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REPRESENTATION OF BI-PARAMETER SINGULAR INTEGRALS BY
DYADIC OPERATORS

HENRI MARTIKAINEN

ABSTRACT. We prove a dyadic representation theorem for bi-parameter singular
integrals. That is, we represent certain bi-parameter operators as rapidly decay-
ing averages of what we call bi-parameter shifts. A new version of the product
space T 1 theorem is established as a consequence.

1. INTRODUCTION

We study certain bi-parameter singular integrals T acting on some class of
functions with product domain Rn+m = Rn × Rm. Our aim is to prove a rep-
resentation theorem for them as an average of bi-parameter shifts S:

〈Tf, g〉 = CTEwn
Ewm

∑

(i1,i2)∈Z2
+

(j1,j2)∈Z2
+

2−max(i1,i2)δ/22−max(j1,j2)δ/2〈Si1i2j1j2
DnDm

f, g〉.

Here the average is taken over all the dyadic grids Dn in Rn (parametrized by
the random parameter wn) and all the dyadic grids Dm in Rm (parametrized by
the random parameter wm). An exact formulation of everything is given after
the introduction. Such a representation theorem exists for ordinary Calderón–
Zygmund operators, and this was proven by Hytönen [7] in connection with the
proof of the A2 conjecture for general singular integrals.

In the one-parameter case such general representation theorems have already
been utilized several times after [7]. The simplified proof of the A2 conjecture
by Hytönen, Pérez, Treil and Volberg [10] offered among other things a bit easier
formulation of the representation theorem. In [8] the author together with Hytö-
nen, Lacey, Orponen, Reguera, Sawyer and Uriarte–Tuero used the representa-
tion theorem to study sharp weak and strong type weighted bounds for maximal
truncations T#. Modifying the metric randomization by Hytönen and the author
[9] these representation theorems were lifted to the generality of metric spaces by
Nazarov, Reznikov and Volberg [14]. Several other applications in the weighted
context also already exist.
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The reason why the representation theorem is so useful in the one-parameter
case is that it can be used to reduce problems considering a general singular in-
tegral T into purely dyadic problems considering shifts only. Because of this,
there is no particular reason why the applications should be limited to weighted
questions. This just happens to be the case, since the representation theorem
was originally developed for this purpose and is still very new a result. This is
motivation enough for us to develop the analogous theory in the bi-parameter
case. It would, of course, be interesting to study sharp weighted theory in the
bi-parameter setting. Our theorem might be useful for this, however, it is a very
difficult problem.

Regarding multi-parameter singular integrals, and multi-parameter harmonic
analysis in general, there is a very large existing theory. After the classical T1
and Tb type theory by David and Journé [2] and David, Journé and Semmes [3],
the first T1 type theorem for product spaces was proved by Journé [11]. Regard-
ing other classical theory, we only mention the work of Chang and Fefferman [1],
Fefferman [4] and Fefferman and Stein [5]. These three concern singular integrals
and various spaces, like the BMO, on the product setting. There is a wide body of
more recent developments of which we here only mention the papers by Fergu-
son and Lacey [6], Lacey and Metcalfe [12] and Muscalu, Pipher, Tao and Thiele
[13]. These have to do with various multi-parameter paraproducts and character-
izations for some product spaces. Some bi-parameter paraproducts appear also
in our proof, and the product BMO space is thus important for us.

The classical multi-parameter singular integral theory of Journé [11] involves
formulations written in the language of vector-valued Calderón–Zygmund the-
ory. Very recently Pott and Villarroya [16] formulated and proved a new type of
T1 theorem for product spaces. There such vector-valued formulations are re-
placed by several new mixed type conditions. Here we define our bi-parameter
operators inspired by [16]. The conditions we use are not exactly the same. We,
for example, do not work with smooth testing conditions. Establishing the cor-
rect shift structure is our primary task. However, we do get, as a by product, a
pretty nice form of the product space T1 theorem.

In this paper we bring the superbly useful machinery of non-homogeneous
analysis pioneered by Nazarov, Treil and Volberg (see for example [15]) to the
context of bi-parameter theory. The use of non-homogeneous analysis gives addi-
tional decay for certain matrix elements involved in the expansion of 〈Tf, g〉. Just
like in Hytönen’s proof of the representation theorem for one-parameter singular
integrals, the proof is a T1 style proof with ingredients from non-homogeneous
analysis. In our case, we have to deal with the much added complexity of the
bi-parameter situation. Indeed, there are more cases than in the one-parameter
setting, and many of these are interesting mixed type phenomena. The non-
homogeneous analysis makes this splitting into cases nicely transparent getting
rid of rare geometric complications.
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2. DEFINITIONS, STRATEGY AND THE MAIN RESULT

Structural assumptions. Let us formulate the Calderón–Zygmund structure of
our operators. The basic assumption is that if f = f1 ⊗ f2 (meaning f(x) =
f1(x1)f2(x2) for x = (x1, x2)) and g = g1 ⊗ g2 with f1, g1 : R

n → C, f2, g2 : R
m → C,

spt f1 ∩ spt g1 = ∅ and spt f2 ∩ spt g2 = ∅, then we have the kernel representation

〈Tf, g〉 =

∫

Rn+m

∫

Rn+m

K(x, y)f(y)g(x) dx dy.

The kernel K : (Rn+m ×Rn+m) \ {(x, y) ∈ Rn+m ×Rn+m : x1 = y1 or x2 = y2} → C
is assumed to satisfy the size condition

|K(x, y)| ≤ C
1

|x1 − y1|n
1

|x2 − y2|m

and the Hölder conditions

|K(x, y)−K(x,(y1, y
′
2))−K(x, (y′1, y2)) +K(x, y′)|

≤ C
|y1 − y′1|

δ

|x1 − y1|n+δ

|y2 − y′2|
δ

|x2 − y2|m+δ

whenever |y1 − y′1| ≤ |x1 − y1|/2 and |y2 − y′2| ≤ |x2 − y2|/2,

|K(x, y)−K((x1, x
′
2),y)−K((x′

1, x2), y) +K(x′, y)|

≤ C
|x1 − x′

1|
δ

|x1 − y1|n+δ

|x2 − x′
2|

δ

|x2 − y2|m+δ

whenever |x1 − x′
1| ≤ |x1 − y1|/2 and |x2 − x′

2| ≤ |x2 − y2|/2,

|K(x, y)−K((x1, x
′
2),y)−K(x, (y′1, y2)) +K((x1, x

′
2), (y

′
1, y2))|

≤ C
|y1 − y′1|

δ

|x1 − y1|n+δ

|x2 − x′
2|

δ

|x2 − y2|m+δ

whenever |y1 − y′1| ≤ |x1 − y1|/2 and |x2 − x′
2| ≤ |x2 − y2|/2, and

|K(x, y)−K(x,(y1, y
′
2))−K((x′

1, x2), y) +K((x′
1, x2), (y1, y

′
2))|

≤ C
|x1 − x′

1|
δ

|x1 − y1|n+δ

|y2 − y′2|
δ

|x2 − y2|m+δ

whenever |x1 − x′
1| ≤ |x1 − y1|/2 and |y2 − y′2| ≤ |x2 − y2|/2.

Furthermore, we assume the mixed Hölder and size conditions

|K(x, y)−K((x′
1, x2), y)| ≤ C

|x1 − x′
1|

δ

|x1 − y1|n+δ

1

|x2 − y2|m
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whenever |x1 − x′
1| ≤ |x1 − y1|/2,

|K(x, y)−K(x, (y′1, y2))| ≤ C
|y1 − y′1|

δ

|x1 − y1|n+δ

1

|x2 − y2|m

whenever |y1 − y′1| ≤ |x1 − y1|/2,

|K(x, y)−K((x1, x
′
2), y)| ≤ C

1

|x1 − y1|n
|x2 − x′

2|
δ

|x2 − y2|m+δ

whenever |x2 − x′
2| ≤ |x2 − y2|/2, and

|K(x, y)−K(x, (y1, y
′
2))| ≤ C

1

|x1 − y1|n
|y2 − y′2|

δ

|x2 − y2|m+δ

whenever |y2 − y′2| ≤ |x2 − y2|/2. We use, for minor convenience, ℓ∞ metrics on
Rn and Rm.

