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BMO from dyadic BMO on the bidisc

Jill Pipher and Lesley A. Ward

Abstract

We generalize to the bidisc a theorem of Garnett and Jones relating the space BMO of functions
of bounded mean oscillation to its martingale counterpart, dyadic BMO. Namely, translation-
averages of suitable families of dyadic BMO functions belong to BMO. As a corollary, we deduce a
biparameter version of a theorem of Burgess Davis connecting the Hardy space H1 to martingale
H1. We also prove the analogs of the theorem of Garnett and Jones in the one-parameter and
biparameter VMO spaces of functions of vanishing mean oscillation.

1. Introduction

Garnett and Jones [9] introduced a method for obtaining decomposition theorems for the space
BMO of functions of bounded mean oscillation by a reduction to the dyadic space BMOd,
involving averaging over the translations of a family of functions. Specifically, they concluded
the following theorem.

Theorem 1 (Garnett and Jones). Suppose that α �→ ϕα is a measurable mapping from
R

m to the space BMOd(Rm) of functions of dyadic bounded mean oscillation such that all
ϕα(x) have support in a fixed dyadic cube, that ‖ϕα‖d � 1 and that∫

ϕα(x) dx = 0.

Then

ϕN (x) :=
1

(2N)m

∫
|αj |�N

ϕα(x + α) dα

is in BMO(Rm) and ‖ϕN‖∗ � C.

In this paper we work in the setting of the circle T, and later the bidisc T ⊗ T, rather than
R

m. For instance, in the circle setting the object of interest is the translation-average

ϕ(x) :=
∫1

0
ϕα(x + α) dα

of a family of BMOd(T) functions. Here x + α is to be understood as x + α mod 1.
Theorem 1 (unnumbered in [9]) follows implicitly from a stopping-time argument in their

proof of a theorem of Carleson. We present in Section 3 a proof, for the circle, which does not
require a stopping-time argument. Our method, together with Journé’s lemma, allows us to
prove a biparameter version of Theorem 1 for the Chang–Fefferman space of BMO functions
on the bidisc (Theorem 2). We also prove similar results for the VMO spaces of functions of
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vanishing mean oscillation on the circle and on the bidisc. As a corollary of Theorem 2, we
obtain a biparameter version (Theorem 6) of a theorem of Davis [7], namely that almost every
translate of an H1 function belongs to dyadic H1.

The inherent difficulty in working with the multiparameter BMO and VMO spaces is the
structure (or rather, the lack of structure) of the open sets. In the one-parameter setting open
sets reduce to unions of disjoint intervals, but an open set in R

2 has no canonical decomposition
in terms of collections of disjoint rectangles. However, the geometric decomposition in Journé’s
lemma can permit a reduction to rectangles for certain estimates, and for ours in particular.

The paper is organized as follows. We recall some definitions (Section 2) and give a proof
of the BMO result on the circle (Theorem 2 in Section 3). We prove the analogous result for
VMO in Section 4. In Section 5 we prove the averaging result in the setting of BMO of the
bidisc, as well as the generalization of Davis’s theorem to H1 functions on the bidisc. Section 6
contains our proof of the averaging theorem for VMO of the bidisc.

We thank Sergei Treil for helpful conversations about Davis’s theorem.

2. Definitions

A real-valued function f ∈ L1(T) is in the space BMO(T) of functions of bounded mean
oscillation on the circle if its BMO norm is finite:

‖f‖∗ := sup
I⊂T

1
|I|

∫
I

|f(x) − (f)I | dx < ∞.

Here (f)I := (1/|I|)
∫

I
f(x) dx is the average value of f on the interval I, and the circle T is

the interval [0, 1] with endpoints identified. Dyadic BMO of the circle, written BMOd(T), is
the space of functions which satisfy the corresponding estimate where the supremum is taken
over all I ∈ D, where D = D[0, 1] is the collection of dyadic subintervals of [0, 1]. The dyadic
BMO norm of f is denoted by ‖f‖d.

We use a characterization of the dyadic BMO functions on the circle in terms of the size of
Haar coefficients. The Haar function associated with the dyadic interval I is

hI(x) :=

⎧⎪⎨⎪⎩
|I|−1/2 if x ∈ Il,

−|I|−1/2 if x ∈ Ir,

0 otherwise.

As usual Il and Ir are the left and right halves, respectively, of the interval I. The Haar
coefficient over I of f is

fI = (f, hI) :=
∫
I

f(x)hI(x) dx,

the Haar series for f is

f(x) :=
∑
I∈D

(f, hI) hI(x),

and the L2-norm of f is

‖f‖d,2 =
∑
J∈D

(f, hJ)2.

It follows from the John–Nirenberg theorem [8, p. 230] that for each p � 1, for f ∈ L1(T)
the expression

‖f‖d,p := sup
I∈D

(
1
|I|

∫
I

|f(x) − (f)I |p dx

)1/p

is comparable to the dyadic BMO norm ‖f‖d.



526 JILL PIPHER AND LESLEY A. WARD

In particular, a function f ∈ L1(T) of mean value zero is in BMOd(T) if and only if there is
a constant C such that for all I ∈ D,∑

J⊂I, J∈D
(f, hJ)2 � C|I|. (1)

Moreover, the smallest such constant C is equal to ‖f‖2
d,2.

Note that since the sum in (1) ranges over dyadic intervals only, there is no need to restrict
the interval I itself to be dyadic. Here the notation J ⊂ I includes the case J = I if I is dyadic;
we will also use the notation

∑
J⊆I and

∑
J⊃I for clarity.

A function is in BMO if and only if it satisfies (1) with a continuous wavelet expansion
replacing the Haar series. When we define BMO on the bidisc, we will make use of the particular
representation employed in Chang–Fefferman [5].

On the bidisc T ⊗ T, we have an expansion of functions in terms of a double Haar series

f(x) =
∑

R∈D⊗D
(f, hR)hR(x),

where R denotes a dyadic rectangle R = I × J and hR = hI ⊗ hJ .

Definition 1 (Dyadic product BMO). A function f ∈ L1(T ⊗ T) belongs to BMOd(T ⊗ T)
if there exists a constant C such that for every open set Ω,∑

R⊂Ω, R∈D⊗D
(f, hR)2 � C|Ω|. (2)

See [1], and also [2], for equivalent definitions.

We now define BMO on the bidisc, recalling first the concept of the Carleson region associated
to an open set. For an interval I, the associated Carleson box in the upper half-plane is T (I) :=
I × (0, length(I)). For a rectangle R = I × J , the associated Carleson box in the product upper
half-plane is T (R) := T (I) × T (J). For an open set Ω in the bidisc, define T (Ω) :=

⋃
R⊂Ω T (R).

