|)/2

∏

i=1,2

(log(ni) + 1)|
2
p
−1|(log(n′

i) + 1)|
2
p
−1|‖f‖Lp(R2)‖g‖Lp′(R2)

= Cp 2
(|e1|+|e2|)/2

∏

i=1,2

(log(mi) + 1)|
2
p
−1|‖f‖Lp(R2)‖g‖Lp′(R2)

≤ Cp 2
(|e1|+|e2|)/2

∏

i=1,2

m
ε| 2

p
−1|

i ‖f‖Lp(R2)‖g‖Lp′(R2)

Then, putting everything back together, we have

|Λ(f, g)| ≤ Cp

∑

i=1,2

∑

ei∈Z

∑

mi∈N

2−(|e1|+|e2|)(1/2+δ)(m1m2)
−(1+δ)2(|e1|+|e2|)/2(m1m2)

ε| 2
p
−1|
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= Cp

∏

i=1,2

∑

ei∈Z

2−|ei|δ
∑

mi∈N

m
−(1+δ−ε| 2

p
−1|)

i ‖f‖Lp(R2)‖g‖Lp′(R2) ≤ Cp‖f‖Lp(R2)‖g‖Lp′(R2)

as long as ε|2p − 1| < 1 + δ.

8. The general case: different types of paraproducts

We devote this last section to the extension of the previous theorems to the general
case, that is, the proof of boundedness for singular integral operators that do not
satisfy the special cancellation properties. As in the classical case, this is done by
constructing appropriate paraproducts. But in the multiparametric case, the process
is be more involved not only because we need more paraproducts (three different types
in total) but also because these paraproducts can not be independent each other.

In particular, let bi with i = 1, . . . , 4, be four functions in BMO(R2) and bi with
i = 5, . . . , 8, be four functions in BMO(R). Let also Λ be a bilinear form satisfying the
hypotheses of Theorem 2.9 such that Λ(1⊗1, ·) = b1 Λ(·, 1⊗1) = b2, Λ(·⊗1, 1⊗·) = b3,
Λ(1⊗ ·, · ⊗ 1) = b4, Λ(1⊗ ·, · ⊗ ·) = b5 and so on.

In order to prove boundedness of Λ, we construct eight bilinear forms Λi organized in
three different groups in such a way that their associated linear operators are bounded
and moreover they recover the functions bi, in the sense that for example Λb1(1⊗1, ·) =
b1, while the bilinear form vanishes in all other possible cases, namely, Λb1(·, 1⊗ 1) =
Λb1(· ⊗ 1, 1 ⊗ ·) = 0 and so on. As we will see, the last type four paraproducts will
be construct not only using the functions bi but also certain values of the previously
constructed paraproducts evaluated over the function 1.

This way the bilinear form ΛT = Λ −
∑

i Λbi satisfies the eight special cancellation
hypotheses of Corollary 5.4 and so, by applying the corollary, we deduce that ΛT is
bounded. Moreover, since every Λi is also bounded by construction, we finally obtain
boundedness of the initial form Λ.

Before we start with the construction of paraproducts, we present a lemma that in
some way shows that the sufficient conditions we have used in the main theorem are the
right ones, while it also justifies the paraproducts we will define later on. For the sake
of simplicity, we write the proof only for operators that preserve the space support,
since then the error terms are zero and then the expression can be written by means
of the Haar basis.

Let (hI)I the Haar basis in R defined by hI = |I|−1/2χIl − |I|−1/2χIr where Il and Ir
are the children intervals of I. Let (hR)R the Haar basis in R2 defined by hR = hR1

⊗hR2
.

Lemma 8.1. Let T : C∞
0 (R2) → C be a linear mapping continuous with respect to the

topology in C∞
0 (R2), such that supp T (f) ⊂ supp f . Then

〈T (f), g〉 =
∑

R

〈f, hR〉〈g, hR〉〈T (hR), hR〉

+
〈∑

R

〈f, h2
R〉〈g, hR〉hR , T (1)

〉
+
〈∑

R

〈f, hR〉〈g, h
2
R〉hR , T ∗(1)

〉
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+
〈∑

R

〈f, hR1
h2
R2
〉〈g, h2

R1
hR2

〉hR , T1(1)
〉
+
〈∑

R

〈f, h2
R1
hR2

〉〈g, hR1
h2
R2
〉hR , T ∗

1 (1)
〉

+
∑

R

〈f, hR1
h2
R2
〉〈g, hR1

hR2
〉〈T (hR1

⊗1), hR〉+
∑

R

〈f, hR1
hR2

〉〈g, hR1
h2
R2
〉〈T ∗(hR1

⊗1), hR〉

+
∑

R

〈f, h2
R1
hR2

〉〈g, hR1
hR2

〉〈T (1⊗hR2
), hR〉+

∑

R

〈f, hR1
hR2

〉〈g, h2
R1
hR2

〉〈T ∗(1⊗hR2
), hR〉

Remark 8.1. The formula for more general operators includes some error terms whose
contribution is smaller than the one described in previous statement.

Let (ψR)R be a wavelet basis in R2 and for every rectagle R, let ψ2
R be a bump

function L1-adapted to R and mean one. Then, such general formula can be stated in
the following way

〈T (f), g〉 =
∑

n∈Z2

( ∑

R

〈f, ψR〉〈g, ψRn〉〈T (ψR), ψRn〉

+
〈∑

R

〈f, ψ2
R〉〈g, hRn〉ψR , T (1)

〉
+ . . .

+
∑

R

〈f, ψR1
ψ2
R2
〉〈g, ψRn

1
ψRn

2
〉〈T (ψR1

⊗ 1), ψRn〉+ . . .
)

where Rn
i = Ri + ni|Ri|. The leading term is associated with n = 0, which is the one

appearing in the statement of the lemma.

Proof. Since supp T (hR) ⊂ supp hR = R we have

〈T (f), g〉 =
∑

R∩S +=∅

fRgS〈T (hR), hS〉

where fR = 〈f, hR〉 and the same for the function g.
Now, given two dyadic rectangles R, S such that R ∩ S /= ∅ there are only nine

different possibilities, namely,

1) R = S, which leads to 〈T (hR), hR〉
2) R ⊂ S, which gives T ∗(1)
3) S ⊂ R, which analogously gives T (1)
4) R < S, meaning R1 ⊂ S1 and R2 ⊂ S2, which leads to T1(1) = T ∗

2 (1)
5) S < R, meaning R1 = S1 and R2 ⊂ S2, which leads to T ∗

1 (1) = T2(1)
6) R1 = S1 and S2 ⊂ R2, which leads to 〈T (hR1

⊗ 1), hR1
⊗ hR2

〉
7) R1 = S1 and R2 ⊂ S2, which leads to 〈T (hR1

⊗ hR2
), hR1

⊗ 1〉
8) S1 ⊂ R1 and R2 = S2, which leads to 〈T (1⊗ hR2

), hS1
⊗ hR2

〉
9) R1 ⊂ S1 and R2 = S2, which leads to 〈T (hR1

⊗ hR2
), 1⊗ hR2

〉

Then the decomposition of 〈T (f), g〉 is obtained as follows: from 1) we get directly
the first term ∑

R

fRgR〈T (hR), hR〉
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From 2) and 3) we get the two following terms (we only write the second one)
∑

R

∑

R⊂S

fRgS〈T (hR), hS〉 =
∑

R

fR〈T (hR),
(∑

R⊂S

gS hS

)
χR)〉

=
∑

R

fR〈T (hR), mR(g)〉 =
∑

R

fR mR(g)〈T (hR), 1〉 =
∑

R

fR mR(g)〈hR, T
∗(1)〉

=
〈∑

R

fR mR(g)hR, T
∗(1)

〉

where we write mR(g) =
(∑

R⊂S gS hS

)
χR = 〈g, h2

R〉 = |R|−1
∫
R g(x)dx.