We also need some Calderón–Zygmund structure on Rn and Rm separately. If
f = f1 ⊗ f2 and g = g1 ⊗ g2 with spt f1 ∩ spt g1 = ∅, then we assume the kernel
representation

〈Tf, g〉 =

∫

Rn

∫

Rn

Kf2,g2(x1, y1)f1(y1)g1(x1) dx1 dy1.

The kernel Kf2,g2 : (R
n ×Rn) \ {(x1, y1) ∈ Rn ×Rn : x1 = y1} is assumed to satisfy

the size condition

|Kf2,g2(x1, y1)| ≤ C(f2, g2)
1

|x1 − y1|n

and the Hölder conditions

|Kf2,g2(x1, y1)−Kf2,g2(x
′
1, y1)| ≤ C(f2, g2)

|x1 − x′
1|

δ

|x1 − y1|n+δ

whenever |x1 − x′
1| ≤ |x1 − y1|/2, and

|Kf2,g2(x1, y1)−Kf2,g2(x1, y
′
1)| ≤ C(f2, g2)

|y1 − y′1|
δ

|x1 − y1|n+δ

whenever |y1 − y′1| ≤ |x1 − y1|/2. Let |A| denote the Lebesgue measure of a set A
and χA be the characteristic function of A. We need the above representations and
some control for C(f2, g2) only in the diagonal in the following sense. For every
cube V ⊂ Rm we assume that there holds C(χV , χV ) + C(χV , uV ) + C(uV , χV ) ≤
C|V |, whenever uV is such a function that sptuV ⊂ V , |uV | ≤ 1 and

∫

uV = 0.
Functions uV are called V -adapted with zero-mean (so V -adapted means just the
first two conditions on the support and size). We also assume the analogous
representation and properties with a kernel Kf1,g1 in the case spt f2 ∩ spt g2 = ∅.
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Boundedness and cancellation assumptions. Define the partial adjoint T1 of T
by setting

〈T1(f1 ⊗ f2), g1 ⊗ g2〉 = 〈T (g1 ⊗ f2), f1 ⊗ g2〉.

We assume that T1, T ∗1, T1(1) and T ∗
1 (1) belong to the product BMO on Rn ×Rm.

We recall the definition of this space later in this section.
We assume that |〈T (χK⊗χV ), χK ⊗χV 〉| ≤ C|K||V | for every cube K ⊂ Rn and

V ⊂ Rm. This is the weak boundedness property for T .
We also assume the following diagonal BMO conditions: for every cube K ⊂

Rn and V ⊂ Rm and for every zero-mean functions aK and bV which are K and V
adapted respectively (one has spt aK ⊂ K, |aK | ≤ 1 and

∫

aK = 0, and similarly
for bV ):

(i) |〈T (aK ⊗ χV ), χK ⊗ χV 〉| ≤ C|K||V |,
(ii) |〈T (χK ⊗ χV ), aK ⊗ χV 〉| ≤ C|K||V |,

(iii) |〈T (χK ⊗ bV ), χK ⊗ χV 〉| ≤ C|K||V |,
(iv) |〈T (χK ⊗ χV ), χK ⊗ bV 〉| ≤ C|K||V |.

Haar functions. Let hI be a L2 normalized Haar function related to I ∈ Dn,
where Dn is a dyadic grid on Rn. With this we mean that hI , I = I1 × · · · × In, is
one of the 2n functions hη

I , η = (η1, . . . , ηn) ∈ {0, 1}n, defined by

hη
I = hη1

I1
⊗ · · · ⊗ hηn

In
,

where h0
Ii
= |Ii|

−1/2χIi and h1
Ii
= |Ii|

−1/2(χIi,l − χIi,r) for every i = 1, . . . , n. Here
Ii,l and Ii,r are the left and right halves of the interval Ii respectively. If η 6= 0
the Haar function is cancellative:

∫

hI = 0. All the cancellative Haar functions
form an orthonormal basis of L2(Rn). If a ∈ L2(Rn) we may thus write a =
∑

I∈Dn

∑

η∈{0,1}n\{0}〈a, h
η
I〉h

η
I . However, we suppress the finite η summation and

just write a =
∑

I〈a, hI〉hI . Given a dyadic grid Dm on Rm and a cube J ∈ Dm,
we denote a L2 normalized Haar function on J by uJ .

Product BMO on Rn × Rm. Let us be given a dyadic grid Dn in Rn and a dyadic
grid Dm in Rm. We define the square function

SDnDm
f =

[

∑

K∈Dn

∑

V ∈Dm

|〈f, hK ⊗ uV 〉|
2χK ⊗ χV

|K||V |

]1/2

.

Then the product Hardy space H1
DnDm

(Rn ×Rm) consists of the locally integrable
functions f with ‖f‖H1

DnDm
(Rn×Rm) = ‖SDnDm

f‖1 < ∞. The dual of this space is

the product BMO space BMODnDm
(Rn × Rm).

For us, the condition that b ∈ {T1, T ∗1, T1(1), T
∗
1 (1)} is in the product BMO is

defined to mean that ‖b‖BMODnDm (Rn×Rm) ≤ C with every dyadic grid Dn in Rn

and every dyadic grid Dm in Rm.
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Bi-parameter shifts. A bi-parameter shift on Rn ×Rm is tied to a dyadic grid Dn

on Rn, a dyadic grid Dm on Rm and non-negative integers i1, i2, j1, j2. Such an

operator is denoted by Si1i2j1j2
DnDm

and is of the form

Si1i2j1j2
DnDm

f =
∑

K∈Dn

∑

V ∈Dm

Ai1i2j1j2
KV f,

where

Ai1i2j1j2
KV f =

∑

I1, I2⊂K

ℓ(I1)=2−i1ℓ(K)

ℓ(I2)=2−i2ℓ(K)

∑

J1, J2⊂V

ℓ(J1)=2−j1 ℓ(V )

ℓ(J2)=2−j2 ℓ(V )

aI1I2KJ1J2V 〈f, hI1 ⊗ uJ1〉hI2 ⊗ uJ2

with

|aI1I2KJ1J2V | ≤
|I1|

1/2|I2|
1/2

|K|

|J1|
1/2|J2|

1/2

|V |
.

Here, of course, I1, I2 ∈ Dn and J1, J2 ∈ Dm, and ℓ(I) denotes the side length of a
cube I . It is also required that all the subshifts

Si1i2j1j2
AB =

∑

K∈A

∑

V ∈B

Ai1i2j1j2
KV f, A ⊂ Dn, B ⊂ Dm,

map L2(Rn × Rm) → L2(Rn × Rm) with norm at most one. If all of the Haar
functions hI1, hI2, uJ1, uJ2 appearing are cancellative, the shift is called cancella-
tive. Otherwise, it is called non-cancellative. The last requirement concerning
the L2 boundedness of all of the subshifts follows from the other conditions for
cancellative shifts.

In practice, it is useful to observe that a bi-parameter shift S of type (i1, i2, j1, j2)
related to some dyadic grids is simply of the form

Sf(x) =
∑

K,V

AKV f(x) =
∑

K,V

1

|K × V |

∫

K×V

KAKV
(x, y)f(y) dy

=

∫

Rn+m

KS(x, y)f(y) dy,

where first of all sptKAKV
⊂ (K × V )× (K × V ) and |KAKV

(x, y)| ≤ 1. Moreover,
KAKV

is constant with respect to x on dyadic rectangles I × J ⊂ K × V for which
ℓ(I) < 2−i2ℓ(K) and ℓ(J) < 2−j2ℓ(V ), and KAKV

is constant with respect to y on
dyadic rectangles I × J ⊂ K × V for which ℓ(I) < 2−i1ℓ(K) and ℓ(J) < 2−j1ℓ(V ).
Note also that clearly

|KS(x, y)| ≤ C
1

|x1 − y1|n
1

|x2 − y2|m
.
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2.1. Random dyadic grids and the basic averaging formula. Let wn = (wi
n)i∈Z

and wm = (wj
m)j∈Z, where wi

n ∈ {0, 1}n and wj
m ∈ {0, 1}m. Let D0

n and D0
m be

the standard dyadic grids on Rn and Rm respectively. In Rn we define the new
dyadic grid Dn = {I +

∑

i: 2−i<ℓ(I) 2
−iwi

n : I ∈ D0
n} = {I +wn : I ∈ D0

n}, where we

simply have defined I + wn := I +
∑

i: 2−i<ℓ(I) 2
−iwi

n. The dyadic grid Dm in Rm

is similarly defined. There is a natural product probability structure on ({0, 1}n)Z

and ({0, 1}m)Z. So we have independent random dyadic grids Dn and Dm in Rn

and Rm respectively. Even if n = m we need two independent grids.