Let ψ(x) be a smooth function supported on [−1, 1] with mean value zero, and define the
usual dilation ψy(x) := y−1ψ(x/y) for y > 0. In what follows we write x = (x1, x2), y = (y1, y2),
and t = (t1, t2), and abbreviate the product ψy1(x1)ψy2(x2) by ψy(x). Thus for f defined on
the bidisc, the expression f ∗ ψy(x) denotes the iterated convolution

f ∗ ψy1(x1)ψy2(x2) =
∫∫

f(x1 − t1, x2 − t2)ψy1(t1)ψy2(t2) dt1 dt2.

When the function ψ is radial and satisfies the additional property∫∞

0
|ψ̂(t)|2 dt

t
= 1,

one has the Calderón–Torchinsky representation for f ∈ L2:

f(x) =
∫∫

f ∗ ψy(t)ψy(x − t)
dt1 dt2 dy1 dy2

y1y2
.

See [5]. This representation in turn leads to a wavelet expansion of f , by decomposing the
product upper half-plane into disjoint dyadic regions corresponding to top halves of Carleson
boxes. Specifically, if for I dyadic of length |I| we set I+ = I × (|I|/2, |I|), and for R = I × J
we set R+ = I+ × J+, then

f(x) =
∑

R∈D⊗D

∫∫
R+

f ∗ ψy(t)ψy(x − t)
dt1 dt2 dy1 dy2

y1y2
.

The following definition, from [4], therefore gives the (continuous) wavelet analog BMO of
BMOd.
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Definition 2 (Product BMO). A function f belongs to BMO(T ⊗ T) if there exists a
constant C such that, for all open sets Ω, the Carleson-measure condition holds:∫∫

T (Ω)
|f ∗ ψy(t)|2 dt1 dt2 dy1 dy2

y1y2
� C|Ω|. (3)

We defer the definitions of VMO(T), VMOd(T), VMO(T ⊗ T), and VMOd(T ⊗ T) to
Sections 4 and 6.

3. BMO(T) from averaging BMOd(T)

We give a proof of the Garnett–Jones theorem on the circle T.

Theorem 2. Suppose that ϕα ∈ BMOd(T) for each α ∈ [0, 1], that α �→ ϕα is measurable,
and that the BMOd norms of the functions ϕα are uniformly bounded: there is a constant Cd
such that

‖ϕα‖d � Cd

for all α ∈ [0, 1]. Suppose also that∫
T

ϕα(x) dx = 0 for all α ∈ [0, 1].

Then the translation-average

ϕ(x) :=
∫1

0
ϕα(x + α) dα

is in BMO(T).

Proof of Theorem 2. Using the Haar expansions of the functions ϕα, we write the
translation-average ϕ(x) as

ϕ(x) =
∫1

0
ϕα(x + α) dα =

∫1

0

∑
I∈D

(ϕα, hI) hI(x + α) dα

=
∫1

0

∑
n∈N

∑
I∈Dn

(ϕα, hI) hI(x + α) dα

=
∑
n∈N

∫1

0

∑
I∈Dn

(ϕα, hI) hI(x + α) dα

=
∑
n∈N

∫1

0
ϕα

n(x + α) dα

=
∑
n∈N

ϕn(x).

Here Dn := {I ∈ D
∣∣ |I| = 2−n} for n ∈ N, and we have set

ϕα
n(x) :=

∑
I∈Dn

(ϕα, hI) hI(x)

and

ϕn(x) :=
∫1

0
ϕα

n(x + α) dα =
∫1

0

∑
I∈Dn

(ϕα, hI) hI(x + α) dα.
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Fix an interval Q ⊂ T, not necessarily dyadic. Let N be the unique non-negative integer
such that

2−N−1 < |Q| � 2−N .

We split the sum, at the scale of |Q|, into two parts ϕA and ϕB in which the dyadic intervals I
are, respectively, small and large compared with Q:

ϕ = ϕA + ϕB , ϕA(x) :=
∑

n:2−n<|Q|
ϕn(x), ϕB(x) :=

∑
n:2−n�|Q|

ϕn(x).

To prove that ϕ belongs to BMO, it suffices to show that there are constants CA and CB

independent of Q, and a constant cQ depending on Q, such that

1
|Q|

∫
Q

|ϕA(x)|2 dx � CA, (4)

1
|Q|

∫
Q

|ϕB(x) − cQ| dx � CB . (5)

We begin with inequality (4). The left-hand side is

−
∫
Q

|ϕA(x)|2 dx = −
∫
Q

∣∣∣∣∣∣
∑

n:2−n<|Q|

∫1

0
ϕα

n(x + α) dα

∣∣∣∣∣∣
2

dx

�
∫1

0
−
∫
Q

∣∣∣∣∣∣
∑

n:2−n<|Q|
ϕα

n(x + α)

∣∣∣∣∣∣
2

dx dα. (6)

Fix an α ∈ [0, 1]. We shall provide a uniform estimate of the α-integrand in the last line of
inequality (6). Let Qα := Q − α be the translate of Q to the left by α. Therefore 2−N−1 <
|Qα| � 2−N . Now Qα may be covered by at most two adjacent dyadic intervals Q1, Q2 of
length |Q1| = |Q2| = 2−N , such that |Q1 ∪ Q2| � 4|Qα|. We obtain

1
|Q|

∫
Q

∣∣∣∣∣∣
∑

n:2−n<|Q|
ϕα

n(x + α)

∣∣∣∣∣∣
2

dx =
1

|Qα|

∫
Qα

∣∣∣∣∣∣
∑

n:2−n<|Q|
ϕα

n(x)

∣∣∣∣∣∣
2

dx

� 1
|Qα|

∫
Q1∪Q2

∣∣∣∣∣∣
∑

n:2−n<|Q|
ϕα

n(x)

∣∣∣∣∣∣
2

dx

=
|Q1 ∪ Q2|

|Qα| −
∫
Q1∪Q2

∣∣∣∣∣∣
∑

n:2−n<|Q|
ϕα

n(x)

∣∣∣∣∣∣
2

dx

� 4 −
∫
Q1

∣∣∣∣∣∣
∑

n:2−n<|Q|
ϕα

n(x)

∣∣∣∣∣∣
2

dx + 4 −
∫
Q2

∣∣∣∣∣∣
∑

n:2−n<|Q|
ϕα

n(x)

∣∣∣∣∣∣
2

dx.

The interval Q1 is dyadic and the functions ϕα are uniformly bounded in BMOd, so as in
our discussion of equation (1) there is a constant Cd independent of Q1 such that for all α ∈ T∑

I⊂Q1, I∈D
(ϕα, hI)2 � Cd |Q1|. (7)
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Therefore

−
∫
Q1

∣∣∣∣ ∑
n:2−n<|Q|

ϕα
n(x)

∣∣∣∣2 dx =
1

|Q1|

∥∥∥∥ ∑
I∈D(Q1)

(ϕα, hI)hI

∥∥∥∥2

=
1

|Q1|
∑

I∈D(Q1)

(ϕα, hI)2

� Cd.

Applying the same argument to Q2 and integrating over α ∈ [0, 1], we obtain inequality (4).
We turn to inequality (5). Recall that Q is a fixed interval in the circle T, not necessarily

dyadic. Also

ϕB(x) =
∑

n:2−n�|Q|
ϕn(x).