On the other hand, from 4) and 5) and using the partial adjoints Ti we get the two
following ones (we only write the fourth one)

∑

R

∑

R<S

fRgS〈T (hR), hS〉 =
∑

R

∑

R<S

fRgS〈T2(hR1
⊗ hS2

), hS1
⊗ fR2

〉

=
∑

R1,S2

〈
T2(hR1

⊗ hS2
),
( ∑

R1⊂S1,S2⊂R2

fRgShS1
⊗ hR2

)
χR1×S2

〉

=
∑

R1,S2

〈
T2(hR1

⊗ hS2
),
( ∑

R1⊂S1

(gS2
)S1

hS1

)
⊗

( ∑

S2⊂R2

(fR1
)R2

hR2

)
χR1×S2

〉

=
∑

R1,S2

〈T2(hR1
⊗ hS2

), mR1
(gS2

)mS2
(fR1

)〉 =
∑

R1,S2

mR1
(gS2

)mS2
(fR1

)〈T2(hR1
⊗ hS2

), 1〉

= 〈
∑

R1,S2

mS2
(fR1

)mR1
(gS2

)hR1
⊗ hS2

, T ∗
2 (1)〉 = 〈

∑

R

mR2
(fR1

)mR1
(gR2

)hR, T1(1)〉

From 6) 7), 8) and 9) we get the remaining terms (we only write the sixth one)
∑

S

∑

R1=S1,S2⊂R2

fRgS〈T (hR), hS〉 =
∑

S

∑

R1=S1,S2⊂R2

fRgS〈hR, T
∗(hS)〉

=
∑

S

gS
〈( ∑

S2⊂R2

fS1×R2
hS1×R2

)
χS2

, T ∗(hS)
〉
=

∑

S

gS
〈( ∑

S2⊂R2

〈f, hS1×R2
〉hS1

⊗hR2

)
χS2

, T ∗(hS)
〉

=
∑

S

gS
〈
hS1

⊗
( ∑

S2⊂R2

〈f, hS1×R2
〉hR2

)
χS2

, T ∗(hS)
〉
=

∑

S

gS〈hS1
⊗mS2

(fS1
), T ∗(hS)〉

=
∑

S

mS2
(fS1

)gS〈hS1
⊗ 1, T ∗(hS)〉 =

∑

S

mS2
(fS1

)gS〈T (hS1
⊗ 1), hS〉

We start now with the construction of paraproducts. We need up to eight of such
operators but by symmetry it will be enough to show only three of them. In particular,
we construct the paraproducs associated T (1), T1(1) and 〈T (ψR1

⊗ 1), ψS1
〉.

Lemma 8.2. (Classical paraproducts). Given a function b in BMO(R2), there exists a
bounded bilinear form Λ1

b such that Λ1
b(1⊗1, ·⊗·) = b, Λ1

b(·⊗·, 1⊗1) = Λ1
b(·⊗1, 1⊗·) =

Λ1
b(1⊗ ·, · ⊗ 1) = 0, Λ1

b(· ⊗ ·, 1⊗ ·) = Λ1
b(· ⊗ ·, · ⊗ 1) = 0.
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Proof. Let (ψI)I be a wavelets basis on L2(R). Let (ψR)R be the wavelets basis on
L2(R2) defined by ψR = ψR1

⊗ ψR2
. We denote by ψ2

I a bump function adapted to

I such that ψ̂2
I has compact support in a set of measure comparable with |I|−1 with

center the origin (?). Let finally ψ2
R = ψ2

R1
⊗ ψ2

R2
.

We define the bilinear form

Λ1
b(f, g) =

∑

R

〈b, ψR〉〈f, ψ
2
R〉〈g, ψR〉

which, to simplify notation, we will just denote by Λb during the proof of the lemma.
At least formally, Λb satisfies

Λb(1, g) = 〈g, b〉

Λb(f, 1) = Λb(f1 ⊗ 1, 1⊗ g2) = Λb(1⊗ f2, g1 ⊗ 1) = 0

For the proof of their boundedness we proceed by using the duality H1(R2) −
BMO(R2). Since

Λb(f, g) =
∑

R

〈b, ψR〉〈f, ψ
2
R〉〈g, ψR〉

=
〈
b,
∑

R

〈f, ψ2
R〉〈g, ψR〉ψR

〉

we have
|Λb(f, g)| ≤ ‖b‖BMO(R2)‖

∑

R

〈f, ψ2
R〉〈g, ψR〉ψR‖H1(R2)

Just assuming the sum is finite, we get that
∑

R〈f, ψ
2
R〉〈g, ψR〉ψR ∈ H1(R2) and then

‖
∑

R

〈f, ψ2
R〉〈g, ψR〉ψR‖H1(R2) ≈ ‖S(

∑

R

〈f, ψ2
R〉〈g, ψR〉ψR)‖L1(R2)

with implicit constants independent of the number of terms in the sum. Now

S
(∑

R

〈f, ψ2
R〉〈g, ψR〉ψR

)2

=
∑

R

〈f, ψ2
R1

⊗ ψ2
R2
〉2〈g, ψR1

⊗ ψR2
〉2
χR1

|R1|
⊗
χR2

|R2|

≤ sup
R

|〈f, ψ2
R1

⊗ ψ2
R2
〉|2

∑

R

〈g, ψR1
⊗ ψR2

〉2
χR1

|R1|
⊗
χR2

|R2|

= (M ⊗M)(f)2(S ⊗ S)(g)2

where M ⊗M and S ⊗ S are defined by the two previous expressions and are known
to be bounded operators on Lp(R2). Then finally

‖S(
∑

R

〈f, ψ2
R〉〈g, ψR〉ψR)‖L1(R2)

≤ ‖(M ⊗M)(f)‖Lp(R2)‖(S ⊗ S)(g)‖Lp′(R2) ≤ C‖f‖Lp(R2)‖g‖Lp′(R2)
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To end, we still need to prove that this family of operators also belong to the class of
operators for which the theory applies. In particular, we show that they have integral
representations like the ones stated in definition 2.5 with kernels satisfying the definition
of a product Calderon-Zygmund kernel 2.1. We also prove the operator satisfies the
weak boundedness Calderón-Zygmund condition stated in 2.8. From

Λb(f, g) =
∑

R

〈b, ψR〉〈f, ψ
2
R〉〈g, ψR〉 =

∫
f(t)g(x)

∑

R

〈b, ψR〉ψ
2
R(t)ψR(x)dtdx

we obtain the integral representation regardless disjointness of supports of the argument
funtions. Moreover,

K(x, t) =
〈
b,
∑

R

ψ2
R(t)ψR(x)ψR

〉

and we check the two properties of a product C-Z kernel:

|K(x, t)| ≤ ‖b‖BMO(R2)

∥∥∥
∑

R

ψ2
R(t)ψR(x)ψR

∥∥∥
H1(R2)

As before, the H1-norm is equivalent to
∥∥∥S

(∑

R

ψ2
R(t)ψR(x)ψR

)∥∥∥
L1(R2)

=

∫ (∑

R

ψ2
R(t)

2ψR(x)
2χR(y)

|R|

)1/2
dy

=
∏

i=1,2

∫ (∑

Ri

ψ2
Ri
(ti)

2ψRi
(xi)

2χRi
(yi)

|Ri|

)1/2
dyi

Let Ixi,ti be the smallest dyadic interval such that xi, ti ∈ Ixi,ti and let (Ik)k≥0 the
family of dyadic intervals such that Ixi,ti ⊂ Ik with |Ik| = 2k|Ixi,ti|. Moreover, since
|ψ2

Ri
| ≤ |Ri|−1χRi

and |ψRi
| ≤ |Ri|−1/2χRi

, both integrals previously displayed are
bounded by

∑

k≥0

∫

Ik+1\Ik

(∑

j≥k

1

|Ij |2
1

|Ij|

1

|Ij |

)1/2

dy =
∑

k≥0

(∑

j≥k

1

|Ij|4

)1/2

|Ik+1\Ik|

=
∑

k≥0

(∑

j≥k

1

24j |Ixi,ti|4

)1/2
2k|Ixi,ti | !