A cube I ∈ Dn is called bad if there exists Ĩ ∈ Dn so that ℓ(Ĩ) ≥ 2rℓ(I) and
d(I, ∂Ĩ) ≤ 2ℓ(I)γnℓ(Ĩ)1−γn . Here γn = δ/(2n + 2δ), where δ > 0 appears in the
kernel estimates. One notes that πn

good := Pwn
(I + wn is good) is independent of

I ∈ D0
n. The parameter r is a fixed constant so that πn

good, π
m
good > 0. Furthermore,

it is important to note that for a fixed I ∈ D0
n the set I + wn depends on wi

n with
2−i < ℓ(I), while the goodness of I + wn depends on wi

n with 2−i ≥ ℓ(I). In
particular, these notions are independent. Analogous definitions and remarks
related to Dm hold.

We prove the basic averaging formula of Hytönen [7] but in the bi-parameter
setting. This is the only part of the proof where probabilistic arguments are
needed, and here independence plays a big role, even more so in the bi-parameter
setting. We note that the functions f and g in this paper are always taken from
some particularly nice dense subset of functions.

2.1. Proposition. There holds

〈Tf, g〉 = CE
∑

I1,I2∈Dn

∑

J1,J2∈Dm

χgood(smaller(I1, I2))χgood(smaller(J1, J2))

〈T (hI1 ⊗ uJ1), hI2 ⊗ uJ2〉〈f, hI1 ⊗ uJ1〉〈g, hI2 ⊗ uJ2〉,

where E = Ewn
Ewm

and C = 1/(πn
goodπ

m
good).

2.2. Remark. Here all the appearing Haar functions are, of course, cancellative and
we recall that the finite summations over the 2n−1 or 2m−1 different cancellative
Haar functions per cube are simply suppressed from the notation.

Proof. Define 〈f, hI〉1(y) =
∫

f(x, y)hI(x) dx, y ∈ Rm. We may write

f =
∑

I1∈Dn

hI1 ⊗ 〈f, hI1〉1 =
∑

I1∈D0
n

hI1+wn
⊗ 〈f, hI1+wn

〉1

so that by independence

〈Tf, g〉 = Ewn

∑

I1∈D0
n

〈T (hI1+wn
⊗ 〈f, hI1+wn

〉1), g〉

=
1

πn
good

Ewn

∑

I1∈D0
n

χgood(I1 + wn)〈T (hI1+wn
⊗ 〈f, hI1+wn

〉1), g〉.
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After expanding g similarly as f above, one sees that this equals

1

πn
good

Ewn

∑

I1,I2∈D0
n

χgood(I1 + wn)〈T (hI1+wn
⊗ 〈f, hI1+wn

〉1), hI2+wn
⊗ 〈g, hI2+wn

〉1〉

=
1

πn
good

Ewn

∑

I1,I2∈D0
n

ℓ(I1)≤ℓ(I2)

χgood(I1 + wn)〈T (hI1+wn
⊗ 〈f, hI1+wn

〉1), hI2+wn
⊗ 〈g, hI2+wn

〉1〉

+ Ewn

∑

I1,I2∈D0
n

ℓ(I1)>ℓ(I2)

〈T (hI1+wn
⊗ 〈f, hI1+wn

〉1), hI2+wn
⊗ 〈g, hI2+wn

〉1〉.

Here we again used independence in the latter summation. Comparing to the
trivial representation

〈Tf, g〉 = Ewn

∑

I1,I2∈D0
n

〈T (hI1+wn
⊗ 〈f, hI1+wn

〉1), hI2+wn
⊗ 〈g, hI2+wn

〉1〉

we conclude that

πn
goodEwn

∑

I1,I2∈D0
n

ℓ(I1)≤ℓ(I2)

〈T (hI1+wn
⊗ 〈f, hI1+wn

〉1), hI2+wn
⊗ 〈g, hI2+wn

〉1〉

= Ewn

∑

I1,I2∈D0
n

ℓ(I1)≤ℓ(I2)

χgood(I1 + wn)〈T (hI1+wn
⊗ 〈f, hI1+wn

〉1), hI2+wn
⊗ 〈g, hI2+wn

〉1〉.

First expanding g and proceeding like above one gets the symmetric formula

πn
goodEwn

∑

I1,I2∈D0
n

ℓ(I2)<ℓ(I1)

〈T (hI1+wn
⊗ 〈f, hI1+wn

〉1), hI2+wn
⊗ 〈g, hI2+wn

〉1〉

= Ewn

∑

I1,I2∈D0
n

ℓ(I2)<ℓ(I1)

χgood(I2 + wn)〈T (hI1+wn
⊗ 〈f, hI1+wn

〉1), hI2+wn
⊗ 〈g, hI2+wn

〉1〉.

Splitting the trivial representation in to these two parts allows us to conclude that

〈Tf, g〉 =
1

πn
good

Ewn

∑

I1,I2∈Dn

χgood(smaller(I1, I2))〈T (hI1 ⊗ 〈f, hI1〉1), hI2 ⊗ 〈g, hI2〉1〉.

We now expand on Rm. One may write

〈f, hI1〉1 =
∑

J1∈Dm

〈f, hI1 ⊗ uJ1〉uJ1

so that

hI1 ⊗ 〈f, hI1〉1 =
∑

J1∈Dm

〈f, hI1 ⊗ uJ1〉hI1 ⊗ uJ1.
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We may then follow the recipe from above: insert this to the above formula for
〈Tf, g〉, add goodness to J1 by independence, expand hI2 ⊗ 〈g, hI2〉1, split the
summation to ℓ(J1) ≤ ℓ(J2) and ℓ(J1) > ℓ(J2), remove the goodness from J1 in
the latter summation by independence and, finally, compare to the appropriate
trivial identity. One also does the symmetric thing, where one first expands hI2 ⊗
〈g, hI2〉1 and adds the goodness to J2. Combining these gives the claim of the
proposition. �

2.3. Remark. One may also use full expansions like f =
∑

I1∈Dn

∑

J1∈Dm
〈f, hI1 ⊗

uJ1〉hI1 ⊗uJ1 in the beginning of the proof. Following the usual trickery this leads
to the formula

〈Tf, g〉 =
1

πn
good

E
∑

I1,I2∈Dn

∑

J1,J2∈Dm

χgood(smaller(I1, I2))

〈T (hI1 ⊗ uJ1), hI2 ⊗ uJ2〉〈f, hI1 ⊗ uJ1〉〈g, hI2 ⊗ uJ2〉.

Here it may at first seem that there is no longer enough independence to add the
goodness to J1. However, one may simply write the summation as

∑

I1,I2∈Dn

∑

J1∈Dm

χgood(smaller(I1, I2))〈T (hI1 ⊗ uJ1), gI2〉〈f, hI1 ⊗ uJ1〉,

where one realizes that

gI2 =
∑

J2∈Dm

〈g, hI2 ⊗ uJ2〉hI2 ⊗ uJ2 = hI2 ⊗ 〈g, hI2〉1

does not depend on wm. Then one may add the goodness to J1 using indepen-
dence and repeat the basic recipe to get the proposition.

Strategy and formulation of the main theorem. We fix the random variables wn

and wm which fixes the dyadic grids Dn and Dm respectively. Then we study the
summation

∑

ℓ(I1)≤ℓ(I2)

I1 good

∑

ℓ(J1)≤ℓ(J2)

J1 good

〈T (hI1 ⊗ uJ1), hI2 ⊗ uJ2〉〈f, hI1 ⊗ uJ1〉〈g, hI2 ⊗ uJ2〉.

We more often than not suppress from the notation the important fact that I1 and
J1 are good. Then we perform the splitting

∑

ℓ(I1)≤ℓ(I2)

=
∑

ℓ(I1)≤ℓ(I2)

d(I1,I2)>ℓ(I1)γn ℓ(I2)1−γn

+
∑

I1(I2

+
∑

I1=I2

+
∑

ℓ(I1)≤ℓ(I2)

d(I1,I2)≤ℓ(I1)γn ℓ(I2)1−γn

I1∩I2=∅

,

and similarly for the summation over the grid Dm. Here d(A,B) denotes the
distance of the sets A and B (recall that we use the ℓ∞ metric). The first sum is
the separated sum, then we have the inside sum, the equal sum and the nearby
sum. The summation over both the grids is split in to various types which also
includes several mixed types. The list is: separated/separated, separated/inside,
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separated/equal, separated/nearby, inside/inside, inside/equal, inside/nearby,
equal/equal, equal/nearby, nearby/nearby and some symmetric mixed sums. It
seems reasonable to deal with these separately.

