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Abstract. The Dirichlet space D consists of all analytic functions f defined on the unit disk
�

with
∫

� |f ′(z)|2dA < ∞. The space of multipliers MD consists of analytic functions ϕ with ϕf ∈ D

for all f ∈ D. A sequence {zn} ⊂
�

is called an interpolating sequence for MD if for each bounded

sequence of complex numbers {wn} there exists ϕ ∈ MD with ϕ(zn) = wn for all n. Our main

result is a geometric characterization of the interpolating sequences for MD, answering a question

of S. Axler.
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§1 Introduction.

The Dirichlet space D consists of all analytic functions f(z) =
∑∞

0 anzn defined on the unit

disk
�

with ∫
�

|f ′(z)|2dA/π =
∞∑

n=1

n|an|2 < ∞,

where dA denotes the usual Lebesgue measure on
�

. Define the norm on D by

||f ||2D =
∞∑

n=0

(n + 1)|an|2 =

∫ 2π

0

|f(eiθ)|2dθ/2π +

∫
�

|f ′(z)|2dA/π,

where dθ is the usual Lebesgue measure on [0, 2π] and f(eiθ) denotes the non-tangential limit of f

at eiθ (a.e. dθ). A function ϕ is called a multiplier of D if ϕf ∈ D whenever f ∈ D and we denote

the set of multipliers by MD. Since the constant function 1 is in D, we have MD ⊂ D. We shall

see shortly that in fact MD ⊂ H∞, the Hardy space of bounded analytic functions on
�

. The

algebra MD plays a role in the study of the Hilbert space D which is similar to the role played

by H∞ in the study of the classical Hardy space H2 of analytic functions with square summable

coefficients. Indeed H∞ is exactly the space of multipliers of H2: ϕf ∈ H2 for all f ∈ H2 if and

only if ϕ ∈ H∞.

A sequence {zn} ⊂
�

is called an interpolating sequence for H∞ if for each bounded sequence

of complex numbers {wn} there exists ϕ ∈ H∞ such that ϕ(zn) = wn for all n. Carleson [C2] gave

the following geometric characterization of interpolating sequences for H∞. Let

ρ(z, w) =

∣∣∣∣
z − w

1 − zw

∣∣∣∣

be the pseudo-hyperbolic metric on
�

. If I = {eiθ : θ0 ≤ θ ≤ θ0 + a} is an arc on ∂
�

whose

length = |I | = a, let

S(I) = {reiθ : 1 − a ≤ r < 1, θ0 ≤ θ ≤ θ0 + a}

be the approximate square with base I . If a ≥ 1, let S(I) =
�

.

Theorem [Carleson]. A sequence {zn} ⊂
�

is an interpolating sequence for H∞ if and only if

there is an ε > 0 and K < ∞ so that

(1) ρ(zn, zm) ≥ ε for all n 6= m and

(2)
∑

zn∈S(I)

(1 − |zn|2) ≤ K|I |
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for all arcs I ⊂ ∂
�

.

A positive measure µ defined on
�

is called a Carleson measure for H2 if there exists a constant

K < ∞ such that ∫
�

|f(z)|2dµ(z) ≤ C||f ||2H2

for all f ∈ H2. Carleson [C2,C3] proved that µ is a Carleson measure if and only if there is a

constant K < ∞ such that

µ(S(I)) ≤ K|I |

for all arcs I ⊂ ∂
�

. Thus (2) can be rephrased as

(2′)
∑

(1 − |zn|2)δzn
is a Carleson measure,

where δz denotes point mass at z. Any Carleson measure can be obtained as a weak-* limit of

discrete measures related to interpolating sequences as described in Jones[J2]. Carleson measures

and interpolating sequences proved to be of great importance in the proof of the Corona theorem,

by Carleson [C3], and in finding L∞ solutions to ∂-problems by Jones [J1], for example. Carleson

measures were also fundamental in the development of BMO by C. Fefferman [Fe], Jones [J2] and

others.

We define interpolating sequences for MD and Carleson measures for D in an analogous fashion.

A sequence {zn} ⊂
�

is called an interpolating sequence for MD if for each bounded sequence of

complex numbers {wn} there exists ϕ ∈ MD such that ϕ(zn) = wn for all n. A positive measure

µ defined on
�

is called a Carleson measure for D if there exists a constant C < ∞ such that

∫
�

|f(z)|2dµ(z) ≤ C||f ||2D

for all f ∈ D.

Stegenga [St] gave the following geometric characterization of Carleson measures for MD. If

E = ∪Ij is a finite union of disjoint arcs {Ij} ⊂ ∂
�

, let S(E) = ∪S(Ij).

Theorem [Stegenga]. Let µ be a positive measure on
�

. Then µ is a Carleson measure for D if

and only if there is a constant C0 < ∞ so that whenever E is a finite union of disjoint arcs in ∂
�

(3) µ(∪S(E)) ≤ C0

(
log

1

Cap(E)

)−1

,
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where Cap(E) denotes the usual logarithmic capacity of E.

If g(z, ∞) is Green’s function for � ∗ \ E with pole at ∞, then g(z, ∞) = log |z| + γ(E)+ o(1)

near ∞ and Cap(E) ≡ e−γ(E). Stegenga’s theorem is a geometric characterization because Fekete

and Szegö (see [Ah]) proved that the logarithmic capacity of a set E is the same as the transfinite

diameter of E. Some authors call Cl(E) ≡ 1
γ(E) the capacity of E, in which case the right side

of (3) becomes Cl(E), the capacity of ∪Ij . The right side of (3) is also comparable to a Bessel

capacity [St].

In [Ax], Axler studied interpolating sequences for MD. He proved that any sequence {zn} ⊂
�

with |zn| → 1 contains a subsequence which is interpolating for MD, though he could not give an

explicit example of an interpolating sequence. He asked:

(i) Give a concrete example of an interpolating sequence for MD.

(ii) Find a growth rate for {|zn|} that implies {zn} is an interpolating sequence for MD.

(iii) Give a necessary and sufficient condition for {zn} to be an interpolating sequence for MD.

The following theorem is our main result, answering (iii) above.

Theorem 1. A sequence {zn} is an interpolating sequence for MD if and only if there is a γ > 0

and C0 < ∞ such that

(4) 1 − ρ2(zn, zm) ≤ (1 − |zn|2)γ for all n 6= m and

(5)
∑

zn∈S(E)

(
log

1

1 − |zn|2

)−1

≤ C0

(
log

1

Cap(E)

)−1

whenever E is a finite union of disjoint arcs in ∂
�

.

By Stegenga’s theorem, (5) can be rephrased as

(5′)
∑(

log
1

1 − |zn|2

)−1

δzn
is a Carleson measure for D.

As consequences of Theorem 1, we also give answers to (i) and (ii) above. In the course of the

proof of Theorem 1, we will also prove that (4) and (5) characterize the interpolating sequences

for D (defined below). Our approach is to use the analog in MD of Pick’s theorem to convert the

interpolation problem to an L2 problem about Riesz sequences. In section 2, we develop the Hilbert

space background. In section 3 we give a new proof of Carleson’s interpolation theorem for H∞,

based on this approach. In section 4 we prove Agler’s theorem that the analog of Pick’s theorem

for D holds. In section 5 we prove Theorem 1 and draw some consequences. While this paper
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was in preparation, we received a manuscript from C. Bishop proving that (4) and (5) characterize

interpolating sequences for D and that (4) and (5) are sufficient for {zn} to be an interpolating

sequence for MD, though he could not prove they are necessary for interpolation in MD. Bishop

also derived the necessary and sufficient condition in Corollary 21 for sequences contained in � ∩
�

to be interpolating, and found an example of the phenomena in Example 24. His techniques are

different from ours. We thank B. Solomyak for a useful conversation.

§2 Interpolating Sequences and Bases.

Theorem 1 and Carleson’s theorem can be put in a common framework by considering repro-

ducing kernels. If f(z) =
∑∞

0 anzn and g(z) =
∑∞

0 bnzn then H2 is a Hilbert space with inner

product

< f, g >H2=

∫ 2π

0

f(eiθ)g(eiθ)dθ/2π =
∑

anbn.