1

|Ixi,ti|

∑

k≥0

1

22k
2k !

1

|xi − ti|

ending the first condition. For the second one, we prove that

|∂t1∂t2K(x, t)|+ |∂t1∂x2
K(x, t)| + |∂x1

∂t2K(x, t)|+ |∂x1
∂x2

K(x, t)| ≤ C
∏

i=1,2

|xi − ti|
−2

For expository reasons we deal only with the second term

∂t1∂x2
K(x, t) =

〈
b,
∑

R

∂t1ψ
2
R1
(t1)ψ

2
R2
(t2)ψR1

(x1)∂x2
ψR2

(x2)ψR

〉

The four possible terms are not really symmetric since the averaging function ψ2
Ri

only
appear in the ti variables. So, sometimes the derivatives hit an averaging function while
some other times they do not. However, it is the presence of derivatives of wavelets
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what produces the final estimates, regardless whether it is ∂tiψ
2
Ri
(ti) or ∂xi

ψRi
(xi).

Actually, in all cases the derivatives increase by one the degree of the powers in |R|
involved and so, they have the same impact in all four terms. Let’s see this point. As
before

|∂t1∂x2
K(x, t)| ≤ ‖b‖BMO(R2)

∥∥∥
∑

R1

∂t1ψ
2
R1
(t1)ψR2

(t2)ψR1
(x1)∂x2

ψR2
(x2)ψR

∥∥∥
H1(R)

with the H1-norm equivalent to
∥∥∥S

(∑

R

∂t1ψ
2
R1
(t1)ψR2

(t2)ψR1
(x1)∂x2

ψR2
(x2)ψR

)∥∥∥
L1(R2)

=

∫

R2

(∑

R

(∂t1ψ
2
R1
(t1))

2ψR2
(t2)

2ψR1
(x1)

2(∂x2
ψR2

(x2))
2χR(y)

|R|

)1/2

dy

=

∫ (∑

R1

(∂t1ψ
2
R1
(t1))

2ψR1
(x1)

2χR1
(y1)

|R1|

)1/2
dy1

∫ (∑

R2

ψ2
R2
(t2)

2(∂x2
ψR2

(x2))
2χR2

(y2)

|R2|

)1/2
dy2

Let Ix1,t1 be the smallest dyadic interval such that x1, t1 ∈ Ix1,t1 and let (Ik)k≥0 the
family of dyadic intervals such that Ix1,t1 ⊂ Ik with |Ik| = 2k|Ix1,t1 |. Since |∂t1ψ

2
R1
(t1)| ≤

|R1|−2χR1
(t1) and |∂t2ψR2

(t2)| ≤ |R2|−3/2χR2
(t2) then, the first previous integrals can

be bounded by
∑

k≥0

∫

Ik+1\Ik

(∑

j≥k

1

|Ij |4
1

|Ij|

1

|Ij |

)1/2
dy =

∑

k≥0

(∑

j≥k

1

|Ij|6

)1/2
|Ik+1\Ik|

=
∑

k≥0

(∑

j≥k

1

26j|Ixi,ti |
6

)1/2

2k|Ixi,ti| !
1

|Ixi,ti |
2

∑

k≥0

1

23k
2k !

1

|xi − ti|2

while the second one is bounded by
∑

k≥0

∫

Ik+1\Ik

(∑

j≥k

1

|Ij |2
1

|Ij|3
1

|Ij|

)1/2

dy =
∑

k≥0

(∑

j≥k

1

|Ij |6

)1/2

|Ik+1\Ik| !
1

|xi − ti|2

This way,

|∂t1∂x2
K(x, t)| ! ‖b‖BMO(R2)

1

|x1 − t1|2
1

|x2 − t2|2

On the other hand, we also have

Λb(f1 ⊗ f2, g1 ⊗ g2) =

∫
f1(t1)g1(x1)

∑

R

〈b, ψR〉〈f2, ψ
2
R2
〉〈g2, ψR2

〉ψ2
R1
(t1)ψR1

(x1)dt1dx1

and we obtain the integral representation regardless disjointness of supports of the
argument funtions. Moreover,

Λ2
x1,t1(f2, g2) =

〈
b,
∑

R

〈f2, ψ
2
R2
〉〈g2, ψR2

〉ψ2
R1
(t1)ψR1

(x1)ψR

〉
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and we check the two properties of a weakboundedness-CZ condition: for all bump
functions f2, g2 which are L2-adapted to the same interval,

|Λ2
x1,t1(f2, g2)| ≤ ‖b‖BMO(R2)

∥∥∥
∑

R

〈f2, ψ
2
R2
〉〈g2, ψR2

〉ψ2
R1
(t1)ψR1

(x1)ψR

∥∥∥
H1(R2)

As before, the H1-norm is equivalent to
∥∥∥S

(∑

R

〈f2, ψ
2
R2
〉〈g2, ψR2

〉ψ2
R1
(t1)ψR1

(x1)ψR

)∥∥∥
L1(R2)

=

∫ (∑

R

〈f2, ψ
2
R2
〉2〈g2, ψR2

〉2ψ2
R1
(t1)

2ψR1
(x1)

2χR(y)

|R|

)1/2

dy

=

∫ (∑

R1

ψ2
R1
(t1)

2ψR1
(x1)

2χR1
(y1)

|R1|

)1/2
dy1

∫ (∑

R2

〈f2, ψ
2
R2
〉2〈g2, ψR2

〉2
χR2

(y2)

|R2|

)1/2
dy2

!
1

|x1 − t1|

∫
M(f2)(y2)S(g2)(y2)dy2

≤ C‖f2‖L2(R)‖g2‖L2(R)
1

|x1 − t1|
≤ C

1

|x1 − t1|

Finally, we need to prove the analog estimates for (Λ2
x1,t1 −Λ2

x′
1,t

′
1
)(f2, g2) which will be

deduced from |∂t1Λ
2
x1,t1(f2, g2)| + |∂x1

Λ2
x1,t1(f2, g2)| ≤ C|x1 − t1|−2. By symmetry, we

work only with one of such terms:

∂t1Λ
2
x1,t1(f2, g2) =

〈
b,
∑

R

〈f2, ψ
2
R2
〉〈g2, ψR2

〉∂t1ψ
2
R1
(t1)ψR1

(x1)ψR

〉

and therefore, as before,

|∂t1Λx1,t1(f2, g2)| ≤ ‖b‖BMO(R2)

∥∥∥
∑

R

〈f2, ψ
2
R2
〉〈g2, ψR2

〉∂t1ψ
2
R1
(t1)ψR1

(x1)ψR

∥∥∥
H1(R2)

being the H1-norm is equivalent to
∥∥∥S

(∑

R

〈f2, ψ
2
R2
〉〈g2, ψR2

〉∂t1ψ
2
R1
(t1)ψR1

(x1)ψR

)∥∥∥
L1(R2)

=

∫ (∑

R1

(∂t1ψ
2
R1
(t1))

2ψR1
(x1)

2χR1
(y1)

|R1|

)1/2
dy1

∫ (∑

R2

〈f2, ψ
2
R2
〉2〈g2, ψR2

〉2
χR2

(y2)

|R2|

)1/2
dy2

!
1

|x1 − t1|2

∫
M(f2)(y2)S(g2)(y2)dy2 ≤ C

1

|x1 − t1|2

We also need to prove endpoint estimates for this paraproduct.