Note that actually the mixed sums where ℓ(I1) ≤ ℓ(I2) and ℓ(J1) > ℓ(J2) or
ℓ(I1) > ℓ(I2) and ℓ(J1) ≤ ℓ(J2) are not completely symmetrical to this case. How-
ever, the relevant difference is only in the full paraproduct that appears in the
corresponding inside/inside part. There one gets a bit different paraproducts,
which are related to the assumptions that T1(1) and T ∗

1 (1) belong to the product
BMO of Rn × Rm. We comment more on this on Remark 7.2.

The goal is to represent all of these different parts as a sum of shifts with a
good decay factor in front. Combining all these cases together leads to our main
theorem:

2.4. Theorem. For a bi-parameter singular integral operator T as defined above, there

holds for some bi-parameter shifts Si1i2j1j2
DnDm

that

〈Tf, g〉 = CTEwn
Ewm

∑

(i1,i2)∈Z2
+

(j1,j2)∈Z2
+

2−max(i1,i2)δ/22−max(j1,j2)δ/2〈Si1i2j1j2
DnDm

f, g〉,

where non-cancellative shifts may only appear if (i1, i2) = (0, 0) or (j1, j2) = (0, 0).

2.5. Corollary. A bi-parameter singular integral T as defined above is L2 bounded.

We note that all of the appearing non-cancellative shifts will have a certain
paraproduct structure, and this structure is explicit in the proof. For example in
[8], where the one-parameter representation theorem is applied, it is important
to know the explicit structure of the non-cancellative shifts.

The rest of the paper is dedicated to the piece by piece proof of this theorem.
We use X . Y to mean X ≤ CY for some constant C and X ∼ Y to mean
Y . X . Y . Of course, we cannot absorb just any constants, but only ones
that depend on the dimensions or the various constants from the assumptions
concerning T .

3. SEPARATED/SEPARATED

Let I1 ∨ I2 =
⋂

K∈Dn, K⊃I1∪I2
K and J1 ∨ J2 =

⋂

V ∈Dm, V⊃J1∪J2
V . The separa-

tion conditions together with goodness imply ℓ(I1)
γnℓ(I1 ∨ I2)

1−γn . d(I1, I2) and
ℓ(J1)

γmℓ(J1 ∨ J2)
1−γm . d(J1, J2).
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Let us write
∑

ℓ(I1)≤ℓ(I2)

d(I1,I2)>ℓ(I1)γn ℓ(I2)1−γn

∑

ℓ(J1)≤ℓ(J2)

d(J1,J2)>ℓ(J1)γm ℓ(J2)1−γm

=
∑

i2≥1
j2≥1

∑

i1≥i2
j1≥j2

∑

K∈Dn

V ∈Dm

∑

d(I1,I2)>ℓ(I1)γn ℓ(I2)1−γn

I1∨I2=K

ℓ(I1)=2−i1ℓ(K), ℓ(I2)=2−i2 ℓ(K)

∑

d(J1,J2)>ℓ(J1)γmℓ(J2)1−γm

J1∨J2=V

ℓ(J1)=2−j1ℓ(V ), ℓ(J2)=2−j2 ℓ(V )

.

3.1. Lemma. For I1, I2, J1, J2 in the above summation, we have the estimate

|〈T (hI1 ⊗ uJ1),hI2 ⊗ uJ2〉|

.
|I1|

1/2|I2|
1/2

|K|

|J1|
1/2|J2|

1/2

|V |

( ℓ(I1)

ℓ(K)

)δ/2(ℓ(J1)

ℓ(V )

)δ/2

= 2−i1δ/2
|I1|

1/2|I2|
1/2

|K|
2−j1δ/2

|J1|
1/2|J2|

1/2

|V |
.

Proof. Given a cube I we denote by cI its center. We may write

〈T (hI1 ⊗ uJ1), hI2 ⊗ uJ2〉

=

∫

I1×J1

∫

I2×J2

K(x, y)hI1(y1)uJ1(y2)hI2(x1)uJ2(x2) dxdy,

where we may, using cancellation, replace K(x, y) by

K(x, y)−K(x, (y1, cJ1))−K(x, (cI1, y2)) +K(x, (cI1 , cJ1)).

Since |y1 − cI1| ≤ ℓ(I1)/2 ≤ 1
2
ℓ(I1)

γnℓ(I2)
1−γn ≤ d(I1, I2)/2 ≤ |x1 − cI1 |/2 and

similarly |y2 − cJ1 | ≤ |x2 − cJ1 |/2, we have

|K(x, y)−K(x, (y1, cJ1))−K(x, (cI1 , y2)) +K(x, (cI1 , cJ1))|

.
|y1 − cI1 |

δ

|x1 − cI1|
n+δ

|y2 − cJ1|
δ

|x2 − cJ1 |
m+δ

. ℓ(I1)
δd(I1, I2)

−n−δℓ(J1)
δd(J1, J2)

−m−δ

. ℓ(I1)
δ[ℓ(I1)

γnℓ(K)1−γn ]−n−δℓ(J1)
δ[ℓ(J1)

γmℓ(V )1−γm ]−m−δ

= ℓ(I1)
δ/2ℓ(K)−δ/2|K|−1ℓ(J1)

δ/2ℓ(V )−δ/2|V |−1.

Here we used ℓ(I1)
γnℓ(K)1−γn . d(I1, I2) and γnn+ γnδ = δ/2 (and the analogous

estimates involving J1, J2, V and m). Recalling the L2 normalization of the Haar
functions and the fact that ℓ(I1)/ℓ(K) = 2−i1 and ℓ(J1)/ℓ(V ) = 2−j1 completes the
proof. �

We write

〈T (hI1 ⊗ uJ1),hI2 ⊗ uJ2〉〈f, hI1 ⊗ uJ1〉〈g, hI2 ⊗ uJ2〉

= C2−i1δ/22−j1δ/2
〈T (hI1 ⊗ uJ1), hI2 ⊗ uJ2〉

C2−i1δ/22−j1δ/2
〈〈f, hI1 ⊗ uJ1〉hI2 ⊗ uJ2, g〉.



12 HENRI MARTIKAINEN

Define

aI1I2KJ1J2V =
〈T (hI1 ⊗ uJ1), hI2 ⊗ uJ2〉

C2−i1δ/22−j1δ/2

if all the various goodness and separation conditions appearing in the summa-
tions are satisfied, and otherwise set aI1I2KJ1J2V = 0. This enables us to write

∑

ℓ(I1)≤ℓ(I2)

d(I1,I2)>ℓ(I1)γn ℓ(I2)1−γn

∑

ℓ(J1)≤ℓ(J2)

d(J1,J2)>ℓ(J1)γm ℓ(J2)1−γm

〈T (hI1 ⊗ uJ1), hI2 ⊗ uJ2〉

〈f, hI1 ⊗ uJ1〉〈g, hI2 ⊗ uJ2〉

in the form
C
∑

i2≥1
j2≥1

∑

i1≥i2
j1≥j2

2−i1δ/22−j1δ/2
∑

K,V

〈Ai1i2j1j2
KV f, g〉,

where

Ai1i2j1j2
KV f =

∑

I1, I2⊂K

ℓ(I1)=2−i1ℓ(K)

ℓ(I2)=2−i2ℓ(K)

∑

J1, J2⊂V

ℓ(J1)=2−j1 ℓ(V )

ℓ(J2)=2−j2 ℓ(V )

aI1I2KJ1J2V 〈f, hI1 ⊗ uJ1〉hI2 ⊗ uJ2

with

|aI1I2KJ1J2V | ≤
|I1|

1/2|I2|
1/2

|K|

|J1|
1/2|J2|

1/2

|V |
.

The corresponding bi-parameter shift with indices i1, i2, j1, j2 is by definition

Si1i2j1j2f =
∑

K,V

Ai1i2j1j2
KV f.