Likewise, D is a Hilbert space with inner product

< f, g >D=< f, g >H2 +

∫
�

f ′(z)g′(z)dA(z)/π =
∑

(n + 1)anbn.

If α ∈
�

, the function kα(z) = (1 − αz)−1 =
∑

αnzn ∈ H2 satisfies

f(α) =< f, kα >H2

for all f ∈ H2. Similarly, the function

kα(z) =
1

αz
log

1

1 − αz
=

∞∑

n=0

1

n + 1
αnzn ∈ D

satisfies

f(α) =< f, kα >D

for all f ∈ D. The functions kα are called reproducing kernels since they “reproduce” the value of

functions in the Hilbert space at points of
�

. The norm of kα can be easily computed with the

useful identity

kα(α) =< kα, kα >= ||kα||2.

The connection between reproducing kernels and interpolation is found by considering the adjoints

of multiplication operators: If ϕ ∈ MD let Mϕ be the bounded operator on D given by Mϕf = ϕf

for all f ∈ D. For f ∈ D and α ∈
�

(6) < M∗
ϕkα, f >=< kα, Mϕf >= < ϕf, kα > = ϕ(α) < kα, f > .
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Thus M∗
ϕkα = ϕ(α)kα. In other words, each kα is an eigenvector of M∗

ϕ with eigenvalue ϕ(α). The

identity (6), using f = kα also shows that

||ϕ||H∞ ≤ ||M∗
ϕ|| = ||Mϕ||,

and hence MD ⊂ H∞. Specifying the values of a function ϕ at points zn ∈
�

is then specifying

certain eigenvalues of the operator M∗
ϕ. A similar situation occurs with H∞ since it is the space

of multipliers of H2. (This view of H∞ as a space of multipliers is not artificial. In fact, it is the

reason H∞ is important in control theory and other applications. See, for example, [Fr].)

Suppose now that A is a Hilbert space of analytic functions on a domain Ω ⊂ � n such that

evaluation at α ∈ Ω is a bounded linear functional on A:

|f(α)| ≤ C||f ||A

for all f ∈ A. Then for each α ∈ Ω, there is a unique function kα ∈ A so that f(α) =< f, kα >,

for all f ∈ A. We will also suppose that for every finite set α1, . . . , αn ∈ Ω the corresponding

reproducing kernels {kαi
} are independent. For example, if for every finite set α1, . . . , αn ∈ Ω there

is an f ∈ A such that f(α1) = 1 and f(αj) = 0, j = 2, . . . , n, then the kernels are independent. A

function ϕ is called a multiplier of A if ϕf ∈ A whenever f ∈ A and we denote the set of multipliers

by MA. By the closed graph theorem, if ϕ ∈ MA then the multiplication operator Mϕ given by

Mϕ(f) = ϕf for all f ∈ A is a bounded linear operator on A. We define ||ϕ||MA
= ||Mϕ||. By the

same calculation as (6),

M∗
ϕkα = ϕ(α)kα,

and thus ϕ ∈ H∞(Ω) and ||ϕ||∞ ≤ ||ϕ||MA
.

Definition: A sequence {zn} ⊂ Ω is called an interpolating sequence for MA if for each bounded

sequence of complex numbers {wn} there exists ϕ ∈ MA with ϕ(zn) = wn for all n.

By the closed graph theorem, if {zn} is an interpolating sequence, there is a constant C < ∞

so that the interpolation can be done with a ϕ satisfying ||ϕ||MA
≤ C||{wn}||`∞ .

In order to understand interpolating sequences, we ask the following question.

Given z1, . . . , zn ∈ Ω and complex numbers w1, . . . , wn, when does there exist ϕ ∈ MA such that

||ϕ||MA
≤ 1, and ϕ(zi) = wi, i = 1, . . . , n?
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It is easy to give a necessary condition. We say that a finite matrix P = {pi,j}i,j=1,...,n is

positive semi-definite if

∑

i,j=1,...,n

pi,jaiaj ≥ 0, for all a1, . . . , an ∈ � .

If P is positive semi-definite we write: {pi,j} ≥ 0. There is an equivalent formulation in terms of

determinants. It is easy to see that a positive semi-definite matrix must be self-adjoint: pi,j = pj,i.

A self-adjoint matrix P = {pi,j}i,j=1,...,n is positive semi-definite if and only if for all sets A ⊂

{1, . . . , n} the matrix PA = (pi,j)i,j∈A satisfies

det PA ≥ 0.

Let ki,j =< kzi
, kzj

> .

Proposition 2. If ϕ ∈ MA with ||ϕ||MA
≤ 1 and ϕ(zi) = wi for i = 1, . . . , n then

{(1 − wiwj)ki,j} ≥ 0.

Proof.

(7) 0 ≤ ||
∑

i

aikzi
||2 − ||M∗

ϕ(
∑

i

aikzi
)||2 =

∑

i,j

(1 − wiwj)ki,jaiaj .

�

The determinant conditions give concrete and checkable conditions in terms of the data. The

proposition can be reformulated to give a condition with fewer determinants to check. A matrix

P = (pi,j)i,j=1,...,n is called positive definite if

∑

i,j=1,...,n

pi,jaiaj > 0, for all a1, . . . , an ∈ � ,

except when a1 = a2 = . . . = an = 0. If P is positive definite we write: {pi,j} > 0. Let Pm

be the m-by-m principal submatrix Pm = (pi,j)i,j=1,...,m. Then an n-by-n self-adjoint matrix P

is positive definite if and only if det Pm > 0 for m = 1, . . . , n. If P is positive semi-definite then

det Pm ≥ 0 for m = 1, . . . , n. The converse, however, is false. See e.g. [BCR, Chapter 3] for these

and other elementary facts about positive semi-definite matrices. Proposition 2 can be reworded

to the equivalent statement:

If there exists a ϕ ∈ MA with ||ϕ||MA
< 1 then det {(1 − wiwj)ki,j}m > 0, for m = 1, . . . , n.

As a simple application, we give the following Corollary, which is exactly the invariant form of

Schwarz’s lemma when Ω =
�

and A = H2.
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Corollary 3. If ϕ ∈ MA with ||ϕ||MA
≤ 1 then

ρ2(ϕ(z1), ϕ(z2)) ≤ 1 −
|k1,2|

2

k1,1k2,2
,

where ρ(z, w) is the pseudo-hyperbolic metric defined in section 1.

Proof. Take the determinant of the 2-by-2 matrix P2 and use the identity

1 − ρ(z, w)2 =
(1 − |z|2)(1 − |w|2)

|1 − zw|2
,

for all z, w ∈
�

.
�

As a consequence of Proposition 2, if {zn} is an interpolating sequence for MA then there is

a constant C < ∞ so that for all sequences {wn} with |wn| ≤ 1/C

(8) {(1 − wiwj)ki,j} ≥ 0

for all principal m-by-m submatrices. In other words, by the computation (7), if |bi| ≤ |ai| for all i

then

(9) ||
∑

bikzi
|| ≤ C||

∑
aikzi

||.

In order to understand the inequality (9) we will make a short detour through arbitrary Hilbert

spaces. For positive quantities A and B, the notation A ∼ B will mean there is a constant C < ∞

so that
1

C
≤

A

B
≤ C.

If {xn} is a collection of vectors in a Hilbert space H , then Span{xn} will denote the smallest closed

subspace of H containing the collection {xn}.

Definition. A sequence of unit vectors {un} in a Hilbert space H is an interpolating sequence (IS)

for H if the map

(10) x → {< x, un >}

maps H onto `2. In other words, Span{un} is mapped one-to-one and onto `2.

Definition. A sequence of vectors {xn} in a Hilbert space H is called independent if for all n,

xn 6∈ Span{xk : k 6= n}.
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Theorem [Köthe-Toeplitz]. Let {un} be a sequence of unit vectors contained in a Hilbert space

H . Let K be the smallest closed subspace of H containing {un}. Then the following are equivalent.

(IS) {un} is an interpolating sequence for H

(SS) For all x ∈ K, ||x||2 ∼
∑

| < x, un > |2, and {un} is independent.

(RS) ||
∑

anun||2 ∼
∑

|an|2 for all {an}.

(UBS) There is a C < ∞ such that ||
∑

bnun|| ≤ C||
∑

anun|| whenever |bn| ≤ |an| for all n.

