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REPRESENTATION OF BI-PARAMETER SINGULAR INTEGRALS BY
DYADIC OPERATORS

HENRI MARTIKAINEN

ABSTRACT. We prove a dyadic representation theorem for bi-parameter singular
integrals. That is, we represent certain bi-parameter operators as rapidly decay-
ing averages of what we call bi-parameter shifts. A new version of the product
space T'1 theorem is established as a consequence.

1. INTRODUCTION

We study certain bi-parameter singular integrals 7" acting on some class of
functions with product domain R**” = R” x R™. Our aim is to prove a rep-
resentation theorem for them as an average of bi-parameter shifts S:

T1.0) = CrEy By, 3 2wty mntusois s g )
(il,ig)EZi
(J1,J2) €73

Here the average is taken over all the dyadic grids D,, in R" (parametrized by
the random parameter w,) and all the dyadic grids D,, in R™ (parametrized by
the random parameter w,,). An exact formulation of everything is given after
the introduction. Such a representation theorem exists for ordinary Calderén-—
Zygmund operators, and this was proven by Hytonen [7] in connection with the
proof of the A, conjecture for general singular integrals.

In the one-parameter case such general representation theorems have already
been utilized several times after [7]. The simplified proof of the A, conjecture
by Hytonen, Pérez, Treil and Volberg [10] offered among other things a bit easier
formulation of the representation theorem. In [8] the author together with Hyto-
nen, Lacey, Orponen, Reguera, Sawyer and Uriarte-Tuero used the representa-
tion theorem to study sharp weak and strong type weighted bounds for maximal
truncations 7. Modifying the metric randomization by Hyttnen and the author
[9] these representation theorems were lifted to the generality of metric spaces by
Nazarov, Reznikov and Volberg [14]. Several other applications in the weighted
context also already exist.
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The reason why the representation theorem is so useful in the one-parameter
case is that it can be used to reduce problems considering a general singular in-
tegral 7" into purely dyadic problems considering shifts only. Because of this,
there is no particular reason why the applications should be limited to weighted
questions. This just happens to be the case, since the representation theorem
was originally developed for this purpose and is still very new a result. This is
motivation enough for us to develop the analogous theory in the bi-parameter
case. It would, of course, be interesting to study sharp weighted theory in the
bi-parameter setting. Our theorem might be useful for this, however, it is a very
difficult problem.

Regarding multi-parameter singular integrals, and multi-parameter harmonic
analysis in general, there is a very large existing theory. After the classical 7'1
and T'b type theory by David and Journé [2] and David, Journé and Semmes [3],
the first 7'1 type theorem for product spaces was proved by Journé [11]. Regard-
ing other classical theory, we only mention the work of Chang and Fefferman [1],
Fefferman [4] and Fefferman and Stein [5]. These three concern singular integrals
and various spaces, like the BMO, on the product setting. There is a wide body of
more recent developments of which we here only mention the papers by Fergu-
son and Lacey [6], Lacey and Metcalfe [12] and Muscalu, Pipher, Tao and Thiele
[13]. These have to do with various multi-parameter paraproducts and character-
izations for some product spaces. Some bi-parameter paraproducts appear also
in our proof, and the product BMO space is thus important for us.

The classical multi-parameter singular integral theory of Journé [11] involves
formulations written in the language of vector-valued Calderén-Zygmund the-
ory. Very recently Pott and Villarroya [16] formulated and proved a new type of
T'1 theorem for product spaces. There such vector-valued formulations are re-
placed by several new mixed type conditions. Here we define our bi-parameter
operators inspired by [16]. The conditions we use are not exactly the same. We,
for example, do not work with smooth testing conditions. Establishing the cor-
rect shift structure is our primary task. However, we do get, as a by product, a
pretty nice form of the product space 7'1 theorem.

In this paper we bring the superbly useful machinery of non-homogeneous
analysis pioneered by Nazarov, Treil and Volberg (see for example [15]) to the
context of bi-parameter theory. The use of non-homogeneous analysis gives addi-
tional decay for certain matrix elements involved in the expansion of (T'f, g). Just
like in Hytonen’s proof of the representation theorem for one-parameter singular
integrals, the proof is a 7'1 style proof with ingredients from non-homogeneous
analysis. In our case, we have to deal with the much added complexity of the
bi-parameter situation. Indeed, there are more cases than in the one-parameter
setting, and many of these are interesting mixed type phenomena. The non-
homogeneous analysis makes this splitting into cases nicely transparent getting
rid of rare geometric complications.
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2. DEFINITIONS, STRATEGY AND THE MAIN RESULT

Structural assumptions. Let us formulate the Calderén-Zygmund structure of
our operators. The basic assumption is that if f = f; ® f, (meaning f(z) =
fl(.’lfl)fg(.TQ) forxz = (.Tl, 1’2)) and g =01 g with flygl: R" — C, fg,gzl R™ — C,
spt fi Nsptg; = 0 and spt f, N spt g, = (), then we have the kernel representation

Tro) = [ [ Kt dedy

The kernel K : (R*"™™ x R"*")\ {(z,y) € R x R"™ : zy =y, orzo = yo} — C
is assumed to satisfy the size condition
1 1

|1 — y1|™ |22 — yo|™

|K(z,y)| < C

and the Holder conditions

K (x,y) — K(z,(y1,95)) — K(x, (y1,92)) + K(z,9)|
<o ln —uil® ya— h)°
— ‘xl_y1|n+6‘x2_y2|m+6

whenever [y, — y;| < [z1 —y1|/2 and [ya — y5| < |2 — y[/2,
|K(ZL‘,y) - K(($1,l‘,2),y) - K((xllvl‘Q)ay) + K(l‘,,y”

w1 —24]°  Jan — ah)°

<C
= Ty — |7 | — gl

whenever |x; — 2| < |z — y1|/2 and |2y — 2b| < |x2 — y0|/2,
K (2, y) = K((z1,25),y) — K(z, (y1,92)) + K((z1,23), (Y1, 92))|

ol =P e o
— |.T1 _ y1‘n+5 \562 _ y2|m+5

whenever |y; — yi| < |z1 — 1y1]/2 and |ze — 2| < |29 — y2|/2, and

K (z,y) — K(2,(y1,95)) — K((2], 22),y) + K((#], 22), (y1,95))]
<c 2y — 240y — hl°
|l’1 _ y1|n+5 |{L‘2 _ y2|m+5

whenever |r; — 2| < |21 — y1|/2 and |ys — y5| < |22 — y2|/2.
Furthermore, we assume the mixed Holder and size conditions

|z — 2)]° 1

|z — 1|0 |zy — yo|™

K (2, y) = K((21,22), )| < C
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whenever |z — 27| < |z1 —11|/2,