4. SEPARATED/INSIDE

As J1 ( J2, there is a child J2,1 of J2 such that J1 ⊂ J2,1. We decompose

〈T (hI1 ⊗ uJ1), hI2 ⊗ uJ2〉 = 〈T (hI1 ⊗ uJ1), hI2 ⊗ sJ1J2〉

+ 〈uJ2〉J1〈T (hI1 ⊗ uJ1), hI2 ⊗ 1〉,

where sJ1J2 = χJc
2,1
[uJ2 − 〈uJ2〉J2,1]. The relevant properties of sJ1J2 are |sJ1J2| ≤

2|J2|
−1/2 and spt sJ1J2 ⊂ Jc

2,1.
We write

∑

ℓ(I1)≤ℓ(I2)

d(I1,I2)>ℓ(I1)γn ℓ(I2)1−γn

∑

J1(J2

=
∑

i2≥1

∑

i1≥i2

∑

j1≥1

∑

K∈Dn

∑

J2∈Dm

∑

d(I1,I2)>ℓ(I1)γn ℓ(I2)1−γn

I1∨I2=K

ℓ(I1)=2−i1 ℓ(K), ℓ(I2)=2−i2 ℓ(K)

∑

J1⊂J2
ℓ(J1)=2−j1 ℓ(J2)

.
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4.1. Lemma. For I1, I2, J1, J2 in the above summation, we have the estimate

|〈T (hI1 ⊗ uJ1), hI2 ⊗ sJ1J2〉|

.
|I1|

1/2|I2|
1/2

|K|

|J1|
1/2

|J2|1/2

( ℓ(I1)

ℓ(K)

)δ/2(ℓ(J1)

ℓ(J2)

)δ/2

= 2−i1δ/2
|I1|

1/2|I2|
1/2

|K|
2−j1δ/2

|J1|
1/2

|J2|1/2
.

Proof. There is good separation by the goodness of J1 if ℓ(J1) < 2−rℓ(J2). Indeed,
in this case there holds d(J1, J

c
2,1) ≥ 2ℓ(J1)

γmℓ(J2,1)
1−γm ≥ ℓ(J1)

γmℓ(J2)
1−γm . Then

we may write

〈T (hI1 ⊗ uJ1),hI2 ⊗ sJ1J2〉

=

∫

I1×J1

∫

I2×Jc
2,1

K(x, y)hI1(y1)uJ1(y2)hI2(x1)sJ1J2(x2) dx dy,

and replace K(x, y) by K(x, y) − K(x, (y1, cJ1)) − K(x, (cI1, y2)) + K(x, (cI1 , cJ1))
using the cancellation of uJ1 and hI1 . We may utilize the kernel estimates to get

|K(x, y)−K(x, (y1, cJ1))−K(x, (cI1 , y2)) +K(x, (cI1, cJ1))|

. ℓ(I1)
δ/2ℓ(K)−δ/2|K|−1ℓ(J1)

δ 1

|x2 − cJ1 |
m+δ

.

This yields

|〈T (hI1 ⊗ uJ1), hI2 ⊗ sJ1J2〉|

.
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2 |J1|
1/2

|J2|1/2
ℓ(J1)

δ

∫

Jc
2,1

dx2

|x2 − cJ1|
m+δ

,

where
∫

Jc
2,1

dx2

|x2 − cJ1|
m+δ

.

∫

Rm\B(cJ1 ,d(J1,J
c
2,1))

dx2

|x2 − cJ1 |
m+δ

. d(J1, J
c
2,1)

−δ . ℓ(J1)
−δ/2ℓ(J2)

−δ/2.

Therefore, we have

|〈T (hI1 ⊗ uJ1), hI2 ⊗ sJ1J2〉|

.
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2 |J1|
1/2

|J2|1/2

(ℓ(J1)

ℓ(J2)

)δ/2

.

We still need to deal with the case 2−rℓ(J2) ≤ ℓ(J1)(≤ ℓ(J2)). This time we split

〈T (hI1 ⊗ uJ1), hI2 ⊗ sJ1J2〉 = 〈T (hI1 ⊗ uJ1), hI2 ⊗ (χ3J1sJ1J2)〉

+ 〈T (hI1 ⊗ uJ1), hI2 ⊗ (χ(3J1)csJ1J2)〉.
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We have that 〈T (hI1 ⊗ uJ1), hI2 ⊗ (χ3J1sJ1J2)〉 equals

∫

I1×J1

∫

I2×(3J1\J2,1)

[K(x, y)−K(x, (cI1, y2))]hI1(y1)uJ1(y2)hI2(x1)sJ1J2(x2) dx dy

so we can estimate using the mixed Hölder and size estimate that

|〈T (hI1 ⊗ uJ1), hI2 ⊗ (χ3J1sJ1J2)〉|

.
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2

|J1|
−1/2|J2|

−1/2

∫

J1

∫

3J1\J1

1

|x2 − y2|m
dx2 dy2

.
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2 |J1|
1/2

|J2|1/2

.
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2 |J1|
1/2

|J2|1/2

(ℓ(J1)

ℓ(J2)

)δ/2

.

In the term 〈T (hI1 ⊗ uJ1), hI2 ⊗ (χ(3J1)csJ1J2)〉 we have good separation every-
where, so the Hölder estimate for K yields

|〈T (hI1⊗uJ1), hI2 ⊗ (χ(3J1)csJ1J2)〉|

.
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2 |J1|
1/2

|J2|1/2
ℓ(J1)

δ

∫

(3J1)c

dx2

|x2 − cJ1|
m+δ

.
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2 |J1|
1/2

|J2|1/2

.
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2 |J1|
1/2

|J2|1/2

(ℓ(J1)

ℓ(J2)

)δ/2

.

�

The above lemma enables us to write
∑

ℓ(I1)≤ℓ(I2)

d(I1,I2)>ℓ(I1)γn ℓ(I2)1−γn

∑

J1(J2

〈T (hI1 ⊗ uJ1), hI2 ⊗ sJ1J2〉〈f, hI1 ⊗ uJ1〉〈g, hI2 ⊗ uJ2〉

in the form

C
∑

i2≥1

∑

i1≥i2

∑

j1≥1

2−i1δ/22−j1δ/2〈Si1i2j10f, g〉.

Next, we deal with the series with the term 〈uJ2〉J1〈T (hI1 ⊗ uJ1), hI2 ⊗ 1〉. This
will yield shifts of the type (i1, i2, 0, 0) which are non-cancellative (their Rm parts
are paraproducts in a certain sense). As these shifts will be non-cancellative, we
will also have to worry about their L2 boundedness properties.
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Write
∑

J1(J2

〈uJ2〉J1〈T (hI1 ⊗ uJ1), hI2 ⊗ 1〉〈f, hI1 ⊗ uJ1〉〈g, hI2 ⊗ uJ2〉

=
∑

J1

〈

∑

J2

〈g, hI2 ⊗ uJ2〉uJ2

〉

J1
〈T (hI1 ⊗ uJ1), hI2 ⊗ 1〉〈f, hI1 ⊗ uJ1〉

=
∑

V

〈〈g, hI2〉1〉V 〈T (hI1 ⊗ uV ), hI2 ⊗ 1〉〈f, hI1 ⊗ uV 〉.

The summands can further be written in the form

|V |−1/2〈T (hI1 ⊗ uV ), hI2 ⊗ 1〉〈〈f, hI1 ⊗ uV 〉hI2 ⊗ u0
V , g〉,

where u0
V = |V |−1/2χV . Written in this way it is evident that we will have the

required shift structure of the type (i1, i2, 0, 0).

4.2. Lemma. The correct normalization

|〈T (hI1 ⊗ uV ), hI2 ⊗ 1〉| .
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2

|V |1/2

holds.

Proof. Let us first split

〈T (hI1 ⊗ uV ), hI2 ⊗ 1〉 = 〈T (hI1 ⊗ uV ), hI2 ⊗ χ3V 〉+ 〈T (hI1 ⊗ uV ), hI2 ⊗ χ(3V )c〉.

We have

|〈T (hI1 ⊗ uV ), hI2 ⊗ χ3V 〉| ≤ |V |−1/2
∑

V ′∈ch(V )

[

|〈T (hI1 ⊗ χV ′), hI2 ⊗ χ3V \V ′〉|

+ |〈T (hI1 ⊗ χV ′), hI2 ⊗ χV ′〉|
]

For the first time, we use the kernel representations in Rn to write 〈T (hI1 ⊗
χV ′), hI2 ⊗ χV ′〉 in the form

∫

I1

∫

I2

[KχV ′ ,χV ′
(x1, y1)−KχV ′ ,χV ′

(x1, cI1)]hI1(y1)hI2(x1) dx1 dy1.