A sequence satisfying (RS) is called a Riesz sequence and a sequence satisfying (UBS) is called

an unconditional basic sequence. The inequality (9) says that {kzn
/||kzn

||} is an unconditional basic

sequence. This theorem can be found in [Nk]. We are not sure of the history. The equivalence of

(RS) and (UBS) is called the Köthe-Toeplitz theorem in [Nk]. Because it is central to the proof of

our main result, we include a self-contained proof.

Proof. First note that (IS) is equivalent to (SS). For if (IS) holds, then {un} is independent, and by

the closed graph and open mapping theorems, (SS) holds. Conversely if (SS) holds, then the map

(10) has image I which is a closed subspace of `2. If I 6= `2 then there is a sequence a = {aj} ∈ `2,

a 6= 0, so that
∑

an < x, un >= 0,

for all x ∈ I . Fix N and M and set x =
∑M

N anun. Then

||
M∑

N

anun||2 =

∣∣∣∣∣
M∑

N

an < x, un >

∣∣∣∣∣

≤

(
M∑

N

|an|2

) 1
2
(

M∑

N

| < x, un > |2

) 1
2

≤

(
M∑

N

|an|2

) 1
2

C||x||,

since (SS) holds. Thus

||
M∑

N

anun|| ≤ C

(
M∑

N

|an|2

) 1
2

and hence
∑N

1 anun is a Cauchy sequence. Set x0 =
∑∞

1 anun. Then ||x||2 =
∑∞

1 an < x, un >= 0.

Since {un} ARe independent, this implies an = 0 for all n, contradicting a 6= 0. Thus (IS) holds.
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Next note that (RS) is equivalent to (SS). For if (RS) holds, then clearly {un} is independent

and
||x|| = sup{| < x,

∑
anun > | : ||

∑
anun|| ≤ 1}

∼ sup{|
∑

an < x, un > | :
∑

|an|2 ≤ 1}

= (
∑

| < x, un > |2)
1
2 ,

proving (SS). If (SS) holds, then for x ∈ K

||
∑

anun|| = sup{| < x,
∑

anun > | : x ∈ K, ||x|| ≤ 1}

∼ sup{|
∑

an < x, un > | :
∑

| < x, un > |2 ≤ 1}

= (
∑

|an|2)
1
2 ,

and hence (RS) holds. Here we used that x → {< x, un >} maps K onto `2.

Now suppose that (RS) holds. If |bn| ≤ |an| for all n,

||
∑

bnun||2 ≤ C1

∑
|bn|2 ≤ C1

∑
|an|2 ≤ C2||

∑
anun||2,

proving (UBS).

Finally suppose (UBS) holds. To show (RS), it suffices to consider finite sequences {un} and

prove (RS) with constants which are independent of the number of elements in {un}.

Lemma [Orlicz]. If xn ∈ H , then there exists complex numbers εn with |εn| = 1 and

∑
||xn||2 ≤ ||

∑
εnxn||2.

Proof. Use induction and
∥∥x +

< x, y >

| < x, y > |
y
∥∥2

≥ ||x||2 + ||y||2.

�

By Orlicz’s lemma and (UBS)

∑
|an|2 =

∑
||anun||2 ≤ ||

∑
εnanun||2 ≤ C||

∑
anun||2,

which is the lower estimate of the norm in (RS). Note that by (UBS)

|an| ≤ C||
∑

anun||,
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so there exists vn ∈ K with ||vn|| ≤ C and <
∑

amum, vn >= an for all x =
∑

amum ∈ K. To

prove the upper estimate of the norm in (RS) we will first show that {vn} satisfies (UBS). Suppose

bn = λnan with |λn| ≤ 1 for all n. Then

| <
∑

bnvn,
∑

cnun > | =
∑

bncn =
∑

anλncn

= | <
∑

anvn,
∑

λncnun > |

≤ ||
∑

anvn|| ||
∑

λncnun||

≤ C||
∑

anvn|| ||
∑

cnun||.

By duality, ||
∑

bnvn|| ≤ C||
∑

anvn||. Again by Orlicz’s lemma and (UBS) for {vn}

∑
|bn|2 ≤

∑
|bn|2||vn||2 ≤ ||

∑
εnbnvn||2 ≤ C2||

∑
bnvn||2

and hence

(11) | <
∑

anun,
∑

bmvm > |2 = |
∑

anbn|2 ≤
∑

|an|2
∑

|bn|2 ≤
∑

|an|2C2||
∑

bnvn||2.

Each x ∈ K is of the form
∑

bmvm, since 0 is the only x ∈ K orthogonal to all such sums. Thus

by duality and (11)

||
∑

anun||2 ≤ C2
∑

|an|2.

proving (RS) holds and completing the proof of the theorem.
�

Note that (5′) is equivalent to the lower estimate of the norm in (SS):

∑
| < f,

kn

||kn||
> |2 =

∑ |f(zn)|2

||kn||2
≤ C||f ||2D,

for all f ∈ D.

§3 Pick’s Theorem and H∞ Interpolation

It is a fundamental result of Pick [P] that the converse to Proposition 2 holds for H∞. As

mentioned above, when A = H2, the space of multipliers is H∞ and ki,j =< kzi
, kzj

>= (1−zizj)
−1.

In this case, it is easy to show

||ϕ||MH2 = ||ϕ||∞.
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Theorem [Pick]. If z1, . . . , zn ∈
�

and w1, . . . , wn ∈
�

then there is a ϕ ∈ H∞ with ||ϕ||∞ ≤ 1

and ϕ(zi) = wi, i = 1, . . . , n if and only if the n-by-n matrix

{
1 − wiwj

1 − zizj

}
≥ 0.

A classical technique in harmonic analysis, in vague terms, is to convert an “L∞” problem

to an “L1” problem via duality, and then convert to an “L2” problem, which can then be solved.

In many situations, though, duality arguments do not work. The philosophy of this paper is that

the Pick theorem plays the role of converting to an “L2” problem, namely proving a collection of

reproducing kernels forms a Riesz sequence. To further motivate the method, in this section we

give a self-contained proof of Carleson’s interpolation theorem along these lines. Amar[Am] proved

Carleson’s theorem from Pick’s theorem, using Carleson’s geometric characterization of Carleson

measures. The proof below does not depend on this latter result of Carleson.

Let z1, . . . , zn be distinct points in
�

, and let

B(z) =
n∏

i=1

z − zi

1 − ziz
Bj(z) =

∏

i 6=j

z − zi

1 − ziz
,

kj(z) =
1

1 − zjz

C1 = sup
j

∑

i

(1 − |zi|2)(1 − |zj |2)

|1 − zjzi|2
and δ = inf

i
|Bi(zi)|

The next Lemma is due to Shapiro and Shields [SS1].

Lemma 4. Let K =
∑

cjB
2
j k2

j/||kj||
3. Then

< K,
ki

||ki||
>= ciBi(zi)

2 and ||K||2 ≤ 2C1

∑
|cj |

2.

Proof.

< B2
j k2

j , B
2
i , k2

i > =<
B2

(z − zj)2
,

B2

(z − zi)2
>

=

∫ 2π

0

1

(eiθ − zj)2
eiθ

(1 − zieiθ)2
ieiθdθ

2πi

=
d

dz

z

(1 − ziz)2

∣∣∣∣∣
z=zj

=
1 + zizj

(1 − zizj)3.
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Since

(12)
(1 − |zi|

2)(1 − |zj |
2)

|1 − zizj |2
= 1 −

∣∣∣∣
zi − zj

1 − zizj

∣∣∣∣
2

≤ 1,

we have

| < B2
j kj , B

2
i ki > | ≤

2(1 − |zj |
2)−1

2 (1 − |zi|
2)−1

2

|1 − zizj |2
.

By Schur’s lemma

||K||2 =
∑

i,j

cj

||kj||3
ci

||ki||3
< B2

j k2
j , B2

i , k2
i >

≤ 2
∑

i,j

|cj| |ci|
(1 − |zj |

2)(1 − |zi|
2)

|1 − zizj |2
≤ 2C1

∑

j

|cj |
2.