Fix a point x0 ∈ Q. For instance, let x0 be the left endpoint of Q. Let

cQ := ϕB(x0) =
∑

n:2−n�|Q|
ϕn(x0).

Then, writing Iα := I − α when I ∈ Dn, we have

−
∫
Q

|ϕB(x) − cQ| dx = −
∫
Q

∣∣∣∣ ∑
n:2−n�|Q|

∫1

0

∑
I∈Dn

(ϕα, hI)
[
hI(x + α) − hI(x0 + α)

]
dα

∣∣∣∣ dx

�
∑

n:2−n�|Q|
−
∫
Q

∣∣∣∣ ∫1

0

∑
I∈Dn

(ϕα, hI)
[
hIα(x) − hIα(x0)

]
dα

∣∣∣∣ dx. (8)

We must show that this last expression is bounded by some CB , independent of Q. Let

gn(x, x0) :=
∫1

0

∑
I∈Dn

(ϕα, hI)
[
hIα

(x) − hIα
(x0)

]
dα.

For fixed x ∈ Q, x0 ∈ Q, the expression hIα
(x) − hIα

(x0) will be zero for many values of α.
We have |x − x0| � |Q| � |I|. We consider two cases: (i) when |x − x0| � |I|/2, and (ii) when
|I|/2 < |x − x0| � |I|. In case (i), the expression hIα(x) − hIα(x0) can be non-zero only in
two situations. First, hIα

(x) − hIα
(x0) is non-zero when α is such that the midpoint of Iα

falls between x and x0. This happens exactly when α lies in a particular interval, call it
Ax,x0,I , of length |x − x0|. Second, hIα

(x) − hIα
(x0) is non-zero when one of the endpoints

of Iα falls between x and x0. This happens exactly when α lies in a set, call it Bx,x0,I ,
consisting of the union of two intervals, each of length |x − x0|. In the first situation, the
value of |hIα(x) − hIα(x0)| is 2|I|−1/2, and in the second situation it is |I|−1/2. In short,

|hIα(x) − hIα(x0)| � 2|I|−1/2

when α ∈ Ex,x0,I := Ax,x0,I ∪ Bx,x0,I , and |hIα(x) − hIα(x0)| = 0 for all other α. Here
|Ex,x0,I | � 3|x − x0|.

In case (ii), |I|/2 < |x − x0| � |I|, and so x and x0 never fall in the same half of Iα. Then
hIα(x) − hIα(x0) can be non-zero only when α lies in one single interval, call it Ex,x0,I , of length
|Ex,x0,I | = |I| + |x − x0| � 3|x − x0|. When α ∈ Ex,x0,I , we have |hIα(x) − hIα(x0)| � 2|I|−1/2

as in case (i).
We also note the following estimate on Haar coefficients of BMOd functions: for each α ∈ T

and for each I ∈ D,

|(ϕα, hI)| |I|−1/2 � −
∫
I

|ϕα(x) − (ϕα)I | dx � ‖ϕα‖d � Cd, (9)

where Cd is the uniform bound on the dyadic BMO norms of the functions ϕα.
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Now we can estimate |gn(x, x0)|, using inequality (9) in the last line:

|gn(x, x0)| =
∣∣∣∣ ∫1

0

∑
I∈Dn

(ϕα, hI)
[
hIα(x) − hIα(x0)

]
dα

∣∣∣∣
=

∣∣∣∣ ∑
I∈Dn

∫1

0
(ϕα, hI)

[
hIα

(x) − hIα
(x0)

]
dα

∣∣∣∣
=

∣∣∣∣ ∑
I∈Dn

∫
Ex,x0,I

(ϕα, hI)
[
hIα

(x) − hIα
(x0)

]
dα

∣∣∣∣
�

∑
I∈Dn

∫
Ex,x0,I

|(ϕα, hI)|
∣∣∣∣[hIα(x) − hIα(x0)

]∣∣∣∣ dα

�
∑

I∈Dn

∫
Ex,x0,I

|(ϕα, hI)| 2 |I|−1/2 dα

� 2n · 2 · Cd · 3|x − x0|. (10)

Therefore, using inequalities (8) and (10), we obtain

−
∫
Q

|ϕB(x) − cQ| dx �
∑

n:2−n�|Q|
−
∫
Q

|gn(x, x0)| dx

�
∑

n:2−n�|Q|
−
∫
Q

6 · 2n · Cd · |x − x0| dx

= 6 Cd

∑
n:2−n�|Q|

2n −
∫
Q

|x − x0| dx

� 6 Cd

∑
n:2−n�|Q|

2n |Q|
2

� 6 Cd.

This proves inequality (5), and hence Theorem 2.

4. VMO(T) from averaging VMOd(T)

In this section we define the space VMO(T) of functions of vanishing mean oscillation on the
circle, and the corresponding dyadic space VMOd(T). Then we state and prove the averaging
theorem for VMO, namely that translation-averages of suitable VMOd(T) functions belong
to VMO(T).

The space VMO was introduced by Sarason in [14]. A function belongs to VMO if its BMO
norm goes to zero uniformly as the intervals shrink to zero, or equivalently if the function
belongs to the closure of the continuous functions C∞

0 in BMO.

Definition 3 (VMO). A function f ∈ BMO(T) belongs to VMO(T) if for each ε > 0 there
exists a δ such that for all intervals I with |I| < δ,

1
|I|

∫
I

|f(x) − (f)I | dx � ε|I|.
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Definition 4 (Dyadic VMO). A function f belongs to VMOd(T) if for each ε > 0 there
exists a δ such that the BMO norm of ∑

J∈D,
|J|<δ

(f, hJ)hJ(x)

is at most ε.

Theorem 3. Suppose that the functions ϕα satisfy the hypotheses of Theorem 2 and, in
addition, belong to VMOd(T) uniformly: for each ε > 0 there is a δ such that for all α ∈ [0, 1],∥∥∥∥∥∥∥∥

∑
|J|<δ,
J∈D

(ϕα, hJ)hJ(x)

∥∥∥∥∥∥∥∥
∗

� ε.

Then the translation-average

ϕ(x) :=
∫1

0
ϕα(x + α) dα

is in VMO(T).

Proof. The proof follows the same lines as that of the BMO result: we split ϕ into two
functions, one corresponding to the part of the expansion over small intervals (this part has
small BMO norm), and the remaining function which is controlled by averaging. Fix an ε > 0.
For this ε, we have on hand a δ that is guaranteed by the uniform VMO condition on the
functions ϕα. Choose a large N equal to N(ε, δ) satisfying 2−N < δ. We aim to find a K such
that if |Q| < 2−K then

1
|Q|

∫
Q

|ϕ(x) − (ϕ)Q| dx � ε.