116
_ 1
K(z,y) — K(z, (v}, <C’|y1 vl
‘ ( y) ( (yl y2))| = |ZL‘1 y1|n+5 |l‘2 _ y2|m

whenever |y; — y1| < |x1 —11]/2,

1 |zy — 5]°
K(z,y) — K((z1,25),y)| < C 2
| ( y) (( 1 2) y)| |:le — y1|n |ZL‘2 — y2|m+5

whenever |zo — 4| < |25 — y2|/2, and

1 ly2 — u5/°
K(z,y) — K(z, (y1,15))| < C
| ( y) ( (yl y2))| |:le . y1|n |ZL‘2 . y2|m+5

whenever |y, — y4| < |22 — y2|/2. We use, for minor convenience, /> metrics on
R™ and R™.
We also need some Calderén-Zygmund structure on R” and R™ separately. If

f=h® frand g = ¢1 ® g» with spt fi Nsptg; = ), then we assume the kernel
representation

(Tf,9)= /n - Ky, g (01, 91) f1(y1) 91 (1) dvy dys.-

The kernel Ky, 4, : (R x R™) \ {(z1,y1) € R® x R" : 27 =y, } is assumed to satisfy
the size condition
1

| K fa,00 (1, 91)] < C(f2, gQ)m

and the Holder conditions

|21 — @y )°
|Kf2,92(x17y1) - Kf2792 ('rllu yl)‘ < C(f27g2> 1n+5
|21 — 1
whenever |z — 2| < |27 — y1|/2, and
/ |y1 B y”é
|Kf2,g2(x17y1) - Kf2792 (Il, yl)‘ < C(f27g2> |$1 _ yl‘nJrzS

whenever |y; — y;| < |z1 — y1|/2. Let |A| denote the Lebesgue measure of a set A
and 4 be the characteristic function of A. We need the above representations and
some control for C( fs, g») only in the diagonal in the following sense. For every
cube V' C R™ we assume that there holds C(xv, xv) + C(xv,uy) + C(uy, xv) <
C|V|, whenever uy is such a function that sptuy C V, Juy| < 1and [uy = 0.
Functions uy are called V-adapted with zero-mean (so V-adapted means just the
tirst two conditions on the support and size). We also assume the analogous
representation and properties with a kernel K, ,, in the case spt f> Nsptgs = 0.
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Boundedness and cancellation assumptions. Define the partial adjoint 7; of T
by setting

(Th(f1 @ f2), 1 ® g2) = (T(91 ® f2), f1 @ ga).

We assume that 7'1,7*1, 77 (1) and 77 (1) belong to the product BMO on R™ x R™.
We recall the definition of this space later in this section.

We assume that [(T'(xx @ xv), xx ® xv)| < C|K||V| for every cube K C R" and
V' C R™. This is the weak boundedness property for 7.

We also assume the following diagonal BMO conditions: for every cube K C
R™ and V' C R™ and for every zero-mean functions ax and by which are K and V'
adapted respectively (one has sptax C K, |ax| < 1 and f ax = 0, and similarly
for by):

1) (T'(ax ® xv), xx ® xv)| < ClK||V]
(ii) [(T'(xx ® xv),ax @ xv)| < C|K||V],
(ii)) (T(xx @ bv), xx @ xv)| < C|K||V],
(iv) (T(xx ® xv), xx ® by)| < CIK||V]

Haar functions. Let i; be a L? normalized Haar function related to I € D,,
where D, is a dyadic grid on R". With this we mean that h;, [ = I x --- x I, is
one of the 2" functions h}, n = (01, ...,n,) € {0,1}", defined by

b= 1 @@ B

where hY = |I;|72x;, and hj = |L|7"*(x1,, — x1,,) forevery i = 1,...,n. Here
I;; and I;, are the left and right halves of the interval I; respectively. If n # 0
the Haar function is cancellative: f h; = 0. All the cancellative Haar functions
form an orthonormal basis of L?(R"). If a € L*(R") we may thus write a =
> 1em, 2mefoaym oy (@ hp) k. However, we suppress the finite 7 summation and
just write a = > _,(a, h;)h;. Given a dyadic grid D,, on R™ and a cube J € D,,,
we denote a L? normalized Haar function on J by u,.

Product BMO on R" x R™. Let us be given a dyadic grid D,, in R” and a dyadic
grid D,,, in R™. We define the square function

Spmnf = [ 3 30 (o @ ) PREEN]E

Kb, Vep, KV

Then the product Hardy space H}, ,, (R" x R™) consists of the locally integrable
functions f with [|f{|gy _ @®rxzm)y = [[Sp,p,.fll1 < co. The dual of this space is

the product BMO space BMOp, p,, (R" x R™).

For us, the condition that b € {T'1,7*1,7T(1),7}(1)} is in the product BMO is
defined to mean that ||b||gmop, 5 (Rexrm) < C with every dyadic grid D, in R"
and every dyadic grid D,,, in R™.
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Bi-parameter shifts. A bi-parameter shift on R” x R™ is tied to a dyadic grid D,,
on R”, a dyadic grid Dm_ on Rm and non-negative integers iy, 72, j1, j2. Such an
operator is denoted by S5’ and is of the form

11927172 £ __ 1112712
Spibf = D Y ARV

KeD, VeDy,
where
Apeiep = - > annrnnv{f by @up)hy, @ uy,
I, I,CK Ji, J2CV
(1) =2- 11 6(K) £(J1)=2-71 (V')
UI2)=27"24(K) £(J2)=2"724(V)
with

|a | - |]1|1/2|]2|1/2 |J1|1/2|J2|1/2
LHIoKJ1 oV = |K| |V| .

Here, of course, 1, I, € D, and Ji, J; € D,,, and ¢(I) denotes the side length of a
cube I. It is also required that all the subshifts

zll2j1]2 _ Z Z A“Z?ﬂ” , AcCD,, BcCD,,

KeAVeB

map L*(R" x R™) — L*(R™ x R™) with norm at most one. If all of the Haar
tunctions hy,, hy,, vy, uy, appearing are cancellative, the shift is called cancella-
tive. Otherwise, it is called non-cancellative. The last requirement concerning
the L? boundedness of all of the subshifts follows from the other conditions for
cancellative shifts.