(Schur’s lemma in this context is just two applications of Cauchy-Schwarz, followed by an inter-

change in the order of a double sum.) Clearly < K, ki

||ki||
>= K(zi)/||ki|| = ciB

2
i (zi).

�

The next Lemma says that {ki/||ki||} is a (RS).

Lemma 5.
δ4

2C1

∑
|ai|

2 ≤

∥∥∥∥
∑

ai
ki

||ki||

∥∥∥∥
2

≤
2C1

δ2

∑
|ai|

2.

Proof. ∣∣∣
∑

aiciB
2
i (zi)

∣∣∣
2

= | < K,
∑

ai
ki

||ki||
> |2 ≤ 2C1

(∑
|ci|

2
)∥∥∥∥
∑

ai
ki

||ki||

∥∥∥∥
2

.

If ci = ai|B
2
i (zi)|/B2

i (zi) then

δ4
(∑

|ai|
2
)2

≤ 2C1

(∑
|ai|

2
)∥∥∥∥
∑

ai
ki

||ki||

∥∥∥∥
2

,

which proves the left inequality. To prove the right inequality, note that

< Biki, Bjkj >=<
B

z − zi
,

B

z − zj
>=<

1

1 − ziz
,

1

1 − zjz
>= < ki, kj >.

Thus ∥∥∥∥
∑

aj
kj

||ki||

∥∥∥∥
2

=

∥∥∥∥
∑

ajBj
kj

||kj||

∥∥∥∥
2

.

Note that h =
∑

ajBjkj/||kj|| ∈ M ≡ Span {kj : j = 1, . . . , n} by partial fractions, and

< h,
ki

||ki||
>= aiBi(zi).

13



Let ci = ai/Bi(zi) and form K as above. Then h − K is orthogonal to M and hence

∥∥∥∥
∑

aj
kj

||kj ||

∥∥∥∥
2

= ||h||2 ≤ ||K||2 ≤
2C1

δ2

∑
|aj |

2.

�

We can now easily prove Carleson’s theorem. If |wi| ≤ δ3/(2C1) then using both inequalities

in Lemma 5

0 ≤ ||
∑

aiki||
2 − ||

∑
aiwiki||

2 =
∑

i,j

(1 − wiwj) < ki, kj > aiaj .

By Pick’s theorem there is a function ϕ ∈ H∞ with ||ϕ||∞ ≤ 1 and ϕ(zi) = wi, for i = 1, . . . , n.

Suppose now that {zi}∞
i=1 ⊂

�
and

(13) inf
i 6=j

∣∣∣∣
zi − zj

1 − zizj

∣∣∣∣ = ε > 0 and

(14) C1 = sup
j

∑

i

(1 − |zi|2)(1 − |zj |2)

|1 − zjzi|2
< ∞.

It is a standard elementary calculus argument using logarithms (see [G]) that

inf
i

|Bi(zi)| ≡ δ > 0.

Thus there is a constant K(ε, C1) depending only on ε and C1 so that if

|wi| ≤ K(ε, C1)

then there exist a ϕ ∈ H∞ with ||ϕ||∞ ≤ 1 and ϕ(zi) = wi, for i = 1, 2, . . .. The passage from finite

sequences to a countable sequence is just a normal families argument. It is elementary to prove

that (14) and (2) are equivalent (see [G]), thereby proving Carleson’s theorem.
�

The key idea of the above proof was to show (Lemma 5) that ki/||ki|| forms a Riesz sequence

and then use Pick’s theorem.

§4 Pick Interpolation in MA

We now return to our assumptions that A is a Hilbert space on a domain Ω ⊂ � n and that

{kα : α ∈ Ω} is an independent collection of reproducing kernels for A.
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Definition. We say that A has the Pick property if whenever {zi}n
1 ⊂ Ω and {wi}n

1 ∈ � satisfy

{(1 − wiwj)ki,j} ≥ 0,

then there exists ϕ ∈ MA with ||ϕ||MA
≤ 1 and ϕ(zi) = wi, for i = 1, . . . , n.

We remark that if the Pick property holds, then it also holds if we replace finite sequences by

countable sequences. That is, if the Pick property holds, and if {zi}
∞
i=1 ⊂ Ω and if {wi}

∞
i=1 ⊂ �

such that for each n, the n-by-n matrix

{(1 − wiwj)ki,j} ≥ 0,

then there exists ϕ ∈ MA with ||ϕ||MA
≤ 1 and ϕ(zi) = wi for all i. Indeed, for each n there is a

ϕn ∈ MA with ||ϕn||MA
≤ 1 and ϕ(zi) = wi for i = 1, . . . , n. Since the unit ball of the bounded

operators on A is compact in the weak-operator topology and since A is separable, we can select a

subseqence ϕnj
and an operator T such that

lim
j

< Mϕnj
f, g >=< Tf, g >

for all f, g ∈ A. Applying the above with g = kα for α ∈ Ω shows that T = Mϕ for some ϕ ∈ MA

with ||ϕ||MA
≤ 1 and ϕ(zi) = wi for all i. Of course we can extend this to uncountable sequences,

by selecting a countable subsequence with a cluster point in Ω and using Proposition 2.

The Pick property can be used to describe zero sets. Suppose {zj}∞
j=1 ⊂ Ω. Let z0 ∈ Ω, with

z0 6= zj for j = 1, . . ., and let

(15) cA = inf{||f ||A : f(z0) = 1 and f(zj) = 0, j = 1, . . .},

and let

(16) cMA
= inf{||ϕ||MA

: ϕ(z0) = 1 and ϕ(zj) = 0, j = 1, . . .}.

Proposition 6. Suppose A has the Pick property and {zj} ⊂ Ω. Then there is a non-zero f ∈ A

with f(zj) = 0 for all j if and only if there is a non-zero ϕ ∈ MA with ϕ(zj) = 0 for all j. Moreover,

cMA
= cA||kz0

||A.

There is a unique f0 and a unique ϕ0 which are extremal for (15) and (16) respectively and they

satisfy

f0 = ϕ0
kz0

||kz0
||2

.
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Proof. Let K be the smallest closed subspace of A containing {zj}∞
j=0. Define Λ ∈ K∗ by

Λ(
∑

ajkzj
) = a0.

Then there exists a f ∈ A with ||f ||A = ||Λ|| and Λ(g) =< g, f > for all g ∈ K. Clearly f(z0) = 1

and f(zj) = 0 for j ≥ 1, and it is the unique element of K with these values. Since projection into

K decreases norm, ||Λ|| = cA.

Likewise, define an operator S on K by

S(
∑

ajkzj
) =

a0

||Λ||

kz0

||kz0
||

.

Then ||S|| = 1. By the Pick property, this occurs if and only if there is ϕ ∈ MA with ||ϕ||MA
≤ 1

and ϕ(zj) = 0 for j ≥ 1 and ϕ(z0) = 1/(||Λ||||kz0
||). Thus cMA

= ||Λ||||kz0
|| = cA||kz0

||A. If ϕ is

an extremal function for (16) then

f = ϕ
kz0

||kz0
||2

satisfies

cA ≤ ||f ||A ≤ ||ϕ||MA
/||kz0

|| = cA

and f(z0) = 1 and f(zj) = 0 for j ≥ 1. By the uniqueness of the extremal function for (15), ϕ is

also unique.
�

The zero sets of A and MA are not always the same. For example, Horowitz [Ho] proved

that the zero sets of the Bergman space A2 are different from the zero sets of MA2 = H∞. Note

that Proposition 6 does not guarantee that the extremal functions vanish exactly on the given

collection {zj}, but in some cases we can prove this is the case (see Corollary 13). We also note

that Proposition 23 contains an estimate of cMA
in some important special cases.

We now apply the results of section 2.

Corollary 7. Let {zn} ⊂ Ω and let un = kzn
/||kzn

||. If A has the Pick property, then the following

statements are equivalent:

(a) {zn} is an interpolating sequence for MA.

(b) {un} is an interpolating sequence for A.

(c) {un} is an unconditional basic sequence in A.

(d) {un} is a Riesz sequence in A.

In many texts, {zn} is called an interpolating sequence for A when (b) holds.