Λb(1⊗ f1, ψ ⊗ g2) =
∑

R

〈b, ψR〉〈f2, ψR2
〉〈ψ, ψR1

〉〈g2, ψR2
〉

=
〈
b,
∑

R

〈f2, ψR2
〉〈ψ, ψR1

〉〈g2, ψR2
〉ψR1

⊗ ψR2

〉
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=
〈
b, (

∑

R1

〈ψ, ψR1
〉ψ1)⊗ (

∑

R2

〈f2, ψR2
〉〈g2, ψR2

〉ψR2
)
〉

= 〈b, ψ ⊗
∏

f2
(g2)〉

and so
Λb(1⊗ f1, ψ ⊗ g2) ≤ ‖b‖BMO(R2)‖ψ ⊗

∏
f2
(g2)‖H1(R2)

≈ ‖b‖BMO(R2)‖S(ψ ⊗
∏

f2
(g2))‖L1(R2)

= ‖b‖BMO(R2)‖S(ψ)‖L1(R)‖
∏

f2
(g2)‖L1(R)

≤ ‖b‖BMO(R2)‖ψ‖H1(R)‖M(f2)S(g2)‖L1(R)

≤ ‖b‖BMO(R2)‖ψ‖H1(R)‖f2‖Lp(R)‖g2‖Lp′(R)

which proves that Λb(1⊗ f1, · ⊗ g2) ∈ BMO(R).

We notice that we cannot demmand these paraproducts to satisfy that Λb(1⊗f2, ψ⊗
g2) = 0 for all smooth functions f2, g2 and all bump functions ψ with mean zero. The
same thing will happen with the following class of paraproducts which will force us to
deal the third class of paraproducts in a special manner.

We continue with the so called mixed paraproduct, that is, the one associated with
T1(1).

Lemma 8.3. (Mixed paraproducts). Given a function b in BMO(R2), there exists a
bounded bilinear form Λ2

b such that Λ2
b(1⊗·, ·⊗1) = b, Λ2

b(1⊗1, ·⊗·) = Λ2
b(·⊗·, 1⊗1) =

Λ2
b(· ⊗ 1, 1⊗ ·) = 0.

Proof. Using the same basis as in previous lemma, we define

Λ2
b(f, g) =

∑

R

〈b, ψR〉〈f, ψ
2
R1

⊗ ψR2
〉〈g, ψR1

⊗ ψ2
R2
〉

which in this proof we will just denote by Λb.
At least formally, Λb satisfies

Λb(1⊗ f2, g1 ⊗ 1) = 〈b, f2 ⊗ g1〉

Λb(1, g) = Λb(f, 1) = Λb(f1 ⊗ 1, 1⊗ g2) = 0

For the proof of their boundedness we proceed as before.

Λb(f, g) =
∑

R

〈b, ψR〉〈f, ψ
2
R1

⊗ ψR2
〉〈g, ψR1

⊗ ψ2
R2
〉

=
〈
b,
∑

R

〈f, ψ2
R1

⊗ ψR2
〉〈g, ψR1

⊗ ψ2
R2
〉ψR

〉
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and then, using the duality H1(R2)− BMO(R2) we have

|Λb(f, g)| ≤ ‖b‖BMO(R2)‖
∑

R

〈f, ψ2
R1

⊗ ψR2
〉〈g, ψR1

⊗ ψ2
R2
〉ψR‖H1(R2)

Just assuming the sum is finite, we get that
∑

R〈f, ψ
2
R1
⊗ψR2

〉〈g, ψR1
⊗ψ2

R2
〉ψR ∈ H1(R2)

and then

‖
∑

R

〈f, ψ2
R1
⊗ψR2

〉〈g, ψR1
⊗ψ2

R2
〉ψR‖H1(R2) ≈ ‖S(

∑

R

〈f, ψ2
R1
⊗ψR2

〉〈g, ψR1
⊗ψ2

R2
〉ψR)‖L1(R2)

with implicit constants independent of the number of terms in the sum. Since

S
(∑

R

〈f, ψ2
R1

⊗ ψR2
〉〈g, ψR1

⊗ ψ2
R2
〉ψR

)2
(x, y)

=
∑

R

〈f, ψ2
R1

⊗ ψR2
〉2〈g, ψR1

⊗ ψ2
R2
〉2
χR1

|R1|
(x)

χR2

|R2|
(y)

≤
(
sup
R1

∑

R2

〈f, ψ2
R1

⊗ ψR2
〉2χR1

(x)
χR2

|R2|
(y)

)(∑

R1

sup
R2

〈g, ψR1
⊗ ψ2

R2
〉2
χR1

|R1|
(x)χR2

(y)
)

= M1(S2(f))
2(x, y)S1(M2(g))

2(x, y)

where the given expressions are not a composition of operators but just notation.
We first prove that those operators are bounded on Lp(R2). We do so by applying
Fefferman-Stein’s inequality to SiMj : by denoting gy(x) = g(x, y), we have
∥∥∥
(∑

R1

sup
R2

〈g, ψR1
⊗ ψ2

R2
〉2χR2

χR1

|R1|

)1/2∥∥∥
Lp′(R2)

≤
∥∥∥
(∑

R1

M(〈g, ψR1
〉)2
χR1

|R1|

)1/2∥∥∥
Lp′ (R2)

=
(∫

R

∥∥∥
(∑

R1

M(〈g, ψR1
〉)2(y)

χR1

|R1|

)1/2∥∥∥
p′

Lp′(R)
dy

)1/p′

≤ C
(∫

R

∥∥∥
(∑

R1

〈gy, ψR1
〉2
χR1

|R1|

)1/2∥∥∥
p′

Lp′(R)
dy

)1/p′

= C
(∫

R
‖S(gy)‖

p′

Lp′(R)
dy

)1/p′

≤ C
(∫

R
‖gy‖

p′

Lp′(R)
dy

)1/p′

= C‖g‖Lp′(R2)

The other operator is easier because of the pointwise inequality MiSj ≤ SjMi.
Then, we finally get

‖S(
∑

R

〈f, ψ2
R〉〈g, ψR〉ψR)‖L1(R2)

≤ ‖(M1S2)(f)‖Lp(R2)‖(S1M2)(g)‖Lp′(R2) ≤ C‖f‖Lp(R2)‖g‖Lp′(R2)

To prove that this operators belong to the class of operators with a product Calderón-
Zygmund kernel satisfying the WB-CZ condition, we apply the same reasoning as in
the case of classical paraproducts. We do not write the details.

Now we construct the last class of paraproducts, the ones associated with the terms
〈T (1⊗ ·), · ⊗ ·〉.
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Lemma 8.4. (Third type of paraproducts). Given a function b in BMO(R), there exists
a bounded bilinear form Λ3

b such that Λ3
b(1⊗1, ·⊗·) = Λ3

b(·⊗·, 1⊗1) = Λ3
b(·⊗1, 1⊗·) =

Λ3
b(1⊗·, ·⊗1) = 0, Λ3

b(1⊗·, ·⊗·) = b and Λ3
b(·⊗1, ·⊗·) = Λ3

b(·⊗·, 1⊗·) = Λ3
b(·⊗·, ·⊗1) =

0.

Proof. Let (ψI)I be a wavelet basis in L2(R) such that every ψI is a bump function
adapted to a dyadic interval I with constant C > 0.

We define
Λ3

b(f, g) =
∑

R

〈b, ψR1
〉〈f, ψ2

R1
⊗ ψR2

〉〈g, ψR1
⊗ ψR2

〉

which along the proof of its properties we will just denote by Λb.
At least formally, Λb satisfies

Λb(1, g) = Λb(f, 1) = Λb(f1 ⊗ 1, 1⊗ g2) = Λb(1⊗ f2, g1 ⊗ 1) = 0

Λb(f1 ⊗ 1, g1 ⊗ g2) = Λb(f1 ⊗ f2, 1⊗ g2) = Λb(f1 ⊗ f2, g1 ⊗ 1) = 0

being the proof trivial in all cases. It also trivially satisfies that for every f2, g2 ∈ S(R)

Λb(1⊗ f2, ψ ⊗ g2) =
∑

R

〈b, ψR1
〉〈f2, ψR2

〉〈ψ, ψR1
〉〈g2, ψR2

〉

=
∑

R

〈b⊗ f2, ψR〉〈ψ ⊗ g2, ψR〉 = 〈b⊗ f2, ψ ⊗ g2〉

We prove now boundedness of Λb. Notice that

Λb(f, g) =
∑

R

〈b, ψR1
〉〈〈f, ψR2

〉, ψ2
R1
〉〈〈g, ψR2

〉, ψR1
〉 =

∑

R2

〈∏
b
(〈f, ψR2

〉), 〈g, ψR2
〉
〉

Then, by boundedness of paraproducts we have

|Λb(f, g)| ≤ ‖b‖BMO(R)