In practice, it is useful to observe that a bi-parameter shift S of type (i1, iz, j1, j2)
related to some dyadic grids is simply of the form

ZAva Z by — 1) K ) I () dy

KXV

= Ks(z,y)f(y) dy,
Rn+m
where first of all spt K4,.,, C (K x V) x (K xV)and |K4,. (z,y)| < 1. Moreover,
K 4., is constant with respect to x on dyadic rectangles I x J C K x V for which
((I) < 272¢(K) and ((J) < 2772((V), and K, is constant with respect to y on
dyadic rectangles I x J C K x V for which ¢(I) < 27¢(K) and ¢(J) < 277(V).
Note also that clearly

1 1

|Ks(z,y)| <C - —.
|21 — y1|™ |22 — Yo
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2.1. Random dyadic grids and the basic averaging formula. Let w, = (w},)icz
and w,, = (w),);cz, where w, € {0,1}" and w’, € {0,1}™. Let D2 and D¢, be
the standard dyadic grids on 'R" and R™ respectlvely In R" we define the new
dyadic grid D, = {1+ 3", p-ioy) 2 'w;, - 1 € D)} = {I +w, : I € D)}, where we
simply have defined I + w,, := I + > oz 27w}, The dyadic grid D,, in R™
is similarly defined. There is a natural product probability structure on ({0, 1}")*
and ({0, 1}™)%. So we have independent random dyadic grids D,, and D,, in R"
and R™ respectively. Even if n = m we need two independent grids.
A cube I € D, is called bad if there exists I € D, so that ¢(I) > 27¢(I) and
d(I,0I) < 20(I)™¢(I)*—. Here % = 0/(2n + 29), where § > 0 appears in the
kernel estimates. One notes that g 4 := Py, (I + w, is good) is independent of

I € DY. The parameter r is a fixed constant so that 7. ;. Tgood > 0. Furthermore,

g00
it is important to note that for a fixed I € DY the set I + w,, depends on w’, with
27" < ((I), while the goodness of I + w,, depends on w), with 27 > ¢(I). In
particular, these notions are independent. Analogous definitions and remarks
related to D,,, hold.

We prove the basic averaging formula of Hytonen [7] but in the bi-parameter
setting. This is the only part of the proof where probabilistic arguments are
needed, and here independence plays a big role, even more so in the bi-parameter
setting. We note that the functions f and ¢ in this paper are always taken from
some particularly nice dense subset of functions.

2.1. Proposition. There holds
(Tf,g)=CE Z Z Xgood (smaller(1y, I3)) Xgood (smaller(Jy, J2))

11,I2€Dy, J1,J2€Dm,

<T(hh ® qu)v hfz ® uJ2><f> hh ® uJ1><g> hf2 ® uJ2>>

where E =K, Ey,, and C' = 1/ (T4 g00a)-

2.2. Remark. Here all the appearing Haar functions are, of course, cancellative and
we recall that the finite summations over the 2" —1 or 2™ — 1 different cancellative
Haar functions per cube are simply suppressed from the notation.

Proof. Define (f, h)1(y) = [ f(x,y)hi(z)dz, y € R™. We may write
f= Z i, @ (Fohr)t = D by, © (F Bty )1
IleDn IlEDO
so that by independence
(Tf,9) = Euw, > (T(hiyw, @ (fhry 1), 9)
Ile'DO
1

Ewn Z Xgood Il +wn)<T(hh+wn ® <f7 h11+wn>1)>g>'

good L eDY
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After expanding g similarly as f above, one sees that this equals

1

" Ewn Z Xgood(ll + wn)<T(hll+wn X <f> hh-{—wn)l)a h[g—f—wn & <g> h12+wn>1>
good

I1,I,eDY

1
o Ey, Z Xgood(ll + W ) (T (hry 1w, @ (f Pty twn)1)s Py rw, @ (95 Py, )1)
gOOd 117126D2
£(I1)<e(I2)

+ Eum Z <T(hf1+wn ® <f7 h11+1Un>1)7 h12+wn ® <97 hf2+wn> >
Il,fgépg
L(I1)>£(12)

Here we again used independence in the latter summation. Comparing to the
trivial representation

<Tf, g> = Ewn Z <T(hf1+wn ® <f’ h11+wn>1)’ h12+wn ® <97 hf2+wn>1>

I1,I,eDY
we conclude that

71-goodEwwn Z <T(hf1+wn ® <f7 h11+wn>1)7 hfz-HUn ® <97 hf2+wn>1>
Il,fgépg
U(I)<e(Iz)

Ey, Z Xgood(jl + W) (T (hry 1w, @ (fy Pytwn)1)s Py tw, @ (G5 Riytwn)1)-

I,I2€DY
£(1)<L(12)

First expanding g and proceeding like above one gets the symmetric formula

71-goodﬁjwn Z <T(hf1+wn ® <f7 h11+wn>1)7 hfz-HUn ® <97 hf2+wn>1>
I,I,eD),
L(I2)<t(I1)

Ey, Z Xgood(]2 + W) (T (hry 1w, @ (fy Pytwn)1)s Py twn @ (G5 Riytwn)1)-

I1,I,eDY
L(I2)<t(I1)

Splitting the trivial representation in to these two parts allows us to conclude that

(Tf,g) =

,n.n

By, Y Xgood(smaller(Iy, 1))(T(hr, @ (f,hr,)1), i, @ (g, hi)1)-
good

I11,I2€Dy,

We now expand on R™. One may write

(fhr)r= > (frh @up)uy,

Jl eDm
so that

h’h ® <f7 h11>1 = Z <f7 hll ®uJ1>h'11 ® Uy, -

JIEDm
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We may then follow the recipe from above: insert this to the above formula for
(T'f,g), add goodness to J; by independence, expand h;, ® (g, h1,)1, split the
summation to ¢(.J;) < ((J2) and ¢(J;) > £(J2), remove the goodness from J; in
the latter summation by independence and, finally, compare to the appropriate
trivial identity. One also does the symmetric thing, where one first expands h;, ®
(g,h1,)1 and adds the goodness to J,. Combining these gives the claim of the
proposition. U

2.3. Remark. One may also use full expansions like f = >, ., > ; cp (f b, ®
w, ) hy, @uy, in the beginning of the proof. Following the usual trickery this leads
to the formula

(Tf,g)

E Z Z Xgood (smaller (1, I5))

gOOd I1,I2€Dy, J1,J2€Dm
<T(hh ® uJ1)> hf2 ® uJ2><f> hh ® uJ1><gv hlz ® uJ2>'

Here it may at first seem that there is no longer enough independence to add the
goodness to .J;. However, one may simply write the summation as

Z Z Xgood(smauer(lla IQ))<T(hh ® uJ1)7 g[z) <f7 hh ® UJ1>,
11,I12€Dy, J1EDm,
where one realizes that
9= Y (g, h, ©up)hy @ ugy = hi, ® (g, i)
JQEDm
does not depend on w,,. Then one may add the goodness to J; using indepen-
dence and repeat the basic recipe to get the proposition.