16



Proof. By the Köthe-Toeplitz theorem, (b), (c), and (d) are equivalent. Proposition 2 and the

inequality (9) show that if zn is an interpolating sequence for MA then (c) holds. Finally suppose

that (c) holds. To prove (a) it suffices to prove each finite subsequence of {zn} is interpolating with

uniformly bounded norms, by weak convergence of operators of the form Mϕ. Property (a) now

follows from the Pick property and the equivalence of (8) and (9).

We are interested in conditions on {kα} under which the converse to Proposition 2 is valid.

Theorem 8. Suppose that for every m ≥ 1 and every α1, . . . , αm+1 ∈ Ω, the m-by-m matrix

(17)

{
1 −

< kαi
, kαm+1

>< kαj
, kαm+1

>

< kαi
, kαj

>< kαm+1
, kαm+1

>

}
≥ 0.

Then given z1, . . . , zn ∈ Ω and w1, . . . , wn ∈ � there is a ϕ ∈ MA with ||ϕ||MA
≤ 1 and ϕ(zi) = wi

for i = 1, . . . , n if and only if the n-by-n matrix

(18)
{
(1 − wiwj) < kzi

, kzj
>
}

≥ 0.

Theorem 8 says that if (17) holds then A has the Pick property.

Nevanlinna’s approach to the finite interpolation problem in H∞ was to reduce the problem

of interpolation at n points to an equivalent problem at n − 1 points. See [M] for a proof of Pick’s

theorem along those lines. In the present case, we do not have a good description of the set of

functions in MA vanishing at a point of Ω; thus this approach won’t work. Instead, notice that the

computation (7) says that the operator T defined only on the linear span of {kzi
, i = 1, . . . , n} by

T (kzi
) = wikzi

has norm 1 if and only if (18) holds. Akin to the usual proof of the Hahn-Banach

theorem, using condition (17) we will show that if zn+1 is any other point in Ω then we can extend

condition (18) to an (n+1)-by-(n+1) matrix of the same form, by judiciously choosing wn+1. By

induction we can extend T to any subspace spanned by a finite collection {kz1
, . . . , kzm

}, with

m ≥ n. Passing to a limit, this will give the operator M∗
ϕ and hence ϕ.

Choose zn+1 ∈ Ω and write ki = kzi
for i = 1, . . . , n + 1. Let Mp be the smallest closed

subspace containing k1, . . . , kp, and let M̃ be the subspace of Mn+1 orthogonal to kn+1. Then the

projection of kj onto M̃ is

k̃j = P
M̃

kj = kj −
< kj , kn+1 >

< kn+1, kn+1 >
kn+1.

Define T on Mn and T̃ on M̃ by

Tkj = wjkj and T̃ k̃j = wj k̃j ,
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for j = 1, . . . , n. For w ∈ � , define an extension of T to Mn+1 by

Twkj =

{wjkj for j = 1, . . . , n

wkn+1 for j = n + 1.

Thus T̃ = P
M̃

Tw|
M̃

.

Lemma 9. The following are equivalent:

(i) ||T || ≤ 1 and ||T̃ || ≤ 1

(ii) There exists w ∈ � such that ||Tw|| ≤ 1.

Proof. The ideas in this proof came from the preprint of Agler [Ag]. If (ii) holds, clearly ||T || ≤

||Tw|| ≤ 1. Since T̃ = P
M̃

Tw|
M̃

||T̃ || = ||P
M̃

Tw|
M̃

|| ≤ ||Tw|
M̃

|| ≤ ||Tw|| ≤ 1,

proving (i). Now suppose (i) holds. Choose w0 so that

||Tw0
|| = inf

w
||Tw||

and suppose ||Tw0
|| > 1. Choose Λ ∈ M∗

n+1 so that Λ(kn+1) = 1 and Λ(kj) = 0 for j = 1, . . . , n.

Then

(19) Twf = Tw0
f + (w − w0)Λ(f)kn+1.

Since T ∗
wTw is self-adjoint, it has largest eigenvalue ||T ∗

wTw|| = ||Tw||2. Choose an eigenvector fw

of T ∗
wTw so that ||fw|| = 1 and < fw, fw0

> ≥ 0. Note that if T ∗
w0

Tw0
fi = ||Tw0

||2fi for i = 1, 2,

with f1, f2 linearly independent, then we can choose c1, c2 ∈ � so that f = c1f1 + c2f2 ∈ Mn and

||f || = 1. Then

||T ||2 = ||T ∗T || ≥ ||T ∗Tf || = ||Tw0
||2 > 1,

contradicting (i). Thus the eigenspace for T ∗
w0

Tw0
is one dimensional. If wn → w0 and fwn

→ f0

then by (19), f0 must be an eigenvector for T ∗
w0

Tw0
with eigenvalue ||Tw0

||2, and hence f0 = cfw0

for some c ∈ � with |c| = 1. Since < fw, fw0
> ≥ 0, we have c=1. This shows that {fw} has only

one cluster point in the finite dimensional space Mn+1 as w → w0, and hence

lim
w→w0

fw = fw0
.
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Since ||Tw0
|| is minimal,

(20)

0 ≤ ||Tw||2 − ||Tw0
||2 = ||Twfw||2 − ||Tw0

||2

= ||Tw0
fw + (w − w0)Λ(fw)kn+1||

2 − ||Tw0
||2

≤ ||Tw0
||2 + 2Re(w − w0)Λ(fw) < kn+1, Tw0

fw > +|w − w0|
2|Λ(fw)|2||kn+1||

2 − ||Tw0
||2

= 2Re(w − w0)Λ(fw) < kn+1, Tw0
fw > +O(|w − w0|

2).

Write w − w0 = reiθ, with r > 0. Fix θ, divide the last line of (20) by r = |w − w0| and let r → 0.

We obtain

0 ≤ Re eiθΛ(fw0
) < kn+1, Tw0

fw0
>

for all θ and hence

Λ(fw0
) < kn+1, Tw0

fw0
>= 0.

Now if Λ(fw0
) = 0, then fw0

∈ Mn and hence

1 < ||Tw0
||2 = ||T ∗

w0
Tw0

fw0
|| = ||T ∗Tfw0

|| ≤ ||T ||2,

contradicting (i). Thus < kn+1, Tw0
fw0

>= 0, and

||Tw0
||2 < kn+1, fw0

> =< kn+1, T
∗
w0

Tw0
fw0

>=< Tw0
kn+1, Tw0

fw0
>

= w0 < kn+1, Tw0
fw0

>= 0.

In other words, fw0
∈ M̃ and Tw0

fw0
∈ M̃ , and so Tw0

fw0
= T̃ fw0

. We conclude that

||T̃ ||2 ≥ ||T̃ fw0
||2 = ||Tw0

fw0
||2 = ||Tw0

||2 > 1,

contradicting the second assumption in (i), and completing the proof of the lemma.
�

Proof of Theorem 8. The necessity of (18) is given by Proposition 2. Suppose now that (17)

and (18) hold. Choose zn+1 ∈ Ω. Note that by the computation (7), ||T || ≤ 1 is equivalent to

(18). Also

< k̃i, k̃j >= ki,j −
ki,n+1kj,n+1

kn+1,n+1
,

so by the same computation (7), ||T̃ || ≤ 1 is equivalent to

(21)

{
(1 − wiwj)

(
ki,j −

ki,n+1kj,n+1

kn+1,n+1

)}
≥ 0.
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Let αj = zj , j = 1, . . . , n+ 1 in (17). Then the matrix in (21) is the entry-by-entry product of the

positive semi-definite matrices (17) and (18) and hence must be positive semi-definite by Schur’s

Theorem [BCR, p.69]. By Lemma 9, there is a wn+1 so that the (n+1)-by-(n+1) matrix

{
(1 − wiwj) < kzi

, kzj
>
}

≥ 0.

By induction, given any zn+1, . . . , zm ∈ Ω we can find wn+1, . . . , wm so that the m-by-m matrix

{
(1 − wiwj) < kzi

, kzj
>
}

≥ 0.

By choosing a countable dense subset {zm} of Ω, this allows us to find an operator T on the dense

subset of A, consisting of finite linear combinations of {kzn
}, with ||T || ≤ 1 and T (kzm

) = wmkzm

for m = 1, 2, . . . . By continuity, T extends to all of A and T (kz) = wzkz for each z ∈ Ω. If we

define ϕ(z) = wz, then

T ∗f(z) = ϕ(z)f(z)

for each f ∈ A and hence ϕ ∈ MA, with ||ϕ||MA
≤ 1.