Split ϕ = ϕ1 + ϕ2, where

ϕ1(x) :=
∫1

0

∑
I∈D,

|I|<2−N

(ϕα, hI)hI(x + α) dα

and

ϕ2(x) :=
∫1

0

∑
I∈D,

|I|�2−N

(ϕα, hI)hI(x + α) dα.

We claim that for |Q| < 2−K and K sufficiently large, there is a constant cQ such that

1
|Q|

∫
Q

|ϕ1(x) − cQ| dx � ε. (11)

To see this, fix such a Q and make a further split of ϕ1 as in the proof of Theorem 2: ϕ1 =
ϕ1,A + ϕ1,B , where

ϕ1,A(x) =
∫1

0

∑
I∈D,

|I|�2−K

(ϕα, hI)hI(x + α) dα
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and

ϕ1,B(x) =
∫1

0

∑
I∈D,

2−K<|I|<2−N

(ϕα, hI)hI(x + α) dα.

Then exactly the same argument as in the BMO situation proves that

1
|Q|

∫
Q

|ϕ1,A(x)|2 dx � 2ε

as long as 2−K < δ.
Now, following the argument of equation (8) and with the same notation, we have

1
|Q|

∫
Q

|ϕ1,B(x) − cQ| dx �
∑

n:2−K<2−n<2−N

1
|Q|

∫
Q

|gn(x, x0)| dx,

where cQ =
∑

n:2−K<2−n<2−N ϕn(x0).
As before, |hIα

(x) − hIα
(x0)| � 2|I|−1/2, while the difference is only non-zero for α ∈ Ex,x0,I ,

and |Ex,x0,I | is approximately |x − x0| and therefore bounded by 2−K . Note that

|gn(x, x0)| �
∫
Ex,x0,I

∑
I∈Dn

|(ϕα, hI)|2|I|−1/2 dα,

and this expression is bounded by C2nε|x − x0|, since 2−n < δ. Thus

1
|Q|

∫
Q

|ϕ1,B(x) − cQ| dx �
∑

n:2−K<2−n<2−N

C2nε
1

|Q|

∫
Q

|x − x0| dx

= Cε
∑

n:2−K<2−n<2−N

2n |Q|
2

� Cε|Q|
K∑

n=N

2n

= Cε.

This completes the proof of (11).
To estimate ϕ2(x), for cQ =

∑
n�N ϕn(x0) we have

1
|Q|

∫
Q

|ϕ2(x) − cQ| dx �
∑
n�N

1
|Q|

∫
Q

|gn(x, x0)| dx

and |gn(x, x0)| � C2n|x − x0|. Thus

1
|Q|

∫
Q

|ϕ2(x) − cQ| dx � C
∑
n�N

2n|Q|

� C2−K
∑
n�N

2n

� C2−K2N � ε,

if K is chosen sufficiently large.

5. BMO(T ⊗ T) from averaging BMOd(T ⊗ T)

We work on the bidisc T ⊗ T; in other words, on [0, 1] × [0, 1] with appropriate faces
identified.
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Theorem 4. Suppose that ϕα ∈ BMOd(T ⊗ T) for each α = (α1, α2) ∈ [0, 1] × [0, 1], that
α �→ ϕα is measurable, and that the BMOd norms of the functions ϕα are uniformly bounded:
there is a constant Cd such that

‖ϕα‖d � Cd

for all α ∈ [0, 1] × [0, 1]. Let x = (x1, x2). Suppose also that∫
ϕα(x) dx = 0 for all α ∈ [0, 1] × [0, 1].

Then the translation-average

ϕ(x) :=
∫1

0

∫1

0
ϕα(x + α) dα

is in BMO(T ⊗ T).

In [10], Journé defined a wide class of multiparameter Calderón–Zygmund singular integrals,
and proved a T (1) theorem characterizing boundedness of these operators. His geometric
observations were synthesized into a covering lemma for open sets in R

2 (see [11]), which
was extended to open sets in R

n, n > 2, in [13]. For several recent variants of Journé’s lemma,
see [3] and the references therein.

We begin with some definitions.

Definition 5 (Dyadic rectangles in Ω). Let Ω be an open set in T ⊗ T. From now on, let
D (rather than D ⊗ D as used earlier) denote the collection of dyadic rectangles R = I × J
in T ⊗ T, where I and J are dyadic intervals in T. For a dyadic interval I, let 2I denote the
dyadic parent of I. Define the subcollections M1(Ω) and M2(Ω) of D to be the collections of
dyadic rectangles in Ω which are maximal in the first and second components, respectively:

M1(Ω) := {R = I × J ∈ D
∣∣ I × J ⊂ Ω but 2I × J �⊂ Ω},

M2(Ω) := {R = I × J ∈ D
∣∣ I × J ⊂ Ω but I × 2J �⊂ Ω}.

We use the notation M to denote the strong maximal operator:

Mf(x) := sup
{

1
|R|

∫
R

f(x) dx

∣∣∣∣ R ∈ D, x ∈ R

}
.

If Ω is an open set in T ⊗ T, then Ω̃ denotes the following enlargement of Ω:

Ω̃ :=
{
MχΩ > 1

2

}
.

Thus Ω ⊂ Ω̃, and there is a constant C such that |Ω̃| � C |Ω| for all open Ω ⊂ T ⊗ T.
Later we will also consider enlargements of enlargements:˜̃Ω :=

{
MχΩ̃ > 1

2

}
.

Definition 6 (Fk). To each rectangle R = I × J in M2(Ω) we associate a natural number
k = k(R) ∈ N ∪ {0} as follows. Let 2kI denote the unique dyadic interval of length 2k|I| that
contains I, and set

k(R) := the largest non-negative integer such that 2kI × J ⊂ Ω̃

and

Fk = Fk(Ω) := {R = I × J ∈ M2(Ω)
∣∣ k(R) = k}.
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In other words, R = I × J ⊂ Ω is in Fk if I × 2J �⊂ Ω and k is the unique integer such that
2kI × J ∈ M1(Ω̃). Each R ∈ M2(Ω) lies in exactly one Fk, and so M2(Ω) can be written as
the disjoint union

M2(Ω) =
∞⋃

k=0

Fk.

Theorem 5 (Journé’s lemma). Let Ω be an open set in T ⊗ T. Then there is a constant C
such that ∑

R:R∈M2(Ω),
R∈Fk

|R| � Ck|Ω|.

Let

M(Ω) := M1(Ω) ∩ M2(Ω)

denote the dyadic rectangles in Ω which are maximal in both directions.

Definition 7 (Gl). For l ∈ N, define

Gl = Gl(Ω) :=
{

R = I × J ∈ M2(Ω)
∣∣ for the unique k such that R ∈ Fk,

l is the largest non-negative integer such that 2kI × 2lJ ⊂ ˜̃Ω}
.

Then M2(Ω) can also be written as the disjoint union

M2(Ω) =
∞⋃

l=0

Gl.

As a corollary of Journé’s lemma, we have an analogous result for the sets Gl.

Proposition 1 (Journé’s lemma for Gl). Let Ω be an open set in T ⊗ T. Then there is a
constant C such that ∑

R:R∈Gl

|R| � Cl|Ω|.