Strategy and formulation of the main theorem. We fix the random variables w,,
and w,, which fixes the dyadic grids D,, and D,, respectively. Then we study the
summation

Z Z hh ®UJ1)>h12®uJ2><fahI1 ®uJ1><gvh12 ®UJ2>'

L(I1)<L(I2) £(J1)<Lt(J2)
17 good J1 good

We more often than not suppress from the notation the important fact that /; and
Ji are good. Then we perform the splitting

> = P Y

£(I1)<e(I2) () <L(12) Lch £(I1)<e(I2)
d(I,I2)>(I1) 1 e(I)1—m d(I1,I2)<L(I1)mL(I2) 1=
I1NIs=0

and similarly for the summation over the grid D,,. Here d(A, B) denotes the
distance of the sets A and B (recall that we use the /> metric). The first sum is
the separated sum, then we have the inside sum, the equal sum and the nearby
sum. The summation over both the grids is split in to various types which also
includes several mixed types. The list is: separated /separated, separated/inside,
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separated /equal, separated /nearby, inside/inside, inside/equal, inside/nearby,
equal/equal, equal/nearby, nearby /nearby and some symmetric mixed sums. It
seems reasonable to deal with these separately.

Note that actually the mixed sums where ¢(I;) < ((l3) and ¢(.J;) > {(J;) or
((Iy) > (1) and ¢(J;) < {(.J5) are not completely symmetrical to this case. How-
ever, the relevant difference is only in the full paraproduct that appears in the
corresponding inside/inside part. There one gets a bit different paraproducts,
which are related to the assumptions that 77(1) and 77 (1) belong to the product
BMO of R" x R™. We comment more on this on Remark[7.2l

The goal is to represent all of these different parts as a sum of shifts with a
good decay factor in front. Combining all these cases together leads to our main
theorem:

2.4. Theorem. For a bi-parameter singular integral operator T' as defined above, there
holds for some bi-parameter shifts S3,';}'7* that

<Tf7 g> = CTEwnEwm Z 9~ max(i1,i2)8/29—max(j1,j2)/2 <S$22D];]2 f’ g>’
(il,iQ)GZi
(J1,J2) €73

where non-cancellative shifts may only appear if (i1,42) = (0,0) or (j1,j2) = (0,0).
2.5. Corollary. A bi-parameter singular integral T as defined above is L* bounded.

We note that all of the appearing non-cancellative shifts will have a certain
paraproduct structure, and this structure is explicit in the proof. For example in
[8], where the one-parameter representation theorem is applied, it is important
to know the explicit structure of the non-cancellative shifts.

The rest of the paper is dedicated to the piece by piece proof of this theorem.
We use X < Y to mean X < CY for some constant C' and X ~ Y to mean
Y $ X S Y. Of course, we cannot absorb just any constants, but only ones
that depend on the dimensions or the various constants from the assumptions
concerning 7.

3. SEPARATED /SEPARATED

Let 1 V Iy = gep, xonun K and iV Jo = (Nycp, o505 V- The separa-
tion conditions together with goodness imply ¢(I;)™ (I, V I)'™" < d(Ih, I;) and
E(Jl)'ymf({]l V Jz)l_’ym 5 d(Jl, J2)
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Let us write

2 2

£(I1)<e(I2) £(J1)<(J2)
d([1712)>5(11 )'V" 5(12)1_7" d(J1,J2)>Z(J1)"/mf(J2)l_"/m

=22 2 2 2

i2>1 11> K€Dy d([l,Ig)>f(]1)7"f(12)177" d(J1,J2)>€(J1)7mf(‘]2)177m
Jj221 41252 VEDm I1VIs=K J1VJae=V
L(11)=2""14(K), £(I2)=2""24(K) £(J1)=2"914(V), £(J2)=2"724(V)

3.1. Lemma. For I, I,, Ji, J5 in the above summation, we have the estimate
‘<T<h11 ® uJ1)7h12 ® uJ2>‘
o LPn) 2 |J1\1/2\J2|1/2(ﬁ(fl))‘s/Q(E(Jl))‘s/Z

~ K| V] U(K) (v
_ o-id2 |[1|1/2‘[2‘1/227j15/2 |J1\1/2U2|1/2.
|K]| 14

Proof. Given a cube I we denote by c; its center. We may write
<T(hf1 ® qu)v hIQ ® uJ2>

~ / K (s )y (32w (o) (2 Yt ) vy,
11><J1 IQXJQ

where we may, using cancellation, replace K (x,y) by

K(l‘, y) - K(l‘, (yh CJI)) - K(ZL‘, (Chv yQ)) + K(l‘, (Chv CJ1))'
Since ‘Zh — C[1| < g([1)/2 < %g(ll)wng(lg)liwn < d([l,[2>/2 < |.I‘1 — C[l‘/Q and
similarly |y — ¢, | < |z2 — ¢4, ]/2, we have
|K<J}, y)—K(SL’, (ylv CJI)) - K(I, (Cflva)) + K(:L’, (Chv CJI))‘
lyr —enl® lya—cal’

~ |.’L‘1 _ Ch|n+5 ‘.1’2 _ CJl‘eré

< U(1)°d(Iy, L)% 0(Jy)od(Jy, Jo) ™m0

S L) O ) ™ (K)om0 () [ Jy) (V) e

= U(L)" U)K )PV )RV

Here we used ((,)"¢(K)' ™ < d(I4, I») and y,n + 7,0 = 6/2 (and the analogous
estimates involving J;, J5, V and m). Recalling the L? normalization of the Haar
functions and the fact that ¢(I;)/¢(K) = 27 and ¢(.J;)/¢(V) = 279t completes the
proof. O