∑

R2

‖〈f, ψR2
〉‖p‖〈g, ψR2

〉‖p′

Now, the sum can be rewritten as
∑

R2

∫

R

‖〈f, ψR2
〉‖p‖〈g, ψR2

〉‖p′
χR2

(x2)

|R2|
dx2

(8.1) ≤

∫

R

(∑

R2

‖〈f, ψR2
〉‖2p
χR2

(x2)

|R2|

)1/2(∑

R2

‖〈g, ψR2
〉‖p′

χR2
(x2)

|R2|

)1/2
dx2

If we denote by

Sp(f) =
(∑

R2

‖〈f, ψR2
〉‖2p
χR2

|R2|

)1/2

the vector-valued square function, we have that expression 8.1 is equal to∫

R2

Sp(f)(x)Sp′(g)(x)dx ≤ ‖Sp(f)‖Lp(R)‖S
p′(g)‖Lp′(R)

≤ Cp‖f‖Lp(R2)‖g‖Lp′(R2)
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ending the proof of boundedness.
We prove now that this family of operators also belong to the class of operators for

which the theory applies. For this, we just need to show that they satisfy the integral
representation stated in 2.5 with a kernel satisfying the definition 2.1 of a product
Calderon-Zygmund kernel. From

Λb(f, g) =
∑

R

〈b, ψR1
〉〈f, ψ2

R1
⊗ ψR2

〉〈g, ψR1
⊗ ψR2

〉

=

∫
f(t)g(x)

∑

R

〈b, ψR1
〉ψ2

R1
(t1)ψR2

(t2)ψR1
(x1)ψR2

(x2)dtdx

we directly obtain the integral representation regardless disjointness of supports of the
argument funtions. Moreover, this time the kernel is of tensor product type since

K(x, t) =
〈
b,
∑

R1

ψ2
R1
(t1)ψR1

(x1)ψR1

〉∑

R2

ψR2
(t2)ψR2

(x2)

and we check the two properties of a product C-Z kernel. As we have seen before, the
first factor can be bounded by

‖b‖BMO(R)

∥∥∥
∑

R1

ψ2
R1
(t1)ψR1

(x1)ψR1

∥∥∥
H1(R)

! ‖b‖BMO(R)
1

|x1 − t1|

For the second factor we reason as follows. Let Ix2,t2 be the smallest dyadic interval
such that x2, t2 ∈ Ix2,t2 and let (Ik)k≥0 the family of dyadic intervals such that Ix2,t2 ⊂ Ik
with |Ik| = 2k|Ix2,t2 |. Moreover, since |ψR2

| ≤ |R2|−1/2χR2
, we have

∑

R2

|ψR2
(t2)| |ψR2

(x2)| ≤
∑

k≥0

1

|Ik|1/2
1

|Ik|1/2

=
∑

k≥0

1

2k|Ix2,t2 |
!

1

|Ix2,t2 |
!

1

|x2 − t2|

For the second condition, we prove that

|∂t1∂t2K(x, t)|+ |∂t1∂x2
K(x, t)| + |∂x1

∂t2K(x, t)|+ |∂x1
∂x2

K(x, t)| ≤ C
∏

i=1,2

|xi − ti|
−2

But, by symmetry we deal only with the first term

∂t1∂t2K(x, t) =
〈
b,
∑

R1

∂t1ψ
2
R1
(t1)ψR1

(x1)ψR1

〉∑

R2

∂t2ψR2
(t2)ψR2

(x2)

Then, as before

|∂t1∂t2K(x, t)| ≤ ‖b‖BMO(R)

∥∥∥
∑

R1

∂t1ψ
2
R1
(t1)ψR1

(x1)ψR1

∥∥∥
H1(R)

∑

R2

|∂t1ψR2
(t2)| |ψS2

(x2)|
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with the h1(R) norm equivalent to
∥∥∥S

(∑

R1

∂t1ψ
2
R1
(t1)ψR1

(x1)ψR1

)∥∥∥
L1(R2)

!
1

|x1 − t1|2

For the second factor, we reason similarly as before. Now, let Ix2,t2 be the smallest
dyadic interval such that x2, t2 ∈ Ix2,t2 and let (Ik)k≥0 the family of dyadic intervals
such that Ix2,t2 ⊂ Ik with |Ik| = 2k|Ix2,t2 |. Moreover, since |ψR2

| ≤ |R2|−1/2χR2
,

|∂t2ψ
2
R2
| ≤ |R1|−2χR2

we have

∑

R2

|∂t1ψR2
(t2)| |ψS2

(x2)| ≤
∑

k≥0

1

|Ik|2
1

|Ik|1/2

=
∑

k≥0

1

23k/2|Ix2,t2 |3/2
!

1

|Ix2,t2 |3/2
!

1

|x2 − t2|3/2

proving finally

|∂t1∂t2K(x, t)| ! ‖b‖BMO(R)
1

|x1 − t1|2
1

|x2 − t2|3/2

The other properties are proven in a similar way.

To apply previously constructed operators to the problem of reduction to the special
cancellation we proceed as follows. We first consider the functions defined by 〈b1, ψ〉 =
Λ(1⊗1, ψ), 〈b2, ψ〉 = Λ(ψ, 1⊗1) and 〈b3, ψ〉 = Λ(ψ1⊗1, 1⊗ψ2), 〈b4, ψ〉 = Λ(1⊗ψ2, ψ1⊗
1). By hypothesis, all of them are functions in BMO(R2) and so we can construct the
paraproducts Λ1

bi
and Λ2

bj
for i = 1, 2 and j = 3, 4 respectively.

Now we define the bilinear form

Λ̃ = Λ−
∑

i=1,2

Λ1
bi −

∑

j=3,4

Λ2
bj

which clearly satisfies the first cancellation conditions

Λ̃(1⊗ 1, ψ) = Λ̃(ψ, 1⊗ 1) = Λ̃(ψ1 ⊗ 1, 1⊗ ψ2) = Λ̃(1⊗ ψ2, ψ1 ⊗ 1) = 0

but not the remaining ones in the bump lemma 5.1 or its subsequent corollary.
We have seen in lemma 8.2 that Λ1

bi
(1 ⊗ f2, · ⊗ g2) ∈ BMO(R) and in a similar way

Λ2
bi
(1⊗ f2, · ⊗ g2) ∈ BMO(R). Therefore, once we prove that also Λ(1⊗ f2, ψ ⊗ g2) ∈

BMO(R) we will have that Λ̃(1 ⊗ f2, ψ ⊗ g2) ∈ BMO(R) and so, we can define the
function

(8.2) 〈b̃5 ⊗ f2, ψ ⊗ g2〉 = Λ̃(1⊗ f2, ψ ⊗ g2)

for every ψ of mean zero. With such function we construct the third type of para-
products Λ3

b̃5
. We repeat the procedure three more times by taking into account the
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different permutations of the argument functions in the right hand part of equality
(8.2). Finally, we define

ΛT = Λ̃−
8∑

k=5

Λ3
b̃i

which clearly satisfies all the required cancellation conditions.
To prove that Λ(1⊗ f2, ψ ⊗ g2) ∈ BMO(R) we need first the following lemma

Lemma 8.5. Let Λ be a bilinear Calderón-Zygmund form with associated kernel K
and satisfying the mixed WB-CZ conditions.