�

We do not know if (17) is necessary for this process to work. However it is possible to show that

the one-step extension from two points to three points is possible for all 2-by-2 matrices satisfying

(18) if and only if (17) holds with m = 2. We leave this latter fact as an exercise for the reader.

The results above hold in greater generality than stated. Suppose that {kα}α∈A is a collection

of vectors in a separable Hilbert space H such that any finite subcollection is an independent set.

Let M be the space of bounded operators S on H with the property that each kα is an eigenvector

for S:

Skα = λαkα

for some λα ∈ � . We can regard each kα as a reproducing kernel by defining

x̂(α) =< x, kα >

for all α ∈ A. Then the adjoint of such an operator S corresponds to a multiplication operator:

Mϕx̂ = ϕx̂ = Ŝ∗x

where ϕ is defined by ϕ(α) = λα.

It is natural to ask which eigenvalues can occur. Given α1, . . . , αn ∈ A and λ1, . . . , λn ∈ � ,

when does there exist S ∈ M with ||S|| ≤ 1 and Skαi
= λikαi

for i = 1, . . . , n? In other words,
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given ϕ defined by ϕ(αi) = λi, i = 1, . . . , n, when can we find an extension of ϕ to all of A so that

the multiplication operator Mϕ has norm at most 1? Without loss of generality, we may suppose

that finite linear combination of {kα} are dense in H . The results of this section up to this point,

then remain valid in this greater context. Proposition 2 gives a necessary condition. If (17) holds

then Theorem 8 gives a necessary and sufficient condition. There are many important contexts in

which reproducing kernel spaces arise besides analytic function spaces. See for example the seminal

paper [Ar] and the introduction [Hi].

We will now investigate conditions under which (17) holds. Suppose cn > 0 for n = 0, 1, . . . .

Define an inner product on analytic functions on the disk by

(22) < f, g >=
∞∑

n=0

1

cn
bndn,

when f(z) =
∑

bnzn and g(z) =
∑

dnzn. Define

k(z) =
∞∑

n=0

cnzn.

Then k(αz) is the reproducing kernel at α ∈
�

for the Hilbert space Dk of analytic functions with

< f, f >≡ ||f ||2 < ∞. For example, consider the function kβ(z) = (1 − z)−β, with 0 < β ≤ 1. In

this case, we will denote Dk by Dβ . When A = H2, as mentioned above, k(z) = (1 − z)−1. In this

case, it is easy to verify the identity

(
1 −

ki,0kj,0

ki,jk0,0

)
= C0(zi)C0(zj),

where C0(z) = (z − z0)/(1− z0z) and hence (17) holds. Thus Theorem 8 gives another, albeit more

difficult, proof of Pick’s theorem.

Lemma 10. Suppose k is analytic in
�

with k(r) > 0, when r > 0, and k(0) = 1. Suppose further

that

1 −
1

k(z)
=

∞∑

n=1

anzn

converges in
�

and satisfies an ≥ 0 for all n. Let ki(z) = k(ziz) and ki,j = ki(zj), for j = 0, . . . , m.

Then the m-by-m matrix {
1 −

ki,0kj,0

ki,jk0,0

}
≥ 0.

The conditions on k can be stated solely in terms of the coefficients an as: an ≥ 0 and
∑

an ≤ 1,

and thus can be used to define a k satisfying the hypotheses. Usually, though, we are given a kernel
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k and it is easier to check k(r) > 0 than to check the equivalent condition
∑

an ≤ 1. Indeed, the

coefficients of k are all positive for the weighted inner products (22), and hence k(r) > 0 for r > 0.

Proof.

1

ki,0kj,0

−
1

ki,jk0,0
=

1

k0,0

(
1

ki,0
+

1

kj,0

−
1

k0,0
−

1

ki,j

)
+

(
1

ki,0
−

1

k0,0

)(
1

kj,0

−
1

k0,0

)

=
1

k0,0

∞∑

n=1

an(zn
i zn

j + zn
0 zn

0 − zn
i zn

0 − zn
0 zn

j ) +

(
1

ki,0
−

1

k0,0

)(
1

kj,0

−
1

k0,0

)

=
1

k0,0

∞∑

n=1

an(zn
i − zn

0 )(zn
j − zn

0 ) +

(
1

ki,0
−

1

k0,0

)(
1

kj,0
−

1

k0,0

)
.

Multiplying by bibjki,0kj,0 and summing over i and j, we obtain

∑

i,j

(
1 −

ki,0kj,0

ki,jk0,0

)
bibj =

1

k0,0

∞∑

n=1

an

∣∣∣∣∣
∑

i

bi(z
n
i − zn

0 )ki,0

∣∣∣∣∣

2

+

∣∣∣∣∣
∑

i

biki,0

(
1

ki,0
−

1

k0,0

)∣∣∣∣∣

2

.

Since an ≥ 0 and k0,0 ≥ 0, this proves the Lemma.
�

Corollary 11. Suppose A is a Hilbert space of analytic functions on
�

with reproducing kernels

k(αz), α ∈
�

, such that any finite subcollection is independent. Suppose further that k(r) > 0,

when r > 0 and

1 −
1

k(z)
=

∞∑

n=1

anzn

is analytic in
�

and satisfies an ≥ 0 for all n. Then A has the Pick property.

For 0 < β < 1 the reproducing kernels kβ(z) = (1 − z)−β clearly satisfy k(0) = 1 and k(r) > 0

when r > 0. The coefficients of 1 − 1/kβ are

an =
β(1 − β) · · ·(n − 1 − β)

1 · 2 · · ·n
> 0.

By Corollary 11, Dβ has the Pick property for 0 < β ≤ 1. When β = 1, kβ is the reproducing

kernel for the classical Hardy space H2, and we obtain another proof of Pick’s theorem. Note also

that

(23) lim
β→0

kβ(z) − 1

zβ
=

1

z
log

1

1 − z
≡ kD(z).
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The latter kernel gives the reproducing kernel for the Dirichlet space, D, the main topic of this

paper. However, we do not see a direct way to use (23) to prove the Pick property for D.

The following lemma of Kaluza is useful for verifying many spaces, such as the Dirichlet space,

have the Pick property. See [Ha, Ch IV, Theorem 22].

Lemma [Kaluza]. Suppose cn > 0, with c0 = 1 and

cn

cn−1
≤

cn+1

cn
≤ 1.

Let k(z) =
∑∞

n=0 cnzn. Then

1 −
1

k(z)
=

∞∑

n=1

anzn

with an ≥ 0.

Since the proof is so simple, we record it here for the convenience of the reader.

Proof. That cn+1/cn ≤ 1 just says that k is analytic on
�

. Write 1/k(z) =
∑

bnzn. Then

c0bn + c1bn−1 + . . . + cnb0 = 0

and

c0bn+1 + c1bn + . . . + cn+1b0 = 0.

Multiplying the first line by cn+1/(cnc0) and subtracting it from 1/c0 times the second,

bn+1 =
n∑

k=1

bk
cn−k

c0

(
cn+1

cn
−

cn−k+1

cn−k

)
.

Since b1 = −c1 < 0, by induction, bn+1 < 0 and hence an > 0.
�

For example if the coefficients 1/cn in the norm in Dk are concave:

1/cn−1 + 1/cn+1

2
≤

1

cn
,

then by the inequality between the arithmetic and geometric means a
1
2 b

1
2 ≤ (a+b)/2, the coefficients

cn satisfy the hypothesis of Kaluza’s lemma.

Theorem [Agler]. The Dirichlet space, D, has the Pick property.

Proof. As shown in section 1, cn = 1/(n + 1). By Kaluza’s lemma and Corollary 11, D has the

Pick property.
�
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More generally, since cn > 0 for all n implies k(r) > 0 when r > 0, we have:

Corollary 12. Suppose cn > 0 and c2
n ≤ cn−1cn+1 and suppose Dk is the Hilbert space of analytic

functions on
�

with inner product given by (22). Then the Dk has the Pick property.