This gives that

|〈T (hI1 ⊗ χV ′), hI2 ⊗ χV ′〉| ≤ C(χV ′ , χV ′)
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2

. |V |
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2

.

Notice that by the mixed Hölder and size estimates for K we have the same
bound also for the term |〈T (hI1 ⊗ χV ′), hI2 ⊗ χ3V \V ′〉|, and so there holds

|〈T (hI1 ⊗ uV ), hI2 ⊗ χ3V 〉| .
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2

|V |1/2.
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The term 〈T (hI1 ⊗ uV ), hI2 ⊗ χ(3V )c〉 is in control by the full kernel representation
and the Hölder estimate for K. �

These are non-cancellative shifts so we must separately demonstrate the L2

boundedness. For this, we prefer to write things in a different way:
∑

V

〈〈g, hI2〉1〉V 〈T (hI1 ⊗ uV ), hI2 ⊗ 1〉〈f, hI1 ⊗ uV 〉

=
∑

V

〈〈g, hI2〉1〉V 〈〈T
∗(hI2 ⊗ 1), hI1〉1, uV 〉〈〈f, hI1〉1, uV 〉

= C2−i1δ/2
〈

〈f, hI1〉1,
∑

V

〈〈g, hI2〉1〉V 〈bI1I2, uV 〉uV

〉

= C2−i1δ/2〈〈f, hI1〉1,ΠbI1I2
(〈g, hI2〉1)〉

= C2−i1δ/2〈Π∗
bI1I2

(〈f, hI1〉1), 〈g, hI2〉1〉

= C2−i1δ/2〈hI2 ⊗ Π∗
bI1I2

(〈f, hI1〉1), g〉,

where bI1I2 = 〈T ∗(hI2 ⊗ 1), hI1〉1/(C2−i1δ/2) and ΠbI1I2
is the related paraproduct

on Rm defined by the general formula

Πba =
∑

V

〈a〉V 〈b, uV 〉uV .

4.3. Lemma. We have bI1I2 ∈ BMO(Rm) with the bound

‖bI1I2‖BMO(Rm) ≤ c
|I1|

1/2|I2|
1/2

|K|
.

Proof. Let V be any cube in Rm and a be any function in Rm such that spt a ⊂ V ,
|a| ≤ 1 and

∫

a = 0. It suffices to show that

|〈T (hI1 ⊗ a), hI2 ⊗ 1〉| .
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2

|V |.

This is done by splitting 1 = χ3V + χ(3V )c and using kernel estimates in a similar
fashion as before. �

4.4. Remark. The strengthening of Lemma 4.2 to the related BMO estimate of
Lemma 4.3 requires one to have the control C(uV , χV ) ≤ C|V | for V -adapted
functions uV with zero-mean. It is precisely for these type of BMO reasons that
merely the assumption C(χV , χV ) ≤ C|V | does not seem to be enough for the
results of this paper.

Let us abbreviate

∑

I1, I2⊂K

ℓ(I1)=2−i1 ℓ(K), ℓ(I2)=2−i2ℓ(K)

=

(i1,i2)
∑

I1, I2⊂K

.
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We are ready to show the boundedness of our non-cancellative shifts of type
(i1, i2, 0, 0).

4.5. Proposition. There holds

∥

∥

∥

∑

K

(i1,i2)
∑

I1, I2⊂K

hI2 ⊗Π∗
bI1I2

(〈f, hI1〉1)
∥

∥

∥

2
≤ ‖f‖2.

Proof. There holds by orthogonality that

∥

∥

∥

∑

K

(i1,i2)
∑

I1, I2⊂K

hI2 ⊗Π∗
bI1I2

(〈f, hI1〉1)
∥

∥

∥

2

2

=
∑

K

(i2)
∑

I2⊂K

∥

∥

∥

(i1)
∑

I1⊂K

Π∗
bI1I2

(〈f, hI1〉1)
∥

∥

∥

2

2

≤
∑

K

(i2)
∑

I2⊂K

(

(i1)
∑

I1⊂K

‖Π∗
bI1I2

(〈f, hI1〉1)‖2
)2

.

Let pi1K be the orthogonal projection from L2(Rn) to span{hI1 : I1 ⊂ K, ℓ(I1) =
2−i1ℓ(K)}. Write also fy(x) = f(x, y). There holds by the boundedness of para-
products defined by BMO functions and the previous lemma that

‖Π∗
bI1I2

(〈f, hI1〉1‖2 ≤
|I1|

1/2|I2|
1/2

|K|
‖〈f, hI1〉1‖2

≤
|I1|

1/2|I2|
1/2

|K|

(

∫

Rm

∫

I1

|pi1Kfy(x)|
2 dx dy

)1/2

.

Therefore, we have

∥

∥

∥

∑

K

(i1,i2)
∑

I1, I2⊂K

hI2 ⊗Π∗
bI1I2

(〈f, hI1〉1)
∥

∥

∥

2

2

≤
∑

K

1

|K|

(

(i1)
∑

I1⊂K

|I1|
1/2

(

∫

Rm

∫

I1

|pi1Kfy(x)|
2 dx dy

)1/2)2

≤
∑

K

1

|K|

(

(i1)
∑

I1⊂K

|I1|
)(

(i1)
∑

I1⊂K

∫

Rm

∫

I1

|pi1Kfy(x)|
2 dx dy

)

≤
∑

K

∫

Rm

∫

Rn

|pi1Kfy(x)|
2 dx dy

=

∫

Rm

‖fy‖
2
2 dy = ‖f‖22,

where we again utilized orthogonality. �
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We end this this section by concluding that
∑

ℓ(I1)≤ℓ(I2)

d(I1,I2)>ℓ(I1)γn ℓ(I2)1−γn

∑

J1(J2

〈uJ2〉J1〈T (hI1 ⊗ uJ1), hI2 ⊗ 1〉〈f, hI1 ⊗ uJ1〉〈g, hI2 ⊗ uJ2〉

= C
∑

i2≥1

∑

i1≥i2

2−i1δ/2〈Si1i200f, g〉.

5. SEPARATED/EQUAL

There holds that

|〈T (hI1 ⊗ uV ), hI2 ⊗ uV 〉| .
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2

.

Indeed, to see this, first estimate

|〈T (hI1 ⊗ uV ), hI2 ⊗ uV 〉| ≤ |V |−1
[

∑

V ′,V ′′∈ch(V )

V ′ 6=V ′′

|〈T (hI1 ⊗ χV ′), hI2 ⊗ χV ′′〉|

+
∑

V ′∈ch(V )

|〈T (hI1 ⊗ χV ′), hI2 ⊗ χV ′〉|
]

.

We have by the kernel representation in Rn that

|〈T (hI1 ⊗ χV ′), hI2 ⊗ χV ′〉| ≤ C(χV ′ , χV ′)
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2

. |V |
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2

.

For V ′ 6= V ′′ the estimate

|〈T (hI1 ⊗ χV ′), hI2 ⊗ χV ′′〉| . |V |
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2

follows from the full kernel representation using the mixed Hölder and size esti-
mate of K.

We may thus immediately write that
∑

ℓ(I1)≤ℓ(I2)

d(I1,I2)>ℓ(I1)γn ℓ(I2)1−γn

∑

V

〈T (hI1 ⊗ uV ), hI2 ⊗ uV 〉〈f, hI1 ⊗ uV 〉〈g, hI2 ⊗ uV 〉

= C
∑

i2≥1

∑

i1≥i2

2−i1δ/2〈Si1i200f, g〉,

where in this case Si1i200 are cancellative shifts.
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6. SEPARATED/NEARBY

For the J1 and J2 in the nearby summation it is evident that V = J1∨J2 satisfies
ℓ(V ) ≤ 2rℓ(J1). Thus, we may write

∑

ℓ(I1)≤ℓ(I2)

d(I1,I2)>ℓ(I1)γn ℓ(I2)1−γn

∑

ℓ(J1)≤ℓ(J2)

d(J1,J2)≤ℓ(J1)γm ℓ(J2)1−γm

J1∩J2=∅

=
∑

i2≥1

∑

i1≥i2

r
∑

j1=1

j1
∑

j2=1

∑

K

∑

V

∑

d(I1,I2)>ℓ(I1)γn ℓ(I2)1−γn

I1∨I2=K

ℓ(I1)=2−i1 ℓ(K), ℓ(I2)=2−i2ℓ(K)

∑

d(J1,J2)≤ℓ(J1)γm ℓ(J2)1−γm , J1∩J2=∅

J1∨J2=V

ℓ(J1)=2−j1 ℓ(V ), ℓ(J2)=2−j2ℓ(V )

.