Proof of Proposition 1. Writing R = I × J , we see that∑
R:R∈Gl

|R| =
∑

k

∑
R:R∈Gl∩Fk

|R|

=
∑

k

∑
R:R=I×J∈Gl∩Fk

2−k|2kI × J |.

The inner sum is over a collection of distinct rectangles R, and the rectangle R′ = 2kI × J
belongs to M1(Ω̃). However, more than one R can lead to the same rectangle 2kI × J ∈ M1(Ω̃).
Specifically, fix R′ = 2kI × J . For each dyadic subinterval Î of 2kI of length I, if Î × J ∈
M2(Ω), then the rectangle R = Î × J gives rise to R′ again. These are the only rectangles R
that can lead to R′, and so there are at most 2k rectangles R in Fk that can give rise to a
given R′ = 2kI × J . Now, letting

Ml,k(Ω̃) := {R′ ∣∣ R′ ∈ M1(Ω̃), R′ ∈ Gl(Ω̃), R′ = 2kI × J and I × J ∈ Fk},
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we obtain∑
k

∑
R:R=I×J∈Gl∩Fk

2−k|2kI × J | �
∑

k

∑
R′:R′∈Ml,k(Ω̃)

2−k2k|R′|

� Cl|Ω̃| by Journé’s lemma
� C ′l|Ω|,

as required.

Proof of Theorem 4. To show that the translation-average ϕ of the BMOd functions ϕα

is in BMO, it suffices to show that there is a constant C such that for all open sets Ω in the
bidisc T ⊗ T ∫∫

T (Ω)
|ϕ ∗ ψy(t)|2 dt1 dt2 dy1 dy2

y1y2
� C|Ω|, (12)

where t = (t1, t2), y = (y1, y2), ψy(t) = ψy1(t1)ψy2(t2), ψ̂ has sufficient decay at the origin, and
T (Ω) is the union of those regions T (R0) such that R0 ∈ M(Ω).

For α = (α1, α2) ∈ [0, 1] × [0, 1], let

Rα = Iα1 × Jα2 := (I − α1) × (J − α2)

be the α-translation of the dyadic rectangle R = I × J .
Note first that

ϕ ∗ ψy(t) =
∫1

0

∫1

0

∑
R:R∈D

(ϕα, hR) hRα ∗ ψy(t) dα.

Now hRα ∗ ψy(t) =
[
hIα1

∗ ψy1(t1)
] [

hJα2
∗ ψy2(t2)

]
is non-zero only if

Rα ∩
(
Iy1(t1) × Iy2(t2)

)
�= ∅,

since Iy1(t1) := [t1 − y1, t1 + y1] = suppψy1(t1 − ·).
We split the integral over the Haar series into two parts: the part involving ϕ(1) that sums over

those rectangles Rα contained in ˜̃Ω and the part involving ϕ(2) that sums over the remaining
rectangles. Set

ϕ(1) ∗ ψy(t) :=
∫1

0

∫1

0

∑
R:Rα⊂ ˜̃Ω

(ϕα, hR) hRα
∗ ψy(t) dα.

Then equation (12) with ϕ replaced by ϕ(1) holds by L2-theory. That is, because ‖ϕα‖d � Cd
for all α, we obtain the estimate∫∫

T (Ω)
|

∑
R:Rα⊂ ˜̃Ω

(ϕα, hR) hRα ∗ ψy(t)|2 dt1 dt2 dy1 dy2

y1y2
�

∑
R:Rα⊂ ˜̃Ω

(ϕα, hR)2 � C|Ω|,

and the bound is unchanged when we integrate in α.
Set

ϕ(2) := ϕ − ϕ(1).

Since T (Ω) = ∪{T (R0)
∣∣ R0 ∈ M(Ω)}, to show that equation (12) holds for ϕ(2) it suffices to

show that ∑
R0:R0∈M(Ω)

∫∫
T (R0)

|ϕ(2) ∗ ψy(t)|2 dt1 dt2 dy1 dy2

y1y2
� C|Ω|.

We use Journé’s lemma for this.
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Fix k and l and a rectangle R0 ∈ Fk ∩ Gl, such that 2kI × 2lJ ⊂ ˜̃Ω. Consider the quantity∫1

0

∫1

0

∑
Rα:Rα �⊂ ˜̃Ω,
Rα∩3R0 �=0

(ϕα, hR) hRα ∗ ψy(t) dα.

(Note that for each Rα in this sum, we have Rα ∩ 3R0 �= ∅, since Iy1(t1) × Iy2(t2) ⊂ 3R0.) At
this point, we would like to argue that if the sum in the above integral is non-zero, then either

|Iα1 | > 2k|I0| or |Jα2 | > 2l|J0|,

or both.
In fact this is only true if we are summing over those rectangles Rα not contained in a

(further) enlargement of ˜̃Ω, obtained by doubling the size of rectangles contained in ˜̃Ω about
their centers. To avoid introducing more notation, we will assume that ˜̃Ω has been so enlarged.
Then, it suffices to estimate over each of the following four subcollections of rectangles:

Case (i): |Iα1 | > 2k|I0| but |Jα2 | � 2k|J0|;
Case (ii): |Iα1 | > 2k|I0| and |Jα2 | > 2k|J0|;
Case (iii): |Jα2 | > 2l|J0| but |Iα1 | � 2l|I0|;
Case (iv): |Jα2 | > 2l|J0| and |Iα1 | > 2l|I0|.

Case (i): For fixed R0 = I0 × J0 in Fk ∩ Gl, we estimate∫∫
T (R0)

[C(i)]2
dt dy

y
,

where

C(i) :=
∣∣∣∣ ∫1

0

∫1

0

∑
I:|Iα1 |>2k|I0|

∑
J:|Jα2 |�2k|J0|

(ϕα, hR) hRα
∗ ψy(t) dα

∣∣∣∣.
Let

cJ :=
∑

I:|I|>2k|I0|

∫1

0
(ϕα1,α2 , hR) hIα1

∗ ψy1(t1) dα1.

Then ∫∫
T (J0)

∣∣∣∣ ∑
J:|Jα2 |�2k|J0|

cJhJα2
∗ ψy2(t2)

∣∣∣∣2 dt2 dy2

y2
�

∑
J:Jα2⊂3·2kJ0

c2
J , (13)

by L2-theory. It remains to estimate the quantity∫∫
T (I0)

∑
J:Jα2⊂3·2kJ0

c2
J

dt1 dy1

y1
.

For fixed (t1, y1) ∈ T (I0), and fixed I, we have
∫1

0
(ϕα1,α2 , hR)hIα1

∗ ψy1(t1) dα1 =
∫
Ey1,t1,I

(ϕα1,α2 , hR)hIα1
∗ ψy1(t1) dα1,

where

Ey1,t1,I :=
{
α1

∣∣ hIα1
∗ ψy1(t1) �= 0

}
.