We also assume that Λ satisfies the weak boundedness condition and the special
cancellation conditions:

〈T (φI⊗1), ϕI⊗·〉, 〈T (1⊗φI), ·⊗ϕI〉, 〈T
∗(φI⊗1), ϕI⊗·〉, 〈T ∗(1⊗φI), ·⊗ϕI〉 ∈ BMO(R)

for all φI , ϕI bump functions adapted to I with norms uniformly bounded in I.
Then,

〈T (φI⊗1), ψJ⊗·〉, 〈T (1⊗φI), ·⊗ψJ〉, 〈T
∗(φI⊗1), ψJ⊗·〉, 〈T ∗(1⊗φI), ·⊗ψJ〉 ∈ BMO(R)

for all φI , ψJ bump functions supported and adapted to I and J respectively such that
I ∩ J = ∅ and ψJ has mean zero, with norms satisfying

‖〈T (φI ⊗ 1), ψJ ⊗ ·〉‖BMO(R) !
(min(|I|, |J |)

max(|I|, |J |)

)1/2+δ( diam(I ∪ J)

max(|I|, |J |)

)−(1+δ)

Proof. We assume that φI and ψJ are supported in I and J respectively. The general
case might need some extra decomposition of the argument functions involved in the
same way we did in the proof of the bump lemma 5.1, but we will not develope the
details here. We also assume that |J | ≤ |I| and ψJ has mean zero.

If |I|−1diam(I, J) ≤ 2 then φI and ψJ are both adapted to I with the same constant
and thus, by hypothesis (WB ⊗ T (1))

|Λ(1⊗ φI , f ⊗ ψJ)| ≤ C‖f‖H1

for any atom f .
If |I|−1diam(I, J) > 2, we reason as follows. Let f be an atom supported in K.

Since φI and ψJ have disjoint support, we have the following integral representation

Λ(1⊗ φI , f ⊗ ψJ ) =

∫

R2

φI(t2)ψJ(x2)Λx2,t2(1, f)dt2dx2

Now, let Φ a bump function L∞-adapted and supported in K. We denote cJ = c(J)
and cK = c(K). Then,

Λ(1⊗ φI , f ⊗ ψJ ) =

∫

R2

φI(t2)ψJ(x2)Λx2,t2(Φ, f)dt2dx2

+

∫

R2

φI(t2)ψJ(x2)Λx2,t2(1− Φ, f)dt2dx2
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We use the mean zero of ψJ to rewrite the first term in the following way
∫

R2

φI(t2)ψJ (x2)(Λx2,t2(Φ, f)− ΛcJ ,t2(Φ, f))dt2dx2

Now, we have |x2−t2| ≥ diam(I, J) > 2|I| ≥ 2|J | ≥ 2|x2−cJ |. Then, since |K|−1/2Φ
and |K|1/2f are L2-adapted in the same interval, by the WB, we can bound previuos
expression by

∫

|x2−t2|>diam(I,J)

|φI(t1)||ψJ(x1)||(Λx2,t2 − ΛcJ ,t2)(|K|−1/2Φ, |K|1/2f)|dt2dx2

!

∫

|x2−t2|>diam(I,J)

|φI(t1)|ψJ(x2)
|x2 − cJ |δ

|x2 − t2|1+δ
dt2dx2

≤ ‖φI‖1‖ψJ‖1||J |
δdiam(I, J)−(1+δ) ! |I|1/2|J |1/2||J |δdiam(I, J)−(1+δ)

=
( |J |
|I|

)1/2+δ
(|I|−1diam(I, J))−(1+δ)

To deal with the second term, we notice that φI ⊗ (1−Φ) and ψJ ⊗ f have disjoint
support and so we can use the integral representation

∫

R4

(1− Φ)(t1)f(x1)φI(t2)ψJ(x2)K(x, t)dtdx

Now, because of the mean zero of both ψJ and f we can rewrite the integral as
∫

R4

(1−Φ)(t1)f(x1)φI(t2)ψJ(x2)(K(x, t)−K((cK , x2), t)−K((x1, cJ), t)+K((cJ , cK), t))dtdx

Notice that 2|x1 − cK | ≤ 2|K| < |x1 − t1| and 2|x2 − cJ | < |x2 − t2|. Then, by the
property of product C-Z kernel, we can bound by

∫

R4

|(1− Φ)(t1)||f(x1)||φI(t2)||ψJ(x2)|
|x1 − cK |δ

|x1 − t1|1+δ

|x2 − cJ |δ

|x2 − t2|1+δ
dtdx

! |J |δdiam(I, J)−(1+δ)‖φI‖1‖ψJ‖1|K|δ
∫

R

|f(x1)|

∫

|x1−t1|>|K|

1

|x1 − t1|1+δ
dt1dx1

! |J |δdiam(I, J)−(1+δ)|I|1/2|J |1/2|K|δ‖f‖1
1

|K|δ

=
( |J |
|I|

)1/2+δ
(|I|−1diam(I, J))−(1+δ)‖f‖1

which ends the proof of this lemma.
Now, with the help of previous lemma and the hypotheses... we can prove Λ(1 ⊗

f2, ψ ⊗ g2) ∈ BMO(R). The procedure is similar to the one developed to prove Lp

boundedness of the linear form under the special cancellation properties.

With the three previous lemmata and the other five symmetrical statements which
come from all the possible permutations of the argument functions, we can finally prove
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boundedness of product singular integrals in the general case and finish this way the
proof of theorem 2.9 and also theorem 7.4.

9. Appendix

In the proof of the extension to Lp spaces (see theorem 7.4), we used some bi-
parameter modified square functions whose boundedness properties are a direct conse-
quence of their uni-parameter counterparts. Now, in this appendix, we prove bound-
edness of such uni-parameter modified square functions.

Definition 9.1. Given k ∈ Z, n ∈ N, we consider the following operator

S̃k,n(f)(x) =
( ∑

I,J∈Pk,n

〈f, ψI〉2

|J |
χJ(x)

)1/2

where Pk,n is the family of pairs of dyadic intervals (I, J) satisfying |I| = 2k|J | and
n ≤ diam(I∪J)

max(|I|,|J |) < n + 1.

We will prove bounds of such operators by means of the following modified square
functions:

Definition 9.2. Given k ∈ Z, n ∈ N, we consider the following variant of square
function

Sk,n(f)(x) =
(∑

I

〈f, ψI〉2

|J |
χJ(x)

)1/2

where I and J are two dyadic intervals satisfying |I| = 2k|J | and n ≤ diam(I∪J)
max(|I|,|J |) < n+1,

chosen in such a way that for every interval I there is a unique interval J .

This way we actually define a family of operators that depends on the particular
choice of intervals but whose bounds do not depend on such choice, as we will soon
prove. Notice that the particular choice does not depend on the point x.

We see now the the reason why this modified square function helps to control bound-
edness of the previous ones. Fixed a dyadic interval I, we denote Ik,m the family of
dyadic intervals J such that |I| = 2k|J | and n ≤ max(|I|, |J |)−1diam(I ∪ J) < n + 1.
We also denote by Ĩ the dyadic interval such that |Ĩ| = |I| and |I|−1diam(I ∪ Ĩ) = n.
Then, for all k ≥ 0

S̃k,n(f)(x) =
( ∑

I,J∈Kk,n

〈f, ψI〉2

|J |
χJ(x)

)1/2

=
(∑

I

〈f, ψI〉
2
∑

J∈Ik,n

χJ(x)

|J |

)1/2

=
(∑

I

〈f, ψI〉
2 χĨ(x)

2−k|Ĩ|

)1/2

= 2k/2S0,n(f)(x)

Meanwhile, when k ≤ 0 we have

S̃k,n(f)(x) =
( ∑

I,J∈Kk,n

〈f, ψI〉2

|J |
χJ(x)

)1/2
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=
(∑

J

( ∑

I∈Ik,n

〈f, ψI〉
2
)χJ(x)

|J |

)1/2

≤
(∑

J

2k〈f, ψIJ 〉
2χJ(x)

|J |

)1/2

= 2k/2Sk,n(f)(x)

Proposition 9.3. For every 1 < p < ∞, we have that if k ≥ 0

‖Sk,nf‖p ≤ Cp(2
−k sign( 2

p
−1) log(n) + 1)|

2
p
−1|‖f‖p

while if k ≤ 0

‖Sk,nf‖p ≤ Cp(2
−k sign( 2

p
−1) + log(n) + 1)|

2
p
−1|‖f‖p

with constants Cp independent of f , k and n.