The space Dβ can alternately be described as the functions
∑

bnzn such that

∞∑

n=0

(1 + n)1−β |bn|2 < ∞,

since cn is asymptotic to Γ(β)−1nβ−1. Note also that if we define the norm on Dβ using the above,

we obtain reproducing kernels from

k(z) =
∞∑

n=0

zn

(1 + n)1−β
.

In this case it is easy to verify that the hypothesis of Kaluza’s lemma hold. When β = 0 or 1, in

other words in the cases A = H2 or A = D, the norm is exactly the same as the one given by the

coefficients of kβ and kD above. When 0 < β < 1, the above norms are different from the norms

given by the coefficients of kβ , but Dβ still satisfies the Pick property by Corollary 12. Another

commonly used norm on Dβ is

∣∣∣∣
∣∣∣∣

∞∑

0

bnzn

∣∣∣∣
∣∣∣∣=

∞∑

0

(1 + n2)β/2|bn|2.

The hypotheses of Kaluza’s lemma fail in this case, but only when n = 1. If we modify the norm

slightly to be ∣∣∣∣
∣∣∣∣

∞∑

0

bnzn

∣∣∣∣
∣∣∣∣=
(

4

5

)β/2

|b0|
2 +

∞∑

1

(1 + n2)β/2|bn|2,

then Kaluza’s lemma applies and Dβ has the Pick property. Yet another norm on Dβ is given by

∥∥∥∥
∑

bnzn

∥∥∥∥
2

=
∞∑

n=0

(1 + nβ)|bn|2.

By taking second derivatives in n, 1 + nβ is concave if 0 ≤ β ≤ 1, and so A again has the Pick

property under this norm. We remark that these spaces have been studied in a number of contexts.

Carleson gave a sufficient condition for a sequence to be a zero set of a function in Dβ in his thesis

[C1], and Shapiro and Shields [SS2] improved upon Carleson’s result. Stegenga [St] characterized

the Carleson measures for these spaces.
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We can use the norms

||f ||2Dβ
=

∞∑

n=0

(n + 1)1−β|an|2

for f =
∑

anzn, to give a more precise version of Proposition 6, when A = Dβ . We say that

Z ⊂
�

is a zero set of a Banach space X of functions defined on
�

if there is a f ∈ X with

Z = {z ∈
�

: f(z) = 0}.

Corollary 13. A set Z ⊂
�

is a zero set of Dβ if and only if it is a zero set of MDβ
, 0 ≤ β ≤ 1.

If z0 6∈ Z let f ∈ Dβ be the function of least norm vanishing on Z and equal to 1 at z0 and let

ϕ ∈ MD be the multiplier of least norm vanishing on Z and equal to 1 at z0. Then f and ϕ are

unique, have zero set Z and satisfy

f = ϕ
kz0

||kz0
||2

.

Richter and Sundberg [RS] proved a more general result than this theorem when Dβ = D, the

Dirichlet space. They proved that the extremal function for any invariant subspace is a multiplier.

Proof. First consider the case when β = 0. Write

D(f) =

∫∫

�

|f ′|2dA

If a ∈
�

\ Z and f ∈ D, with f(a) = 0, let

τ(z) =
z − a

1 − az
and g(z) =

f(z)

τ(z)
.

Then ||g||H2 = ||f ||H2 and

D(g) = D

(
f

τ

)
= D

(
f ◦ τ−1

z

)
< D

(
f ◦ τ−1

)
= D(f).

Thus

||τ(z0)g||D < ||g||D < ||f ||D,

and so an extremal function for (15) with A = D vanishes only on the set Z.

Now consider the operator

T (f) =
f

τ

defined on the functions in Dβ which vanish at a, for 0 ≤ β ≤ 1. The operator T is bounded by 1

when β = 0 and when β = 1, and by an interpolation result of Stein and Weiss (see e.g. [BL]), T

is also bounded by 1 on each Dβ, for 0 < β < 1. Then

||τ(z0)
f

τ
|| < ||f ||,
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so if a 6∈ Z, f cannot be extremal. By the comments above, Dβ has the Pick property under this

norm. The Corollary now follows from Proposition 6.
�

As a consequence, the Pick condition gives a (albeit complicated) characterization of the zero

sets of MDβ
.

We can give a Pick Theorem on the unit ball in � 2 , for example, by letting

kα(z) =
1

1− < z, α >
=
∑

m,n

(
n + m

m

)
α1

nα2
nzn

1 zm
2 ,

where < z, α >= z1α1 + z2α2 is the usual inner product. In this case the natural Hilbert space H

for which these are reproducing kernels are those analytic functions f(z) =
∑

an,mzn
1 zm

2 on � 2 for

which

||f ||2 =
∑ |an,m|2(

n+m
m

) < ∞.

The analog of the equality given just before Lemma 10 holds in this case. See Theorem 2.2.2 (iii)

in [R]. Thus (17) holds and the space has the Pick property. In this case MH 6= H∞ since

||(z1z2)
n||2H∞ ≤

C

n
1
2

||(z1z2)
n||2H ≤

C

n
1
2

||(z1z2)
n||2MH

.

The natural H2 space of analytic functions with square integrable boundary values has a similar

norm with (n+m
m

) replaced by (n+m
m

)(n + m + 1). See Proposition 1.4.9 in [R]. We can thus view

the Hilbert space whose reproducing kernels are kα as

H = {f analytic : (I + z∂z + w∂w)
1
2 f ∈ H2}.

A similar result holds for the unit ball in � k where the usual H2 norm is altered multiplying the

coefficients by (|c| + k − 1)!/(|c|!(k − 1)!).

The Bergman space A2 consists of analytic function on
�

for which

||f ||2A2 =

∫
�

|f |2dA/π < ∞.

The reproducing kernels are

kα(z) =
1

(1 − αz)2
.

The space of multipliers is just H∞, with the usual sup norm, and it is easy to check that the Pick

property fails. For example, if z1 = w1 = 0 and z2 = 1
2
, then the Pick matrix with the above kernel is

positive semi-definite if and only if |w2| ≤
√

7
16 , but Schwarz’s lemma says that H∞ functions have
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the stronger requirement that |w2| ≤ 1
2
. In this case, Siep [Si] has characterized the interpolating

sequences for A2 and they are different from the interpolating sequences in MA2 = H∞. Thus

statements (a) and (b) in Corollary 7 are not equivalent in this case.

If A is the Hardy space of analytic functions on the ball with square intergrable boundary

values, the (Cauchy) kernels defined on the unit ball in � 2 by

kα(z) = (1− < z, α >)−2,

are the reproducing kernels, and the multipliers are the bounded analytic functions. The same

example as used for the Bergman space shows that the Pick property fails. Similar examples can

be constructed in the unit ball in � n . The failure of the Pick Theorem for the usual H2 kernel on

the ball and the polydisk in � n was proved by Amar [Am].

§5 Interpolating Sequences for MD.

In this section we will prove Theorem 1, the geometric characterization of interpolating se-

quences for MD. Suppose now that (4) and (5) hold. We will work first with harmonic Dirichlet

space. If u is harmonic on
�

, let

|∇u|2 = |∇Re u|2 + |∇Im u|2.

If

u(reiθ) =
∞∑

−∞

anr|n|einθ

let

||u||2D =
∞∑

n=−∞

(|n| + 1)|an|2

and define the harmonic Dirichlet space , Dh, to be the harmonic functions u defined on
�

for

which ||u||D < ∞. This norm can be rewritten as

||u||2D =

∫ 2π

0

|u(eiθ)|2dθ/2π +
1

2

∫∫

�

|∇u|2dA/π,

where u(eiθ) denotes the non-tangential limit of u at eiθ, (a.e. dθ). Then Dh is a Hilbert space on
�

with reproducing kernel

Kα(z) = 2Re kα(z) − 1 = 2Re
1

αz
log

1

1 − αz
− 1,

where kα(z) is the reproducing kernel for D as given in section 1. Note that kα = PDKα where PD

is the orthogonal projection onto D. Write Kn = Kzn
.
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Theorem 14. If (4) and (5) hold, then Kn/||Kn||D is an unconditional basic sequence.