By the argument we used in the one-parameter setting,

|Ey1,t1,I | � Cy1.
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Then, using Cauchy–Schwarz in the second line,

c2
J =

∣∣∣∣ ∑
I:|I|>2k|I0|

∫
Ey1,t1,I

(ϕα1,α2 , hR) hIα1
∗ ψy1(t1) dα1

∣∣∣∣2

�
( ∑

I:|I|>2k|I0|

1
) ∑

I:|I|>2k|I0|

[ ∫
Ey1,t1,I

(ϕα1,α2 , hR) hIα1
∗ ψy1(t1) dα1

]2

� C
1

2k|I0|
∑

I:|I|>2k|I0|

[ ∫
Ey1,t1,I

|(ϕα1,α2 , hR)| |Iα1 |−1/2 dα1

]2

.

In the last line we have used the observation that the number of dyadic intervals I in T at the
k scales of length at least 2k−1I0 is 1/(2k|I0|), and also that

|hIα1
∗ ψy1(t1)| � |hIα1

| � |I|−1/2.

Therefore, using the Cauchy–Schwarz inequality again,

c2
J � C

2k|I0|
∑

I:|I|>2k|I0|

y1

∫
Ey1,t1,I

|(ϕα1,α2 , hR)|2 |I|−1 dα1.

Returning to the sum in equation (13), we have∑
J:Jα2⊂3·2kJ0

c2
J � C

2k|I0|
∑

I:|I|>2k|I0|

y1 |I|−1
∫
Ey1,t1,I

∑
J:Jα2⊂3·2kJ0

(ϕα1,α2 , hR)2 dα1.

The integrand is less than or equal to a constant times 2k|I||J0|, by the BMO condition on the
open set I × 2kJ0. Integrating over Ey1,t1,I , we obtain∑

J:Jα2⊂3·2kJ0

c2
J � C

2k|I0|
∑

I:|I|>2k|I0|

y1 |I|−1 (
2k|I||J0|y1

)
.

It remains to integrate the right-hand side over T (I0). Then∫∫
T (I0)

1
2k|I0|

∑
I:|I|>2k|I0|

y2
1 |J0| 2k dt1 dy1

y1
� 1

22k|I0|2
2k|J0|

∫∫
T (I0)

y2
1

dt1 dy1

y1

� 1
22k|I0|2

2k|J0| |I0|3

� 2−k |I0 × J0|.

Integrating over T in α1 does not change this bound.
Now, summing over the rectangles R0, we obtain∑

k,l

∑
R0:R0∈Fk∩Gl

∫∫
T (R0)

[C(i)]2
dt dy

y
�

∑
k

∑
R0:R0∈Fk

∫∫
T (R0)

[C(i)]2
dt dy

y

�
∑

k

∑
R0:R0∈Fk

2−k|R0|

� C |Ω|,

by Journé’s lemma. This controls the sum over the rectangles covered by case (i).

Case (ii): Here we consider those rectangles R = I × J for which I and J are both large.
Fix a point (t, y) = (t1, t2, y1, y2) in T (R0). We must estimate the quantity∫∫

T (R0)
[C(ii)]2

dt dy

y
,
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where

C(ii) :=
∣∣∣∣ ∫1

0

∫1

0

∑
I:|Iα1 |>2k|I0|

∑
J:|Jα2 |>2k|J0|

(ϕα, hR) hRα ∗ ψy(t) dα

∣∣∣∣. (14)

For fixed I and J in that sum, consider the expression

C(ii)(R) :=
∣∣∣∣ ∫1

0

∫1

0
(ϕα, hR)

[
hRα1

∗ ψy1(t1)
] [

hRα2
∗ ψy2(t2)

]
dα

∣∣∣∣. (15)

Again, the integrand can be non-zero only when α1 ∈ Ey1,t1,I and α2 ∈ Ey2,t2,I , where Ey1,t1,I

and Ey2,t2,I are of size y1 and y2, respectively. Also

|(ϕα, hR)| � Cd|R|1/2,

|hIα1
∗ ψy1(t1)| � |I|−1/2,

|hIα2
∗ ψy2(t2)| � |J |−1/2.

Integrating over Ey1,t1,I and Ey2,t2,I gives

C(ii)(R) � Cdy1y2. (16)

Summing C(ii)(R) over I and J , we find that

C(ii) � Cd

[
1

2k|I0|
1

2k|J0|
y1y2

]
. (17)

Therefore ∫∫
T (R0)

[C(ii)]2
dt1 dt2 dy1 dy2

y1 y2
� C2

d2−4k|R0|. (18)

As in the previous case, we sum over these rectangles R0 in Fk and use Journé’s lemma to
conclude that the sum is bounded by a constant times |Ω|.

Case (iii): We must estimate the quantity∫∫
T (R0)

[C(iii)]2
dt dy

y
,

where

C(iii) :=

∣∣∣∣∣
∫1

0

∫1

0

∑
J:|Jα2 |>2l|J0|

∑
I:|Iα1 |�2l|I0|

(ϕα, hR) hRα
∗ ψy(t) dα

∣∣∣∣∣. (19)

Move the integral in α1 to the outside, by Cauchy–Schwarz. Let

cI :=
∑

J:|Jα2 |>2l|J0|

∫1

0
(ϕα, hR) hJα2

∗ ψy2(t2) dα2.

Fix α1. If hJα2
∗ ψy2(t2) �= 0, then Iα1 ∩ 3I0 �= ∅, and so Iα1 ⊂ 3 · 2lI0. Therefore, by the

L2-theory again,

∫∫
T (I0)

∣∣∣∣∣∣∣∣∣
∑

I:|I|<2l|I0|
Iα1∩3I0 �=∅

cI hIα1
∗ ψy1(t1)

∣∣∣∣∣∣∣∣∣
2

dt1 dy1

y1
�

∫∫
T (I0)

∣∣∣∣∣∣∣∣∣
∑

I:|I|<2l|I0|
Iα1⊂3·2lI0

cI hIα1
∗ ψy1(t1)

∣∣∣∣∣∣∣∣∣
2

dt1 dy1

y1

�
∑

I:Iα1⊂3·2lI0

c2
I .
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Following the argument laid out in case (i), we get∑
I:Iα1⊂3·2lI0

c2
I � 1

2l|J0|
∑

J:|J|>2l|J0|

y2|J |−12l|I0||J |. (20)

Summing over the rectangles R0, we obtain∑
k,l

∑
R0:R0∈Fk∩Gl

∫∫
T (R0)

[C(iii)]2
dt dy

y
�

∑
l

∑
R0:R0∈Gl

∫∫
T (R0)

[C(iii)]2
dt dy

y

�
∑

l

∑
R0:R0∈Gl

2−2l|J0| · 2l|I0|

=
∑

l

∑
R0:R0∈Gl

2−l|R0|

�
[∑

l

C l 2−l

]
|Ω|,

by the version in Proposition 1 of Journé’s lemma for the sets Gl. This controls the sum over
the rectangles covered by case (iii).