We write
<T<h'11 ® uJ1>7h12 ® uJ2> <f7 h’h ® uJ1><g7 hlz ® uJ2>

<T(hf1 ® qu)v hIQ ® uJ2>

_ (19—i16/29—j16/2
= g2mnime C'2-116/29—315/2

<<f7 h’h ® uJ1>h12 ® uJ27g>'
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Define
_ <T<h'11 ® uJ1>7 h'IQ ® uJ2>
AnLKJL LV = C'2—i16/29—j16/2

if all the various goodness and separation conditions appearing in the summa-
tions are satisfied, and otherwise set ar, 1, k7,7, = 0. This enables us to write

Z Z <T(h11 ® qu)v hIQ ® uJ2>

L(I1)<e(12) L(J1)<L(J2)
d([l,Ig)>f(]1)7"f(12)177" d(J1,J2)>€(J1)'me(‘]2)177m

<fa hh ® uJ1><gv hIQ ® uJ2>

C Z Z 9—i16/29=j16/2 Z(Ai}l(i‘aﬁjzf’ g>7

in the form

i9>1 i1 >12 K,V
J2=1j1272
where
i192J1J2 £ __
Ay 2 f = E E an s v h, @up)hn, @ uy,
I, I:CK Ji, JoCV
0(I)=2""10(K) £(J1)=2"914(V)
U(I2)=2"720(K) £(J2)=2"924(V)
with

‘[1‘1/2‘[2‘1/2 |J1‘1/2‘J2|1/2
lanrnnv| < )
142 1J2 — |K| |V|

The corresponding bi-parameter shift with indices i1, is, j1, j2 is by definition

Sz’1i2j1j2f — E Ail(i‘Q/jl_jQ f
K,V

4. SEPARATED /INSIDE
As J; C Jy, there is a child .J5; of J; such that .J; C J2 1. We decompose
(T'(hy, @ uy,), hr, @uy,) = (T'(hy, @uy,), hr, @ S7,72)
+ (ug) 5 (T(hy, @ uy,), hy, ® 1),

where 5,7, = xg [us, — (U1,)1,,]. The relevant properties of s, 5, are |5, ,| <
2|.Jo| 7/ and spt 5,4, C J5 ;.

We write
) )

o(1)<e(I2) NS
d([l 7[2)>£([1)’Yn£([2)1*"{n

=2 2.2 2. 2 2 2

i9>11i1>ip 121 K€D Jo€Dm  d(Iy,I2)>£(I1 ) £(I2) 1= JiCJs
LVI=K 0(J1)=2-914(J5)
U(I)=2"10(K), £(I2)=2"2 £(K)



REPRESENTATION OF BI-PARAMETER SINGULAR INTEGRALS BY DYADIC OPERATORS 13

4.1. Lemma. For I, I,, J;, J5 in the above summation, we have the estimate

|<T<h'11 ® qu)u hlz ® SJ1J2>‘
< 1| V2| I V2 |, |2 <£<[1)>5/2(g<J1))5/2
l

~ UKL [RPNUK) ()
T L4 e L e 1
K] PAE

Proof. There is good separation by the goodness of .J; if ¢(.J;) < 277¢(.J;). Indeed,
in this case there holds d(Jy, J5,) > 20(J1)"€(J31)' 7" > £(J1)"™€(J5)' ™. Then
we may write

<T<h'11 ® uJ1>7h12 ® SJ1J2>

- / / K (s )y (321, (o) (1) g1 22) et iy,
Iy xJy JIaxJS

and replace K (z,y) by K(z,y) — K(x, (y1,cn)) — K(x, (cr,, v2)) + K(x, (cry,¢0))
using the cancellation of u;, and h;,. We may utilize the kernel estimates to get

|K(:L‘,y) - K(ZL‘, (ylv CJ1))_K(:E7 (CflayQ)) + K(ZL‘, (Chv CJ1))|

1
S UL PUE) O PIK )

|l‘2 _ CJ1|m+5'
This yields
‘<T<h11 ® uJ1>7 h’b ® 3J1J2>‘

< B () o IR
~ K] W)Y L2 g e — ey 7

dx dx
/ —25 < —25
g5, w2 = en [0 Jro piey, aen,as ) 172 = cn ™

Sd(Jy, J5 )70 S ()T ()

where

Therefore, we have

(T (hr, @ uyg,), hr, ® 51,72)|
‘[1‘1/2” ‘1/2 (

8/2|.J; |1/2< J1)>5/2

1)
K)) | L2 L()
We still need to deal with the case 277¢(.J;) < ¢(J1)(< £(J2)). This time we split

(T'(hr, ® ugy), hry, ® sg02) = (T'(hr, @ ug), hr, ® (X35,5,02))
+{(T(hy, @ug,), hi, @ (X@E50)e50,02))-
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We have that (T'(h;, ® uy, ), hr, ® (X35,5.,52)) equals

/ / K (2,y) — K (@, (cry, ya)leny (1) () oy (21) 5,1 (05) iz dy
IixJ1 JI2x(3J1\J2,1)

so we can estimate using the mixed Holder and size estimate that

(T (hr, @ ug,), hr, @ (X35, 85.02))|

(

||| Y2 0(I) N2, _ 1
< Jo| V2| | 712 = dzyd
~ |K| (E(K)> | 1| | 2| 7 s |l’2—y2|m 2 Y2
< |11|1/2|12|1/2(5(11))‘5/2|Jl|1/2
~ K| UK) | JofH?
< |11|1/2|f2|1/2(5(11))‘5/2“1\1/2(f(Jl))‘s/2
~ K| UK)) | L[Y2NL(J) )

In the term (T'(h;, ® uy,), hr, @ (X(34,)¢57,02)) We have good separation every-
where, so the Holder estimate for K yields

(T (hr,@u ), he, ® (X3n)e50102))]|
1/2 1/2 1/2
A
(3]1

~ | K| UK)) R jo |z2 — gy |mHo

< |11|1/2|12|1/2(ﬁ(fl))‘5/2|J1|1/2

~ | K| UK)) | Jo|'V?

< |11|1/2|12|1/2(6(11))5/2|Jl|1/2(f(Jl))‘S/2

~ | K| UK)) | JL|V2NU( )/

]
The above lemma enables us to write
Z Z <T<h11 ® uJ1>7 h'fz X 3J1J2><f7 hh ® uJ1><g7 hlz ® uJ2>

o(1)<e(I2) NG
d([1712)>5(11 )W"Z(12)17W"

in the form

C Z Z Z 2—i16/22—j16/2<Si1i2j10f’ g).