Remark 9.1. Before starting with the proof, we notice that a carefull read of it re-
veals that, by means of vector-valued interpolation,the result also holds for vector-valued
modified square function with values in a Banach space X with the UMD property of
the form

SX
k,n(f)(x) =

(∑

I

‖〈f, ψI〉‖2X
|J |

χJ(x)
)1/2

for which every 1 < p < ∞, we have that if k ≥ 0

‖Sk,nf‖Lp(X) ≤ Cp,X(2
−k sign( 2

p
−1) log(n) + 1)|

2
p
−1|‖f‖Lp(X)

while if k ≤ 0

‖Sk,nf‖Lp(X) ≤ Cp,X(2
−k sign( 2

p
−1) + log(n) + 1)|

2
p
−1|‖f‖Lp(X)

Then, in particular for X = Lp(R) we get for k ≥ 0

‖Sk,nf‖Lp(R2) ≤ Cp(2
−k sign( 2

p
−1) log(n) + 1)|

2
p
−1|‖f‖Lp(R2)

while if k ≤ 0

‖Sk,nf‖Lp(R2) ≤ Cp(2
−k sign( 2

p
−1) + log(n) + 1)|

2
p
−1|‖f‖Lp(R2)

The estimate for p = 2 is a trivial consequence of Plancherel’s inequality. To extend
the result to other exponents p we plan to use interpolation and duality. So, we first
prove the following weak L1 type estimate whose proof comes from a slight modification
of the one appearing in [27].

Proposition 9.4. If f is integrable and λ > 0, then we have

‖{x : Sk,nf(x) > λ}‖ ≤ C(2−kn+ 1)‖f‖1λ
−1

with a constant C independent of f and λ.

Proof. Consider the collection I of maximal dyadic intervals I with respect to set
inclusion such that

|I|−1

∫

I

|f(x)|dx > λ
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Let E be the union of all I ∈ I, the set that contains all intervals where f has large
average. The intervals in I are pairwise disjoint and so

|E| ≤
∑

I∈I

|I| ≤ λ−1
∑

I∈I

∫

I

|f(x)|dx ≤ ‖f‖1λ
−1

We take a classical Calderon-Zymund decomposition f = g + b given by

g =
∑

I

mI(f)χI + fχEc b =
∑

I

fI

with mI(f) = |I|−1
∫
I f and fI = (f −mI(f))χI .

We see that g is essentially bounded by 2λ. Outside E, this follows by Lebesgue’s
differentiation theorem. To prove this inside E, it sufices to consider each interval I ∈ I
separately. Let I be such an interval and Ĩ its parent interval. Then by maximality of
I we have ∫

I

f(x)dx ≤

∫

I

|f |dx ≤

∫

Ĩ

|f |dx ≤ λ|Ĩ| = 2λ|I|

Moreover it is also clear that ∫
|g| ≤

∫
|f |

Because of the L2 boundedness of Sk,n we have

‖Sk,ng‖
2
2 ≤ C‖g‖22 ≤ C

∫
|g|λdx ≤ Cλ‖f‖1

and so
{Sk,ng > λ/2} ≤ C‖Sk,ng‖2λ

−2 ≤ C‖f‖1λ
−1

We plan to prove the same estimate for b =
∑

I fI . To do so, we define Ẽ as the
union of all 3I with I ∈ I. We also define F as the union of all J such that the
corresponding I satisfies I ⊂ I ′ for some I ′ ∈ I and F̃ as the union of all 3J with
J ⊂ F . Then,

|{Sk,nb > λ/2}| ≤ |F̃ |+ λ−1‖Sk,nb‖L1(R\F̃ )

Now we measure F̃ by means of a geometric argument that distinguishes between
large and small scales. Since |F̃ | ≤ 3|F | and

F =
⋃

I′∈I

∪{J : I ⊂ I ′}

we fix now I ′ ∈ I.
We also separate between k ≥ 0 and k ≤ 0 since the separation in scales is slightly

different. We first assume k ≥ 0 for which we separate into two different scales: smaller
and larger than log(n).

The family of dyadic intervals I ⊂ I ′ such that |I| = 2−r|I ′| with 0 ≤ r ≤ log(n) has
the property that the corresponding intervals J satisfy

diam(I ′ ∪ J) ≤ diam(I ∪ J) ≥ n|I| = n2−r|I ′| > |I ′|
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and so the intervals J are disjoint with I ′. Moreover, their union measures at most
2−k|I ′| as we see: the intervals J are pairwise disjoint and so for every 0 ≤ r ≤ log(n)
we have

|
⋃

{J : I ⊂ I ′, |I| = 2−r|I ′|}| =
∑

J : I ⊂ I′

|I| = 2−r |I′|

|J | = 2−k
∑

I : I ⊂ I′

|I| = 2−r |I′|

|I| = 2−k|I ′|

Then

|
log(n)⋃

r=0

⋃
{J : I ⊂ I ′, |I| = 2−r|I ′|}| ≤ 2−k log(n)|I ′|

On the other hand for smaller scales, that is, intervals I ⊂ I ′ such that |I| = 2−r|I ′|
with r > log(n), we have that the corresponding intervals J satisfy

diam(I ′∪J) ≤ |I ′|/2+ |c(I ′)−c(J)|+ |J |/2 ≤ |I ′|/2+ |c(I ′)−c(I)|+ |c(I)−c(J)|+ |J |/2

≤ |I ′|+ diam(I ∪ J) ≤ |I ′|+ (n+ 1)|I| < |I ′|+ 2n2−r|I ′| < 3|I ′|

Then the intervals J are included in 3I ′ and so

|
⋃

r>log(n)

⋃
{J : I ⊂ I ′, |I| = 2−r|I ′|}| ≤ C|I ′|

Both things show that

| ∪ {J : I ⊂ I ′}| ≤ C(2−k log(n) + 1)|I ′|

and therefore
|F̃ | ! 3

∑

I′∈I

| ∪ {J : I ⊂ I ′}|

≤ C(2−k log(n) + 1)
∑

I∈I

|I ′| ≤ C(2−k log(n) + 1)‖f‖1λ
−1

When k ≤ 0, the computations are similar but we separate into three different scales:
smaller than −k, between −k and −k + log(n), and larger than −k + log(n).

The subfamily of dyadic intervals I ⊂ I ′ such that |I| = 2−r|I ′| with 0 ≤ r ≤ −k
has the property that the corresponding intervals J satisfy

diam(I ′ ∪ J) ≥ diam(I ∪ J) ≥ n|J | = n2−k|I| = n2−k−r|I ′| > |I ′|

and so they are disjoint with I ′. Moreover, their union measures at most 2−k|I ′|2−r

as we see: for all intervals I considered, their correspoding intervals J satisfy |J | =
2−k−r|I ′| > |I ′| and so there is a unique interval J corresponding with the different I.
This way for every 0 ≤ r ≤ −k we have

|
⋃

{J : I ⊂ I ′, |I| = 2−r|I ′|}| ≤ |J | = 2−k|I| = 2−k−r|I ′|

and then summing a geometric series we have

|
−k⋃

r=0

⋃
{J : I ⊂ I ′, |I| = 2−r|I ′|}| ≤ C2−k|I ′|
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On the other hand, the subfamily of dyadic intervals I ⊂ I ′ such that |I| = 2−r|I ′|
with −k ≤ r ≤ −k+log(n) has the property that the corresponding intervals J satisfy
diam(I ∪ J) ≥ n2−k−r|I ′| > |I ′| and so they are still disjoint with I ′. Moreover, their
union measures at most |I ′| as we see: now |J | = 2−k−r|I ′| < |I ′| and on varying I
there are |I ′|/|J | = 2−k−r different disjoint intervals J whose union measures exactly
|I ′|. Then for every −k ≤ r ≤ k + log(n) we have

|
⋃

{J : I ⊂ I ′, |I| = 2−r|I ′|}| ≤ |I ′|

For different r, the intervals J are contained in a different translation of I ′. Then the
intervals J are pairwise disjoint and so

|
−k+log(n)⋃

r=−k

⋃
{J : I ⊂ I ′, |I| = 2−r|I ′|}| ≤ log(n)|I ′|

Finally, for smaller scales, that is, intervals I ⊂ I ′ such that |I| = 2−r|I ′| with
r > −k + log(n), we have that the corresponding intervals J satisfy

diam(I ′ ∪ J) ≤ |I ′|+ diam(I ∪ J) ≤ (n + 1)|J | < |I ′|+ 2n2−k−r|I ′| < 3|I ′|

and so they are included in 3I ′ and so

|
⋃

r>−k+log(n)