Case (iv): We omit the argument for this case. The argument is similar to that for case (ii),
and uses Proposition 1.

This completes the proof of Theorem 4.

As a corollary of Theorem 4, by duality we can establish the product version on the bidisc
of Davis’s theorem connecting H1 and dyadic H1

d [7, Theorem 3.1, case p = 1], just as Garnett
and Jones noted for the one-parameter case in [9]. For complete information about the Hardy
space H1 on the bidisc, see [6] and the references therein. Product VMO on the bidisc is
discussed in Section 6 below; here we use only that VMOd(T ⊗ T) ⊂ BMOd(T ⊗ T) and that
product H1 is the dual of product VMO.

Theorem 6 (Biparameter Davis theorem). If f ∈ H1(T ⊗ T), then for almost every α ∈
[0, 1] × [0, 1], the translation Tαf(·) := f(· − α) belongs to H1

d(T ⊗ T), and
∫1

0

∫1

0
‖Tαf‖H1

d
dα � C‖f‖H1 .

Proof. We will use the following facts about the Hardy space H1(T ⊗ T):(
H1(T ⊗ T)

)∗ = BMO(T ⊗ T), H1(T ⊗ T) =
(
VMO(T ⊗ T)

)∗
,

and their dyadic analogs.
Take f ∈ H1(T ⊗ T). If f is also continuous, then f and all its translates Tαf belong

to H1
d(T ⊗ T). To get the norm estimate, note that ‖Tαf‖H1

d
varies continuously and uniformly

in α. By duality the norm ‖Tαf‖H1
d

is given by pairing with a BMO(T ⊗ T) function. If we
approximate these norms, we can choose a family of ϕα which vary measurably in α. Indeed
the map α �→ ϕα will be piecewise constant.
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By Theorem 4, the translation-average ϕ(·) :=
∫1
0

∫1
0 ϕα(· + α) dα is in BMO(T ⊗ T), and

‖ϕ‖∗ � 1. Then ∫1

0

∫1

0
〈Tαf, ϕα〉 dα =

∫1

0

∫1

0

∫
T⊗T

Tαf(x)ϕα(x) dx dα

=
∫

T⊗T

f(x)
∫1

0

∫1

0
ϕα(x + α) dα dx

� ‖f‖H1 .

In particular, Tαf is in H1
d(T ⊗ T) for almost all α.

Now assume that f ∈ H1(T ⊗ T), ‖f‖ = 1. We can represent f =
∑

n fn, where the fn are
continuous and

∑
n ‖fn‖H1 � (1 + ε)‖f‖H1 . Define

F (α) :=
∑

n

‖Tαfn‖H1
d
.

The estimate for the continuous functions implies that∫1

0

∫1

0
F (α) dα =

∑
n

∫1

0

∫1

0
‖Tαfn‖H1

d
dα �

∑
n

C‖fn‖H1 � C(1 + ε)‖f‖H1 .

Since ∣∣∣∣ ∫
I

Tαf(t) dt

∣∣∣∣ �
∑

n

∣∣∣∣ ∫
I

Tαfn(t) dt

∣∣∣∣
we have

(Tαf)∗(x) �
∑

n

(Tαfn)∗(x),

where (Tαf)∗ denotes the the martingale maximal function of Tαf .
Integrating with respect to x we obtain

‖Tαf‖H1
d

� F (α).

6. VMO(T ⊗ T) from averaging VMOd(T ⊗ T)

The product VMO space VMO(T ⊗ T) was investigated in [12] where, among other things,
the authors gave a definition of product VMO in terms of Carleson measures, and identified
product VMO as the predual of product H1. We recall their definition of product VMO. Let
Dn denote the class of dyadic rectangles Q such that |Q| is less than 2−n.

Definition 8 (Product VMO). A function b belongs to VMO(T ⊗ T) if b belongs to
BMO(T ⊗ T), and for each ε > 0 there is an n ∈ N such that for every open set Ω in the
bidisc T ⊗ T, ∑

Q:Q⊂Ω, Q∈Dn

∫∫
Q+

|b ∗ ψy(t)|2 dt1 dt2 dy1 dy2

y1y2
� ε|Ω|, (21)

where

Dn := {Q = Q1 × Q2
∣∣ Q1, Q2 are dyadic intervals in T with |Q| := |Q1| |Q2| < 2−n}.

Specializing equation (21) to one parameter, it can be seen that this definition of VMO is
equivalent to Definition 3.

As in the one-parameter case, product VMO can also be characterized as the closure of C∞
0

in BMO (see [12]).
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Definition 9 (Dyadic product VMO). A function b belongs to the space dyadic product
VMO, denoted by VMOd(T ⊗ T), if for each ε > 0 there is an N such that for all open sets
A ⊂ T ⊗ T, we have ∑

R:R⊂A, R∈D, |R|<2−N

(ϕα, hR)2 � ε|A|.

We now prove the averaging theorem for product VMO, namely that translation-averages of
suitable VMOd(T ⊗ T) functions belong to VMO(T ⊗ T). The argument requires one essential
modification from the product BMO averaging theorem. When specialized to one parameter,
the argument gives another proof of Theorem 3.

Theorem 7. Suppose that ϕα ∈ BMOd(T ⊗ T) for each α = (α1, α2) ∈ [0, 1] × [0, 1], that
α �→ ϕα is measurable, and that the BMOd norms of the functions ϕα are uniformly bounded:
there is a constant Cd such that

‖ϕα‖d � Cd

for all α ∈ [0, 1] × [0, 1]. Let x = (x1, x2). Suppose also that∫
ϕα(x) dx = 0 for all α ∈ [0, 1] × [0, 1].

Suppose in addition that the functions ϕα belong to VMOd(T ⊗ T) uniformly: for each ε > 0
there is an N such that for all α ∈ [0, 1] × [0, 1] and for all open sets A ⊂ T ⊗ T,∑

R:R⊂A, R∈D, |R|<2−N

(ϕα, hR)2 � ε|A|.

Then the translation-average

ϕ(x) :=
∫1

0

∫1

0
ϕα(x + α) dα

is in VMO(T ⊗ T).

Proof. By Theorem 4, ϕ is in BMO(T ⊗ T). Let Ω be an open set in the bidisc T ⊗ T, and
fix ε > 0. Since the functions ϕα are uniformly in VMO(T ⊗ T), there is some N such that for
all α ∈ [0, 1] × [0, 1] and for all open sets A ⊂ T ⊗ T,∑

R:R⊂A, R∈D, |R|<2−N

(ϕα, hR)2 � ε|A|.