12>1 11202 j12>1

Next, we deal with the series with the term (uy,) ;, (T'(h;, ® uy,), hy, ® 1). This
will yield shifts of the type (i1, 42, 0, 0) which are non-cancellative (their R™ parts
are paraproducts in a certain sense). As these shifts will be non-cancellative, we
will also have to worry about their L? boundedness properties.
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Write

Z <uJ2>J1 <T<h11 ® qu)? hlz ® 1><f7 h’h ® uJ1><gv h'fz ® qu)
J1CJ2

= Z < Z 9, h'lz ® uJ2>uJ2>J <T<h11 ® uJ1>7 h'IQ ® 1><f7 hh ® qu)

_Z g7h12 hh ®UV) h'12®1><f7h11 ®UV>

The summands can further be written in the form
‘V‘71/2<T<h'11 X uV)7 hlz ® 1><<f7 hh X uV>h'12 ® u(\)h g>7

where v, = |V|7Y/2xy.. Written in this way it is evident that we will have the
required shift structure of the type (i1, i3, 0, 0).

4.2. Lemma. The correct normalization

\L| 2L o) N2y
< /2
(T, @ ), ey © 1] S 2B () VI
holds.
Proof. Let us first split
(T'(hr, @ uy), hr, ® 1) = (T'(hy, @ uy), hr, @ x3v) + (T(hr, ® uy ), hr, ® X@3v)e)-

We have

(T (hr, @ uy), by, @ xav)| < [V[7? Z [|<T(hh ® Xv1)s hiy ® Xav\v)|
V/ech(V)

+ |<T(h11 ® XV’)? h[g ® XV’>|

For the first time we use the kernel representations in R" to write (T'(h;, ®
Xv'), hz, ® xy) in the form

/ / Xv/sXv/ xl,?h) KXV/7XVI($17Ch)]hh(yl)hb(xl)dxl dyl-
I JIs

This gives that

L AY21 1,112 2 0(T )N 6/2
(T (s, @ x0). bty @ )| < Ol ) (£< 1))

| K| (K)
L2112 0(10) N 9/2
| K| (K)

Notice that by the mixed Holder and size estimates for K we have the same
bound also for the term [(T'(h;, ® xv-), b1, ® Xx3v\v7)|, and so there holds

|I1|1/2|12|1/2 E(Il) 9/2 1
- h < V2.
(T (h, @ uy), hi, @ Xsv)| S | K] (E(K)> vl
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The term (T'(h;, ® uy), hi, ® X(3v)e) is in control by the full kernel representation
and the Holder estimate for K. O

These are non-cancellative shifts so we must separately demonstrate the L?
boundedness. For this, we prefer to write things in a different way:

> g b)) (T (hr, @ uy), by, @ 1)(f, by, © )
1%
= g h) v ((T*(hay @ 1), b, 1, wv ) ((f by )1, uv)

= 027i15/2<<f7 hi)1, Z<<97 h12>1>V<b1112’uV>uv>

= C27((f, by )1, Ty, (95 B )
= 027“5/2@_{;[1]2«]2 hl1>1)7 <97 h'12>1>
= O (g, © T, (fohe ). g).

bry 1y

where by, 7, = (T*(hg, ® 1), hy,)1/(C271%2) and 11, ,_ is the related paraproduct
on R™ defined by the general formula

Mya = Z(a)v<b, Uy ) uy.
v
4.3. Lemma. We have by, ;, € BMO(R™) with the bound
|]1|1/2|]2|1/2
Proof. Let V be any cube in R™ and a be any function in R™ such that spta C V,
la| < 1and [ a = 0. It suffices to show that
L[] 1] (5(]1) )5/2|V|.
K] U(K)

This is done by splitting 1 = x3v + X(3v)c and using kernel estimates in a similar
fashion as before. O

b5, 1, IBMOR™) <

|<T(hh ® a)v hfz ® 1>| 5

4.4. Remark. The strengthening of Lemma to the related BMO estimate of
Lemma requires one to have the control C(uy, xy) < C|V| for V-adapted
functions wy with zero-mean. It is precisely for these type of BMO reasons that
merely the assumption C(xy, xv) < C|V| does not seem to be enough for the
results of this paper.

Let us abbreviate
(%1,i2)
I,I,CK I, I:CK
0(I1)=2"10(K), {(I2)=2""24(K)
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We are ready to show the boundedness of our non-cancellative shifts of type
(11,12,0,0).

4.5. Proposition. There holds

(i1,12)

HZ > @I (f b))

K I,[oCK

Proof. There holds by orthogonality that

< [ fll2-

(31,i2)

[ 3 mwom,, (b,

K Il IoCK
(i2) (11)

=DM DRI

K Ib,cK ILLCK

(i2) (i1)

<3 (X, (R R)

K IQCK Ich

Let p’- be the orthogonal projection from L?(R") to span{h;, : I, C K, {(I,) =
27"¢(K)}. Write also f,(z) = f(z,y). There holds by the boundedness of para-
products defined by BMO functions and the previous lemma that

|]1|1/2|]2|1/2
L5, , (CFs bz < T”<fahl1>1H2

| |2 Io| 2 i 1/2
< ———Wi?r———( \pk,y(x)ﬁ(ttdy> .
m Jr

Therefore, we have

(i1,i2)

HZ Z hi, @ 115, ((f, hh))

K ©,I;CK
_Z‘K‘<Z‘[11/2 / /‘p |2dl’dy) /2)2
LCK
(i1)
_Z‘K‘(IZ i Z/m o) do dy)
CK LCK

< Z/ (z)|* dx dy
- / 1 l2dy = 1712

where we again utilized orthogonality. O
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We end this this section by concluding that

Z Z <uJ2>J1 <T<h'11 ® qu)? hlz ® 1><f7 h’h ® uJ1><gv h'fz ® qu)

Z(Il)SZ(Ig) JngQ
d([l,IQ)>Z(11)7"Z(12)1_7"

_ CZ Z 2—i16/2<5i1i200f’ g>

i2>111>142

5. SEPARATED/EQUAL
There holds that

[P L[ £(10) N 972
T(h h < ( ) )
Indeed, to see this, first estimate

(I'(hp, @ uy), by, @ uy)| < IVl_l{ > " (T(hs, @ xvr), by ® xv)|
V!,V ech(V)
V/#V//

+ Z |<T(h11 ®XV/)7h12 ®XV’>| :
Vech(V)
We have by the kernel representation in R" that
L2112 (1) 92
| K| (Z(K))

12| |2 0(1h) \ 972
K] (E(K)) '

[(T'(h1, @ Xv7), by @ Xxv7)| < Clxvr, xv7)

< it
For V' # V" the estimate

(T (hn, @ xvr), hiy @ xv)| S V]