⋃
{J : I ⊂ I ′, |I| = 2−r|I ′|}| ≤ C|I ′|

The three bounds together show that

| ∪ {J : I ⊂ I ′}| ≤ C(2−k + log(n) + 1)|I ′|

and so
|F̃ | ! 3

∑

I′∈I

| ∪ {J : I ⊂ I ′}|

≤ C(2−k + log(n) + 1)
∑

I∈I

|I ′| ≤ C(2−k + log(n) + 1)‖f‖1λ
−1

The following step of the proof is to show

‖Sk,nb‖L1(R\F̃ ) ≤ C2−k/2‖f‖1

and, by sublinearity, it suffices to prove

‖Sk,nfI′‖L1(R\F̃ ) ≤ C2−k/2λ|I ′|

for each I ′ ∈ I. This in turn follows from
∥∥∥∥∥

(
∑

J +⊂F̃

|〈fI′, ψI〉|2

|J |
χJ

)1/2∥∥∥∥∥
1

≤

∥∥∥∥∥
∑

J +⊂F̃

|〈fI′, ψI〉|

|J |1/2
χJ

∥∥∥∥∥
1

≤
∑

J +⊂F̃

|〈fI′, ψI〉||J |
1/2 ≤ 2−k/2

∑

I +⊂Ẽ

|〈fI′, ψI〉||I|
1/2

≤ C2−k/2‖fI′‖1 ≤ C2−k/2λ|I ′|
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where we have used that J /⊂ F̃ implies by definition of F̃ that the corresponding
interval I satisfies I /⊂ Ẽ. Moreover, the last inequality follows from lemma 9.5 below.

Finally then,

|{Sk,nb > λ/2}| ≤ C(2−kn+ 1)‖f‖1λ
−1 + C2−k/2‖f‖1λ

−1

which ends the proof since 2−k/2 ≤ 2−k + log(n) + 1 ≤ 2−k log(n) + 1 for all k ∈ Z and
n ∈ N.

The following lemma is the technical result needed to prove proposition 9.4. For the
sake of completedness we include its proof although is exactly the same one that can
be found in [27].

Lemma 9.5. Let I ′ be some interval and f be an integrable function supported in I ′

with mean zero. For each dyadic interval I let φI be a bump function adapted to I.
Then ∑

I:I +⊂3I′

|〈f, φI〉||I|
1/2 ≤ C‖f‖1

Here 3I ′ denotes the interval that shares the center with I ′ and is of length 3|I ′|.

Proof. We first consider the sum over all dyadic intervals I such that I /⊂ 3I ′ with
|I| < |I ′|. Let c be the midpoint between c(I) and c(I ′). By symmetry we may assume
that supp f ⊂ (−∞, c) and then,

|〈f, φI〉| ≤ ‖f‖L1(−∞,c)‖φI‖L∞(−∞,c) + ‖f‖L∞(c,∞)‖φI‖L1(c,∞)

≤ ‖f‖1C|I|−1/2
(
1 +

|c(I)− c(I ′)|

|I|

)−N

which gives

|〈f, φI〉||I|
1/2 ≤ C‖f‖1

(
1 +

|c(I)− c(I ′)|

|I|

)−N

For any two integers k > 0 and m > 0 there are at most two intervals I such that
|I ′|/|I| = 2k and the integer part of 1 + |c(I)−c(I′)|

|I| is m. If m < 2k, there are no such
intervals which satisfy I /⊂ 3I ′. Thus we can estimate

∑

I : |I| < |I′|
I +⊂ 3I′

|〈f, φI〉||I|
1/2 ≤ C‖f‖1

∑

k>0

∑

m≥2k

m−N ≤ C‖f‖1

We now consider the sum over all dyadic I with I /⊂ 3I ′ and |I| ≥ |I ′|. Let D denote
the operator of differentiation and D−1 the antiderivative operator

D−1f(x) =

∫ x

−∞

f(y)dy

Notice that because of the mean zero of f , the support of D−1f is also included in I ′.
Then, by partial integration and the fact that |I|DφI is a bump function adapted to
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I, we have
|〈f, φI〉| = |I|−1|〈D−1f, |I|DφI〉|

≤ |I|−1(‖D−1f‖L1(−∞,c)‖|I|DφI‖L∞(−∞,c) + ‖D−1f‖L∞(c,∞)‖|I|DφI‖L1(c,∞))

≤ |I|−1‖D−1f‖1C|I|−1/2
(
1 +

|c(I)− c(I ′)|

|I|

)1−N

Now, from ‖D−1f‖1 ≤ |I ′|‖f‖1 we obtain

|〈f, φI〉||I|
1/2 ≤ C‖f‖1

|I ′|

|I|

(
1 +

|c(I)− c(I ′)|

|I|

)1−N

For any two integers k ≥ 0 and m > 0, there are at most two intervals such that
|I|/|I ′| = 2k and the integer part of 1 + |c(I)−c(I′)|

|I| is m. Thus we can estimate
∑

I : |I| ≥ |I′|
I +⊂ 3I′

|〈f, φI〉||I|
1/2 ≤ C‖f‖1

∑

k≥0

∑

m≥1

2−km1−N ≤ C‖f‖1

ending the proof of this lemma.

Once the weak L1 type inequality is proved, by interpolation we obtain for 1 < p ≤ 2

‖Sk,n(f)‖p ≤ Cp(2
−kn+ 1)

2
p
−1‖f‖p

In order to obtain boundedness for the remaining exponents 2 ≤ p < ∞ we consider
the following martingale operator

Tk,n(f)(x) =
∑

J

〈f, ψI〉ψJ(x)

where I and J are given by the same relationship that in the definition of Sk,n. This
operator trivially satisfies T ∗

k,n(f) = T−k,n(f). Actually, the implicit index j does not
change and so we may also write T ∗

k,n,j(f) = T−k,n,j(f). Moreover, we have that the
classical square function of Tk,n(f) coincides with Sk,n(f):

S(Tk,n(f))(x) =
(∑

J

〈f, ψI〉2

|J |
χJ(x)

)1/2
=

(∑

I

〈f, ψI〉2

|J |
χJ(x)

)1/2
= Sk,n(f)(x)

So, by properties of classical square function and the previous case with 1 < p′ ≤ 2,
we have

‖Sk,n‖Lp→Lp = ‖S(Tk,n)‖Lp→Lp ≈ ‖Tk,n‖Lp→Lp

= ‖T ∗
k,n‖Lp′→Lp′ = ‖T−k,n‖Lp′→Lp′ ≈ ‖S−k,n‖Lp′→Lp′

≤ Cp′(2
k log(n) + 1)(

2
p′
−1) = Cp(2

k log(n) + 1)|
2
p
−1|

or
‖Sk,n‖Lp→Lp ≈ ‖S−k,n‖Lp′→Lp′

≤ Cp′(2
k + log(n) + 1)(

2
p′
−1) = Cp(2

k + log(n) + 1)|
2
p
−1|

This ends the proof.
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[21] Journé J. L., A covering lemma for product spaces, Proc. Amer. Math. Soc., Vol. 96, n. 4 [1986],

p. 593-598
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