It suffices to show that for K = K(ε, N) sufficiently large,∑
Q:Q⊂Ω, Q∈D, |Q|<2−K

∫∫
Q+

|ϕ ∗ ψy(t)|2 dt1 dt2 dy1 dy2

y1y2
� ε|Ω|. (22)

We first split the sum in the integrand of ϕ at scale 2−N such that ϕ = ϕ1 + ϕ2, where

ϕ1 :=
∫1

0

∫1

0

∑
R:R∈D, |R|<2−N

(ϕα, hR) hR(x + α) dα,

ϕ2 := ϕ − ϕ1 =
∫1

0

∫1

0

∑
R:R∈D, |R|�2−N

(ϕα, hR) hR(x + α) dα.
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Thus ϕ ∗ ψy(t) = ϕ1 ∗ ψy(t) + ϕ2 ∗ ψy(t), where

ϕ1 ∗ ψy(t) =
∫1

0

∫1

0

∑
R:R∈D, |R|<2−N

(ϕα, hR) hRα
∗ ψy(t) dα,

ϕ2 ∗ ψy(t) =
∫1

0

∫1

0

∑
R:R∈D, |R|�2−N

(ϕα, hR) hRα
∗ ψy(t) dα. (23)

Here, as usual,

Rα = R(α1,α2) := (I − α1) × (J − α2)

is the translate of the rectangle R ∈ D by α = (α1, α2).
The estimate for ϕ1 is straightforward. We apply the arguments of Section 5, including the

splitting into four cases. The arguments go through without change, and we obtain a stronger
inequality than (22), namely

∑
Q:Q⊂Ω, Q∈D

∫∫
Q+

|ϕ1 ∗ ψy(t)|2 dt1 dt2 dy1 dy2

y1y2
� ε|Ω|.

We turn to the estimate for ϕ2. We must show that there is a K such that

∑
Q:Q⊂Ω, Q∈D, |Q|<2−K

∫∫
Q+

|ϕ2 ∗ ψy(t)|2 dt1 dt2 dy1 dy2

y1y2
� ε|Ω|, (24)

where ϕ2 ∗ ψy(t) is as defined in equation (23).
Fix δ with 0 < δ < 2−N , and let K = K(ε, N, δ) � N be a positive integer to be determined

later.
Write Q = Q1 × Q2 and Q+ = Q+

1 × Q+
2 . If |Q| = |Q1| |Q2| < 2−K , then either |Q1| < 2−K/2

or |Q2| < 2−K/2, or both.
We consider two cases for inequality (22): one in which we sum over rectangles Q with

|Q1| < 2−K/2, and one in which we sum over rectangles Q with |Q2| < 2−K/2. For notational
convenience we relabel K/2 as K. By symmetry, we may assume that our sum is taken over
rectangles Q for which |Q1| < 2−K . Then

∑
Q:Q⊂Ω, Q∈D,|Q1|<2−K

∫∫
Q+

|ϕ2 ∗ ψy(t)|2 dt1 dt2 dy1 dy2

y1y2

�
∫
(t1,t2)∈Ω

∫
0<y1<2−K

∫
0<y2<1

|ϕ2 ∗ ψy(t)|2 dt1 dt2 dy1 dy2

y1y2
. (25)

Now we make use of our previously chosen δ, splitting the integral in y2 into an integral
over 0 < y2 < δ and another over δ < y2 < 1.

First, consider the part of the integral in the right-hand side of inequality (25) with 0 < y2 <
δ. Fix R ∈ D such that |R| � 2−N . Because both y1 < |I| and y2 < |J |, the same arguments
used to establish inequality (16) apply, and we obtain the inequality

∫1

0

∫1

0

∣∣(ϕα, hR) hRα
∗ ψy(t)

∣∣ dα � Cy1y2.
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Since there are no more than (N + 1)2N+2 dyadic rectangles R of area |R| � 2−N , we find
that

|ϕ2 ∗ ψy(t)| =
∣∣∣ ∫1

0

∫1

0

∑
R:R∈D, |R|�2−N

(ϕα, hR) hRα
∗ ψy(t) dα

∣∣∣
�

∑
R:R∈D, |R|�2−N

∣∣∣ ∫1

0

∫1

0
(ϕα, hR) hRα ∗ ψy(t) dα

∣∣∣
� (N + 1)2N+2CCdy1y2.

Hence

|ϕ2 ∗ ψy(t)|2 �
[
(N + 1)2N+2CCdy1y2

]2
.

Therefore
∫
(t1,t2)∈Ω

∫
0<y1<2−K

∫
0<y2<δ

|ϕ2 ∗ ψy(t)|2 dt1 dt2 dy1 dy2

y1y2

�
∫
(t1,t2)∈Ω

∫
0<y1<2−K

∫
0<y2<δ

[
(N + 1)2N+2CCdy1y2

]2 dt1 dt2 dy1 dy2

y1y2

=
[
(N + 1)2N+2CCd

]2 |Ω|
∫2−K

0
y2
1

dy1

y1

∫ δ

0
y2
2

dy2

y2

=
[
(N + 1)2N+2CCd

]2 |Ω| (2−K)2

2
δ2

2
� ε|Ω|

as required, if K = K(ε, N, δ) is chosen sufficiently large.
Second, consider the part of the integral with δ < y2 < 1:

∫
(t1,t2)∈Ω

∫
0<y1<2−K

∫
δ<y2<1

|ϕ2 ∗ ψy(t)|2 dt1 dt2 dy1 dy2

y1y2
,

where

ϕ2 ∗ ψy(t) =
∫1

0

∫1

0

∑
R:R∈D, |R|�2−N

(ϕα, hR) hRα
∗ ψy(t) dα.

As before, |(ϕα, hR)| � Cd|R|1/2. Also |hIα1
∗ ψy1(t1)| � |I|−1/2 and |hJα2

∗ ψy2(t2)| � |J |−1/2.
Further, hIα1

∗ ψy1(t1) = 0 except when α1 lies in a specific set of total length at most
3|It1(y1)| = 6y1, because y1 < |I|. We obtain

|ϕ2 ∗ ψy(t)| �
∑

R:R∈D, |R|�2−N

∫1

0

∫1

0
|(ϕα, hR)| |hIα1

∗ ψy1(t1)| |hJα2
∗ ψy2(t2)| dα

�
∑

R:R∈D, |R|�2−N

Cd|R|1/26y1|I|−1/2
∫1

0
|J |−1/2 dα2

=
∑

R:R∈D, |R|�2−N

Cd6y1

� CCd(N + 1)2N+2y1.
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Thus ∫
(t1,t2)∈Ω

∫
0<y1<2−K

∫
δ<y2<1

|ϕ2 ∗ ψy(t)|2 dt1 dt2 dy1 dy2

y1y2

�
∫
(t1,t2)∈Ω

∫
0<y1<2−K

∫
δ<y2<1

[
CCd(N + 1)2N+2y1

]2 dt1 dt2 dy1 dy2

y1y2

=
[
CCd(N + 1)2N+2]2 |Ω|

∫2−K

0
y2
1

dy1

y1

∫1

δ

dy2

y2

=
[
CCd(N + 1)2N+2]2 |Ω| 2−2K

2
log

1
δ

� ε|Ω|,

if K = K(ε, N, δ) is chosen sufficiently large.
We have shown that the translation-average ϕ is in VMO(T ⊗ T), as required.
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