It is easy to get the required estimate

|〈T (hI1 ⊗ uJ1), hI2 ⊗ uJ2〉| .
|I1|

1/2|I2|
1/2

|K|

( ℓ(I1)

ℓ(K)

)δ/2

by using the full kernel representation and the mixed Hölder and size estimate
of K. Therefore, we are able to realize this part in the form

C
∑

i2≥1

∑

i1≥i2

r
∑

j1=1

j1
∑

j2=1

2−i1δ/22−j1δ/2〈Si1i2j1j2f, g〉.

7. INSIDE/INSIDE

We decompose

〈T (hI1 ⊗ uJ1), hI2 ⊗ uJ2〉 = 〈T (hI1 ⊗ uJ1), sI2I2 ⊗ sJ1J2〉

+ 〈uJ2〉J1〈T (hI1 ⊗ uJ1), sI2I2 ⊗ 1〉

+ 〈hI2〉I1〈T (hI1 ⊗ uJ1), 1⊗ sJ1J2〉

+ 〈hI2〉I1〈uJ2〉J1〈T (hI1 ⊗ uJ1), 1〉,

where sI1I2 = χIc
2,1
(hI2 − 〈hI2〉I2,1) and sJ1J2 = χJc

2,1
[uJ2 − 〈uJ2〉J2,1 ]. The relevant

properties are spt sI1I2 ⊂ Ic2,1, spt sJ1J2 ⊂ Jc
2,1, |sI1I2 | ≤ 2|I2|

−1/2 and |sJ1J2 | ≤

2|J2|
−1/2.

7.1. Lemma. There holds

|〈T (hI1 ⊗ uJ1), sI2I2 ⊗ sJ1J2〉| .
|I1|

1/2

|I2|1/2

(ℓ(I1)

ℓ(I2)

)δ/2 |J1|
1/2

|J2|1/2

(ℓ(J1)

ℓ(J2)

)δ/2

.

Proof. In the case that ℓ(I1) < 2−rℓ(I2) and ℓ(J1) < 2−rℓ(J2) one may use the
Hölder estimate of K. In the case 2−rℓ(I2) ≤ ℓ(I1)(≤ ℓ(I2)) and 2−rℓ(J2) ≤ ℓ(J1)(≤
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ℓ(J2)) one splits

〈T (hI1 ⊗ uJ1), sI2I2 ⊗ sJ1J2〉 = 〈T (hI1 ⊗ uJ1), (χ3I1sI2I2)⊗ (χ3J1sJ1J2)〉

+ 〈T (hI1 ⊗ uJ1), (χ3I1sI2I2)⊗ (χ(3J1)csJ1J2)〉

+ 〈T (hI1 ⊗ uJ1), (χ(3I1)csI2I2)⊗ (χ3J1sJ1J2)〉

+ 〈T (hI1 ⊗ uJ1), (χ(3I1)csI2I2)⊗ (χ(3J1)csJ1J2)〉.

The first term is controlled by the size estimate of the full kernel:

|〈T (hI1 ⊗ uJ1), (χ3I1sI2I2)⊗ (χ3J1sJ1J2)〉|

≤ |I1|
−1/2|I2|

−1/2

∫

I1

∫

3I1\I1

dx1 dy1
|x1 − y1|n

· |J1|
−1/2|J2|

−1/2

∫

J1

∫

3J1\J1

dx2 dy2
|x2 − y2|m

.
|I1|

1/2

|I2|1/2
|J1|

1/2

|J2|1/2
.

|I1|
1/2

|I2|1/2

(ℓ(I1)

ℓ(I2)

)δ/2 |J1|
1/2

|J2|1/2

(ℓ(J1)

ℓ(J2)

)δ/2

.

The two terms after that are controlled using the mixed size and Hölder estimates
of K. The last term is controlled using the Hölder estimate of K. The mixed
cases where 2−rℓ(I2) ≤ ℓ(I1)(≤ ℓ(I2)) and ℓ(J1) < 2−rℓ(J2) or ℓ(I1) < 2−rℓ(I2) and
2−rℓ(J2) ≤ ℓ(J1)(≤ ℓ(J2)) are handled similarly. �

The above lemma shows that
∑

I1(I2

∑

J1(J2

〈T (hI1 ⊗ uJ1), sI2I2 ⊗ sJ1J2〉〈f, hI1 ⊗ uJ1〉〈g, hI2 ⊗ uJ2〉

can be realized in the form

C

∞
∑

i1=1

∞
∑

j1=1

2−i1δ/22−j1δ/2〈Si10j10f, g〉.

The part
∑

I1(I2

∑

J1(J2

〈uJ2〉J1〈T (hI1 ⊗ uJ1), sI2I2 ⊗ 1〉〈f, hI1 ⊗ uJ1〉〈g, hI2 ⊗ uJ2〉

can be written in the form

C
∞
∑

i1=1

2−i1δ/2〈Si1000f, g〉,

where

Si1000f =
∑

K

∑

I1⊂K

ℓ(I1)=2−i1 ℓ(K)

hK ⊗Π∗
bI1K

(〈f, hI1〉1)

and bI1K = 〈T ∗(sI1K ⊗ 1), hI1〉1/C2−i1δ/2. Since one can check ‖bI1K‖BMO(Rm) ≤
c|I1|

1/2/|K|1/2, it is similarly as has already been done in the separated/inside
case seen that ‖Si1000f‖2 ≤ ‖f‖2. The proof of the BMO estimate is similar to the
proof of the previous lemma.
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Completely analogously one can write
∑

I1(I2

∑

J1(J2

〈hI2〉I1〈T (hI1 ⊗ uJ1), 1⊗ sJ1J2〉〈f, hI1 ⊗ uJ1〉〈g, hI2 ⊗ uJ2〉

in the form

C
∞
∑

j1=1

2−j1δ/2〈S00j10f, g〉,

where S00j10 is a non-cancellative L2 bounded shift.
The last part

∑

I1(I2

∑

J1(J2

〈hI2〉I1〈uJ2〉J1〈T (hI1 ⊗ uJ1), 1〉〈f, hI1 ⊗ uJ1〉〈g, hI2 ⊗ uJ2〉

collapses to
∑

K,V

〈g〉K×V 〈T
∗1, hK ⊗ uV 〉〈f, hK ⊗ uV 〉 = C〈Π∗

T ∗1/Cf, g〉,

where
Πbf =

∑

K,V

〈f〉K×V 〈b, hK ⊗ uV 〉hK ⊗ uV

is a bounded shift of the type (0, 0, 0, 0) for b in the product BMO of Rn × Rm. So
here we can set S0000 = Π∗

T ∗1/C . Note that the correct normalization for this shift

would follow just from the various kernel estimates and the weak boundedness
property.

7.2. Remark. In the proof of this representation theorem there are paraproducts
of essentially three different types. We have seen two types already: the full
paraproduct

Πbf =
∑

K,V

〈f〉K×V 〈b, hK ⊗ uV 〉hK ⊗ uV

and some half paraproducts, like

f 7→
∑

K

∑

I1⊂K

ℓ(I1)=2−i1 ℓ(K)

hK ⊗ Π∗
bI1K

(〈f, hI1〉1),

which have a paraproduct part only in the Rn or Rm variable. The third type
of paraproduct does not surface in our current sum, where ℓ(I1) ≤ ℓ(I2) and
ℓ(J1) ≤ ℓ(J2). However, for example in the mixed case, where ℓ(I1) ≤ ℓ(I2) and
ℓ(J1) > ℓ(J2), one has in the corresponding inside/inside part the mixed full
paraproduct

f 7→
∑

K,V

|K × V |−1〈T1(1), hK ⊗ uV 〉〈f, hK ⊗ χV 〉χK ⊗ uV

=
∑

K,V

〈T1(1), hK ⊗ uV 〉〈f, hK ⊗ u2
V 〉h

2
K ⊗ uV ,
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which is L2 bounded as T1(1) belongs to the product BMO of Rn × Rm by as-
sumption. It is rather straightforward and well-known that both of these full
paraproducts are bounded on L2 if they are defined by functions in the dyadic
product BMO. This can be proven by duality – see for example [16].