L2 (é([1)>5/2
(Kl (K
follows from the full kernel representation using the mixed Holder and size esti-

mate of K.
We may thus immediately write that

Z Z<T<h'11 ® uV)7 hlz ® Uv><f, hh ® uV><g7 hlz X uV)

£(11)<e(I2) v
d(I1,12)>£(I1 ) e(I2)1—m

—C Z Z 2—i16/2<5i1i200f’ g>’

i2>1 141 >142

where in this case S"%2% are cancellative shifts.
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6. SEPARATED /NEARBY

For the J; and J; in the nearby summation it is evident that V' = .J; V J, satisfies
(V) <270(Jy). Thus, we may write

2 2

£(I1)<e(I2) £(J1)<e(J2)
d([1712)>5(11 )7"5(12)1_7" d(Jl ,JQ)SZ(JI)”/mZ(JQ)l—”/m
JiNJo=0

g1
2211242 j1=1j2=1 K 'V d(I1,I2)>L(I1 ) l(I2) = d(J1,J2)<L(J1)YmL(J2)1—vm  JiNJ2=0
I1VIo=K J1VJa=V

0(1)=2""10(K), 0(I2)=2"20(K)  £(J1)=2"910(V), £(J2)=2"724(V)

It is easy to get the required estimate

L[ PIL? 0Ty
<
‘<T(h[1 ®UJ1>7h'12 ®uJ2>‘ ~ |K| (f(K)>

by using the full kernel representation and the mixed Holder and size estimate
of K. Therefore, we are able to realize this part in the form

roJ1
CY ST S N ardrzg-nirzguisiie f gy
1221141212 j1=1 jo=1
7. INSIDE/INSIDE
We decompose
<T(hf1 ® uJ1) hf2 & uJ2> = <T(hh & uJ1) ShD, @ 3J1J2>
uJ2> < (h'h ® uJ1) SIyIs ® 1)

+
<h12> < (hh ® qu) 1® 3J1J2>
<h'12>11 <uJ2>J1< (hh ® uJ1)7 1)7

where S, = Xlg,l(hb — <h[2>[2’1) and SIhJs = XJQC’I[U/JQ — <’U/J2>J2’lj|. The relevant
properties are sptsy,;, C I5,, sptsyy, C Js, [snn| < 2|I,|7? and |sz,;,| <
2|J2|71/2.

7.1. Lemma. There holds

|1, ]!/ (f(fl)>5/2 PAES (f(J1)>5/2
|LIV2NL(IL) ) || V2N Ty) /)

Proof. In the case that ¢(I;) < 27"¢(l3) and ¢(J;) < 27"¢(J2) one may use the
Holder estimate of K. In the case 27"¢(1y) < ((I1)(< £(12)) and 2774(Jy) < U(J1)(<

|<T(hh ® uJ1)v SIy I, ® 3J1J2>| S
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((.J5)) one splits

(T'(hr, ®@uy,), 81,10 @ s5,05) = (T(hr, @ ug,), (X31,51.1) @ (X35,510))
+(T(hr, ® ug,), (X31,5121,) @ (X31)eS10))
+ (T (hr, ®ur,), (X@n)Snn) ® (X3n5n10))
+ (T'(hr, ® uy,),
e

(

(

(X@n)esne) ® (XEmn)esnn))-
The first term is controlled by the size estimate o

f the full kernel:
|<T(h11 ® uJ1 X311 51212 (X3J13J1J2)>|

dxy d dxo d
<|Il| 1/2‘[‘ 1/2/ / Ty Ay |J‘ 1/2|J‘ 1/2/ / To QY2
3[1\11 |.T1 - y |n J1 J1\J1 |.T2 y2‘m

_ |[1|1/2 |J1‘1/2 - ‘[1‘1/2( ( 1)>5/2‘J1|1/2 (g(J1)>5/2
YLV | LV LIVENUTL) ) | VRN )

The two terms after that are controlled using the mixed size and Holder estimates
of K. The last term is controlled using the Holder estimate of K. The mixed
cases where 2770(1) < ((I;)(< U(1)) and ¢(Jy) < 277¢(J2) or £(I;) < 277¢(I5) and
2770(Jy) < L(J1)(< {(J,)) are handled similarly. O

The above lemma shows that
Z Z h’h ® qu SIyIs ® SJ1J2><f7 hll ® uJ1><g7 h'IQ ® uJ2>
11/ Clz J1CJ2

can be realized in the form

C Z Z 2—i15/22—j15/2<5i10j10f’ g>

i1=1j1=1

The part

Z Z <uJ2>J1<T(h11 ® uJ1)v 51, & 1><f7 hh ® uJ1><g> hf2 ® uJ2>

11 CIs J1CJ2

can be written in the form

C Z 272‘15/2 <Si1000f, g>’

i1=1
where

G000 ¢ _ Z Z hig @1, ({f, hi)1)

Ich
0(I)=2""1(K)

and th = <T*($]1K & 1), h[1>1/027i15/2. Since one can check ||b11K||BMO(]Rm) S
c|I,|}/? /| K|'?, it is similarly as has already been done in the separated/inside
case seen that || S f||y < || f]|2- The proof of the BMO estimate is similar to the

proof of the previous lemma.
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Completely analogously one can write
Z Z <h12>11 <T(hh ® uJ1)> 1® 5J1J2><f7 hh ® uJ1><g7 hf2 ® uJ2>
11CI2 J1CJ2
in the form .
C Y 2 P(S0f, g),
=l
where 5%10 is a non-cancellative L? bounded shift.
The last part

Z Z <h'12>11 <uJ2>J1 <T(h11 ® qu)? 1><f7 hr, ® uJ1><g7 hr, ® uJ2>
1 Clz J1CJ2
collapses to
Z<9>va<T*1, hg @ uy)(f, hix @ uy) = C<H*T*1/cfa 9),
KV

where
ILf = Z kxv (b, hg @ uy)hg @ uy

is a bounded shift of the type (0 0,0,0) for b in the product BMO of R™ x R™. So
here we can set "% = II}.., . Note that the correct normalization for this shift
would follow just from the various kernel estimates and the weak boundedness
property.