8. INSIDE/EQUAL

One splits

〈T (hI1 ⊗ uV ), hI2 ⊗ uV 〉 = 〈T (hI1 ⊗ uV ), sI1I2 ⊗ uV 〉+ 〈hI2〉I1〈T (hI1 ⊗ uV ), 1⊗ uV 〉,

where sI1I2 = χIc
2,1
(hI2 − 〈hI2〉I2,1) satisfies spt sI1I2 ⊂ Ic2,1 and |sI1I2| ≤ 2|I2|

−1/2.
One may write

∑

I1(I2

∑

V

〈T (hI1 ⊗ uV ), sI1I2 ⊗ uV 〉〈f, hI1 ⊗ uV 〉〈g, hI2 ⊗ uV 〉

in the form

C

∞
∑

i1=1

2−i1δ/2〈Si1000f, g〉

with cancellative shifts. For this one needs that

|〈T (hI1 ⊗ uV ), sI1I2 ⊗ uV 〉| .
|I1|

1/2

|I2|1/2

(ℓ(I1)

ℓ(I2)

)δ/2

.

Estimate

|〈T (hI1 ⊗ uV ), sI1I2 ⊗ uV 〉| ≤ |V |−1
[

∑

V ′,V ′′∈ch(V )

V ′ 6=V ′′

|〈T (hI1 ⊗ χV ′), sI1I2 ⊗ χV ′′〉|

+
∑

V ′∈ch(V )

|〈T (hI1 ⊗ χV ′), sI1I2 ⊗ χV ′〉|
]

.

In the case V ′ 6= V ′′ use the full kernel representation. In the diagonal case use
the kernel representation in Rn. If ℓ(I1) < 2−rℓ(I2), use the mixed size and Hölder
estimate of K (in the case V ′ 6= V ′′) or the Hölder estimate for the kernel KχV ′ ,χV ′

(in the case V ′ = V ′′). In the case 2−rℓ(I2) ≤ ℓ(I1) split sI1I2 = χ3I1sI1I2+χ(3I1)csI1I2 .
For V ′ 6= V ′′ use the size estimate of K for the first term and the mixed size and
Hölder estimate of K for the second term. In the case V ′ = V ′′ use the size
estimate of KχV ′ ,χV ′

for the first term, and the Hölder estimate of KχV ′ ,χV ′
for the

second term.
One writes

∑

I1(I2

∑

V

〈hI2〉I1〈T (hI1 ⊗ uV ), 1⊗ uV 〉〈f, hI1 ⊗ uV 〉〈g, hI2 ⊗ uV 〉

in the form

C〈S0000f, g〉,
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where in this case

S0000f =
∑

V

Π∗
bV
(〈f, uV 〉2)⊗ uV

and bV = 〈T ∗(1 ⊗ uV ), uV 〉2/C. This is indeed a non-cancellative shift of the type
(0, 0, 0, 0).

8.1. Lemma. There holds ‖bV ‖BMO(Rn) ≤ c.

Proof. Fix a cube K ⊂ Rn and a function a so that spt a ⊂ K, |a| ≤ 1 and
∫

a = 0.
We need to show that |〈T (a⊗ uV ), 1⊗ uV 〉| . |K|. We begin with the split

〈T (a⊗ uV ), 1⊗ uV 〉 = 〈T (a⊗ uV ), χK ⊗ uV 〉+ 〈T (a⊗uV ), χ3K\K ⊗ uV 〉

+ 〈T (a⊗ uV ), χ(3K)c ⊗ uV 〉.

There holds

〈T (a⊗ uV ), χ3K\K ⊗ uV 〉 ≤ |V |−1
[

∑

V ′,V ′′∈ch(V )

V ′ 6=V ′′

|〈T (a⊗ χV ′), χ3K\K ⊗ χV ′′〉|

+
∑

V ′∈ch(V )

|〈T (a⊗ χV ′), χ3K\K ⊗ χV ′〉|
]

,

where

|〈T (a⊗ χV ′),χ3K\K ⊗ χV ′′〉|

≤

∫

K

∫

3K\K

1

|x1 − y1|n
dx1 dy1 ·

∫

V ′

∫

V ′′

1

|x2 − y2|m
dx2 dy2 . |K||V |

and

|〈T (a⊗ χV ′), χ3K\K ⊗ χV ′〉| ≤ C(χV ′ , χV ′)

∫

K

∫

3K\K

1

|x1 − y1|n
dx1 dy1 . |K||V |.

Furthermore, we have

|〈T (a⊗ uV ), χ(3K)c ⊗ uV 〉| ≤ |V |−1
[

∑

V ′,V ′′∈ch(V )

V ′ 6=V ′′

|〈T (a⊗ χV ′), χ(3K)c ⊗ χV ′′〉|

+
∑

V ′∈ch(V )

|〈T (a⊗ χV ′), χ(3K)c ⊗ χV ′〉|
]

,

where

|〈T (a⊗ χV ′), χ(3K)c ⊗ χV ′′〉|

. |K| · ℓ(K)δ
∫

(3K)c

dx1

|x1 − cK |n+δ
·

∫

V ′

∫

V ′′

1

|x2 − y2|m
dx2 dy2 . |K||V |



24 HENRI MARTIKAINEN

and

|〈T (a⊗ χV ′), χ(3K)c ⊗ χV ′〉| ≤ C(χV ′, χV ′)

∫

K

∫

(3K)c

ℓ(K)δ

|x1 − cK |n+δ
dx1 dy1 . |K||V |.

For the first term we again begin with the estimate

|〈T (a⊗ uV ), χK ⊗ uV 〉| . |V |−1
∑

V ′,V ′′∈ch(V )

|〈T (a⊗ χV ′), χK ⊗ χV ′′〉|.

Let us consider the case V ′ 6= V ′′. In this case we have

|〈T (a⊗ χV ′), χK ⊗ χV ′′〉| =
∣

∣

∣

∫

V ′

∫

V ′′

Ka,χK
(x2, y2) dx2 dy2

∣

∣

∣

≤ C(a, χK)

∫

V ′

∫

V ′′

1

|x2 − y2|m
dx2 dy2 . |K||V |.

Thus, we are only left with the need for the estimate |〈T (a ⊗ χV ′), χK ⊗ χV ′〉| .
|K||V | – but this is one of the diagonal BMO assumptions.

�

Because of this lemma, one can show, similarly but with a bit less effort than in
Proposition 4.5, that S0000 is L2 bounded.

9. INSIDE/NEARBY

This goes very much so in the same vein as the inside/equal case. In fact, this
is easier since the nearby cubes do not intersect by definition. From the series
with the matrix element 〈T (hI1 ⊗ uJ1), sI1I2 ⊗ uJ2〉 we get

C

∞
∑

i1=1

r
∑

j1=1

j1
∑

j2=1

2−i1δ/22−j1δ/2〈Si10j1j2f, g〉.

From the series with the matrix element 〈hI2〉I1〈T (hI1 ⊗ uJ1), 1⊗ uJ2〉 we get

C
r

∑

j1=1

j1
∑

j2=1

2−j1δ/2〈S00j1j2f, g〉

with bounded non-cancellative shifts.

10. EQUAL/EQUAL

This part can be realized in the form C〈S0000f, g〉 for a cancellative shift, since
one can just estimate |〈T (hK ⊗ uV ), hK ⊗ uV 〉| . 1. This estimate is an easy conse-
quence of the weak boundedness property and the size estimates of our kernels.
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11. EQUAL/NEARBY

This part is clearly of the form

C

r
∑

j1=1

j1
∑

j2=1

2−j1δ/2〈S00j1j2f, g〉,

where the shifts are cancellative. Here one can again just use the estimate |〈T (hK⊗
uJ1), hK ⊗ uJ2〉| . 1, which follows just from the size estimates of our kernels.

12. NEARBY/NEARBY

This part is of the form

C
r

∑

i1=1

i1
∑

i2=1

r
∑

j1=1

j1
∑

j2=1

2−i1δ/22−j1δ/2〈Si1i2j1j2f, g〉

once again because of the easy estimate |〈T (hI1⊗uJ1), hI2⊗uJ2〉| . 1. This follows
from the size estimate for the full kernel.
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