7.2. Remark. In the proof of this representation theorem there are paraproducts
of essentially three different types. We have seen two types already: the full
paraproduct

IL,f = Z Vixv (b, hix @ uy)hg @ uy

and some half paraproducts, hke

f'—>z . bk @I, (f hi),

ILLCK
(1) =2"11¢(K)
which have a paraproduct part only in the R" or R™ variable. The third type
of paraproduct does not surface in our current sum, where ¢(I;) < ¢(I) and
((J1) < L(J2). However, for example in the mixed case, where ¢(/;) < ¢(I;) and
((J1) > ((J>), one has in the corresponding inside/inside part the mixed full
paraproduct

f Z |K x V|"HTY(1), hie @ wp ) {(f, hie @ xv) XK © uy

= Z T1(1), hi @ uy ){f, hi ® ui )b @ uy,
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which is L? bounded as T;(1) belongs to the product BMO of R™ x R™ by as-
sumption. It is rather straightforward and well-known that both of these full
paraproducts are bounded on L? if they are defined by functions in the dyadic
product BMO. This can be proven by duality — see for example [16]].

8. INSIDE/EQUAL

One splits
<T(hl1 & UV), h’IQ ® UV> = <T(hl1 ® Uv), Shis ® UV) + <h12>11 <T<h'll ® UV), 1 ® UV>,
where sy, 1, = XISJ(M2 — (h,)1,,) satisfies spt sy 7, C I5, and sn,| < 21|72
One may write
Z Z hh X uV SnI, ® Uv> <f h’h ® Uv> <g7 h’IQ ® Uv>
[1C12
in the form
C Z 272‘15/2 <Si1000f’ g>
11=1
with cancellative shifts. For this one needs that
1|12 (1) \ %/
T(h : N ( ) -
|< ( n® uV) Snr & UVH ~ |]2|1/2 f([g)
Estimate
(T (ht, ® uv), sn1, ® uy)| < \V\fl[ > WT(hy, ® xv1), s11, @ xv)
V!,V ech(V)
V/#V//
+ Z T(hy @ xvr), S0, ® XV’>\]-
V’Ech(V)

In the case V' # V" use the full kernel representation. In the diagonal case use
the kernel representation in R™. If /(1) < 277{(1;), use the mixed size and Holder
estimate of K (in the case V' # V") or the Holder estimate for the kernel K, .,
(in the case V' = V). Inthe case 277¢(15) < (1) split Sp,1, = X35, 511, +X(31,)¢ 51 I-
For V' # V" use the size estimate of K for the first term and the mixed size and
Holder estimate of K for the second term. In the case V' = V" use the size
estimate of K, ., for the first term, and the Holder estimate of K, , for the
second term.

One writes
> Z hio) 1 (T (hry, @ uy ), 1@ uy)(f, hi, ® uv ) (g, hi, ® uy)
11C12

in the form
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where in this case
SO0 =N "T0; ((f,uv)2) ® uy
v
and by = (I"(1 ® uy ), uy)2/C. This is indeed a non-cancellative shift of the type
(0,0,0,0).
8.1. Lemma. There holds ||by |[pmo®») < c.

Proof. Fix a cube K C R" and a function a so that spta C K, |a| < 1and [a = 0.
We need to show that [(T'(a ® uy),1 ® uy)| < |K|. We begin with the split

(Ta®uy),l@uy) = (T(a®@uy), Xx ®uy) + (T'(a@uv), Xsx\x @ Uy)
+ (T'(a ® uy), X@BK)e & uy).

There holds
(T(a®uy), xax\gx @uy) < [V [ Z (T'(a® xv1), Xar\Kk @ Xvr)|
V'’ V"ech(V)
V/#V//
+ Z ®XV’)7X3K\K®XV’>‘]7
V' Ech( )
where

(T'(a ® xvr),X3x\K @ Xv7)|

3K\K |f751 — 1" rJyr |$2 Ya| ™
and

|<T(a’®XV’)7X3K\K ®XV’>| S C(XV’)XV’)/ /

3K\K 1 =y

Furthermore, we have

(T(a®uy), x@K)y @ uy) < V[ [ ) [(T'(a ® xv), X@3K)e @ Xvr)]
V!, Vi ech(V)
V/#V//

+ Z (T'(a @ xv'), x@r)e @ xvi)ll,
V’ech(V)
where

(T'(a® xvr), X@3K) @ Xv7)|
d.Tl

1
5K-€K5/ —-//761:“1 < |K||V
K16 | o en o fo Tog = 22 e S KNV
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and

((K)°
(T'(a ® xv'), X@3K) @ Xv7)| < C(Xv',Xv')/ / (K) dzrydy, S |K||V].
K J(3K)e |21

For the first term we again begin with the estimate
(Ta@uv),xx @u) S VI Y (T(@®xv), xx ® xvn)l.
v/, Vech(V)

Let us consider the case V' # V. In this case we have

(T'(a® xvr), XK @ Xvr)| = ‘/ / Koy (T2,y2) das dys

1
< Ola, xx) / / |22 — o™ dezdye S KV

Thus, we are only left with the need for the estimate |(T'(a ® xv/), Xk ® xv/)| <
|K||V| —but this is one of the diagonal BMO assumptions.
U

Because of this lemma, one can show, similarly but with a bit less effort than in
Proposition 4.5, that S is L? bounded.

9. INSIDE/NEARBY

This goes very much so in the same vein as the inside/equal case. In fact, this
is easier since the nearby cubes do not intersect by definition. From the series
with the matrix element (T'(h;, ® uy,), Sr,1, @ u,,) We get

g1

C i Z Z 9—116/29=7j16/2 <Si10j1j2f’ g).

11=1j1=1jo=1
From the series with the matrix element (h,), (T'(h;, @ uy,), 1 ® uy,) we get

C i ]Zl 2*j15/2<500j1j2 f, g>

Jj1=1j2=1

with bounded non-cancellative shifts.

10. EQUAL/EQUAL

This part can be realized in the form C(S%%f, g) for a cancellative shift, since
one can just estimate [(T'(hx ® uy ), hx @ uy)| S 1. This estimate is an easy conse-
quence of the weak boundedness property and the size estimates of our kernels.
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11. EQUAL/NEARBY

This part is clearly of the form

C i le 2—j15/2<500j1j2f’ g>’

J1=1j2=1
where the shifts are cancellative. Here one can again just use the estimate |(7'(hx®
g ), hk ®ug)| < 1, which follows just from the size estimates of our kernels.

12. NEARBY/NEARBY

This part is of the form

C i ZZI i JZI 2—i15/22—j15/2<Si1i2j1j2f’ )

i1=11i2=1j1=1jo=1

once again because of the easy estimate |(T'(h;, ®u,, ), hi, ®uy,)| S 1. This follows
from the size estimate for the full kernel.
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