Proof. We will show:

Claim. There is a constant C < ∞ so that if u ∈ Dh is real-valued and if {tn} ⊂ � with |tn| ≤ 1

for all n, then there is a real-valued v ∈ Dh with v(zn) = tnu(zn) for all n, and ||v||D ≤ C.

If the claim is true, then clearly it is true for complex-valued u, v, and tn, with a larger C. If

we define the operator T on Dh by T (u) = v, then ||T ∗|| = ||T || ≤ C. Since T ∗(Kn) = tnKn, this

proves ∥∥∥∥
∑

tnbn
Kn

||Kn||D

∥∥∥∥
D

=

∥∥∥∥T ∗

(∑
bn

Kn

||Kn||D

)∥∥∥∥
D

≤ C

∥∥∥∥
∑

bn
Kn

||Kn||D

∥∥∥∥
D

,

which proves Theorem 14.

There are an unfortunate number of arbitrary constants to be chosen in the proof, and it might

be best to list them here. Without loss of generality, we may suppose 0 < γ < 1 in (4). Choose

α, β, ε, η, λ, p, and q such that

0 < β < α < 1

1 < η <
2β − 1

1 − γ

ε > 0

η(β − ε) > p

1 < p <
α

2α − 1

1

p
+

1

q
= 1

0 < λ <
β

2α
.

It is possible to find such numbers by taking β very close to 1. The letter C0 will be reserved for

the inequality in Stegenga’s Theorem. The letter C will be used for various constants, depending

at most on α, β, ε, η, λ, p, q and C0. Finally note that we can throw away any finite number of z′
ns

in the proof. One way we’ll exploit this is by tacitly assuming |zn| is “sufficiently close to 1” for all

n.

We now assume |z1| ≤ |z2| ≤ . . . and let wn = zn/|zn|, and define the sets

Un = {z ∈
�

: |z − wn| ≤ (1 − |zn|2)α},
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and

Vn = {z ∈
�

: |z − wn| ≤ (1 − |zn|2)β}.

Since β < α < 1 we have zn ∈ Un ⊂ Vn.

Suppose n > m and Vm ∩ Vn 6= ∅, so that

|wm − wn| ≤ (1 − |zm|2)β + (1 − |zn|2)β.

Since |zn| ≥ |zm| we have by (4) and (12)

(1 − |zm|2)(1 − |zn|2)

|1 − zmzn|2
≤ (1 − |zn|2)γ ,

so that
(1 − |zm|2)(1 − |zn|2)1−γ ≤ |1 − zmzn|2

= |zm||zn||wm − wn|2 + (1 − |zm||zn|)2

≤ 4(1 − |zm|2)2β + (1 − |zm|2)2

≤ 5(1 − |zm|2)2β

,

and hence

1 − |zn|2 ≤ 5
1

1−γ (1 − |zm|2)
2β−1
1−γ ≤ (1 − |zm|2)η.

In the last inequality, we used that |zm| is “sufficiently close to 1”. In particular, if zm ∈ Vn, then

1 − |zm| ≤ |zm − wn| ≤ (1 − |zn|2)β ≤ (1 − |zm|2)ηβ ≤ 2ηβ(1 − |zm|)ηβ,

which is a contradiction, since ηβ > 1 and |zm| is sufficiently close to 1. We’ve shown that

(24) If n > m and Vn ∩ Vm 6= ∅ then (1 − |zn|2) ≤ (1 − |zm|2)η

and

(25) If n > m then zm 6∈ Vn.

Define functions

ϕn(z) =





0 z ∈
�

\ Vn

1 z ∈ Un

log
(1 − |zn|2)β

|z − wn|

(α − β) log
1

1 − |zn|2

z ∈ Vn \ Un.
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Lemma 15. Given tj ∈ � , with |tj | ≤ 1, there exists aj ∈ � such that |aj| ≤ 3 and

∥∥∥∥
∞∑

j=0

ajϕj

∥∥∥∥
∞

≤ 2 and
∞∑

j=0

ajϕj(zn) = tn for all n.

Proof of Lemma 15. By (25), ϕj(zn) = 0 if j > n so we can inductively choose aj ∈ � such that

tn =
n∑

j=1

ajϕj(zn) =
∞∑

j=1

ajϕj(zn)

for all n.

Assume ||
∑n−1

j=1 ajϕj ||∞ ≤ 2. Since |tn| ≤ 1 and ϕn(zn) = 1, we have |an| ≤ 3. If z ∈ Vn,

denote by n1, . . . , nk those indices smaller than n for which z ∈ Vnj
. By (24) (1 − |zn|2) ≤

(1 − |znj
|2)η so that

(26)

∣∣∣∣∇
n−1∑

j=1

ajϕj(z)

∣∣∣∣ =
∣∣∣∣
∑

anj
∇ϕnj

(z)

∣∣∣∣

≤ 3
∑ 1

(α − β) log 1
1−|znj

|2

1

(1 − |znj
|2)α

≤
3

α − β

1

(1 − |zn|2)α/η

∑ 1

log 1
1−|znj

|2

≤
3C0

α − β

1

(1 − |zn|2)α/η
,

by (5). Hence for z ∈ Vn,

(27)

∣∣∣∣
n−1∑

j=1

ajϕj(z) −
n−1∑

j=1

ajϕj(zn)

∣∣∣∣≤
6C0

α − β
(1 − |zn|2)β−α

η < 1.

In the last inequality, we used that βη > 1 > α and that zn is sufficiently close to 1. Thus if an ≤ 0

n∑

j=1

ajϕj(z) ≤
n−1∑

j=1

ajϕj(z) ≤ 2

and by (27), for z ∈ Vn,

n∑

j=1

ajϕj(z) ≥ an +
n−1∑

j=1

ajϕj(z)

= tn +
n−1∑

j=1

ajϕj(z) −
n−1∑

j=1

ajϕj(zn)

≥ −1 − 1 = −2.
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So we’ve shown |
∑n

j=1 ajϕj(z)| ≤ 2, if z ∈ Vn and an ≤ 0. A similar argument works if an ≥ 0. If

z ∈
�

\ Vn then ∣∣∣∣
n∑

j=1

ajϕj(z)

∣∣∣∣=
∣∣∣∣
n−1∑

j=1

ajϕj(z)

∣∣∣∣≤ 2,

proving Lemma 15.
�

Now let ϕ =
∑∞

j=0 ajϕj .

Lemma 16. |∇ϕ|2dA is a Carleson measure for the Dirichlet space D.

Proof. We will verify Stegenga’s criterion (3). Suppose E ⊂ ∂
�

is a union of finitely many disjoint

arcs I1, . . . , IN . Denote by Ĩj the arc with the same center as Ij and |Ĩj | = |Ij |
λ. We may assume

that
∑

|Ij | is small, since ϕ is supported on ∪Vn and all zn are sufficiently close to ∂
�

. Define

�
1 = {j : Vj ⊂ ∪N

k=1S(Ĩk)}

and
�

2 =
�

\
�

1.

Then

(28)

∫∫

∪S(Ik)

|∇ϕ|2dA ≤ 2

∫∫

�

|
∑

j∈� 1

aj∇ϕj |
2dA + 2

∫∫

�

|
∑

j∈� 2

aj∇ϕj|
2dA

≡ Int1 + Int2.

We first estimate Int1: Let n ∈
�

1 and let

z ∈ Wn ≡ Vn \ ∪{m∈� 1 :m>n}Vm.

The argument in (26) yields
∣∣∣∣

∑

{j∈� 1 :j<n}

aj∇ϕj(z)

∣∣∣∣≤
3C0

α − β

1

(1 − |zn|2)α/η
,

and hence

∫∫

Wn

∣∣∣∣
∑

j∈� 1

aj∇ϕj(z)

∣∣∣∣
2

dA(z) ≤ 2

∫∫

Vn

[
3C0

α − β

1

(1 − |zn|2)α/η

]2
dA(z) + 2

∫∫

�

|3∇ϕn(z)|2 dA(z)

≤
18C2

0

(α − β)2
π

2
(1 − |zn|2)2(β−α/η) +

18π

α − β

1

log 1
1−|zn|2

≤
36π

α − β

1

log 1
1−|zn|2
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since β > α/η, and |zn| is sufficiently close to 1. Iterating this estimate we obtain

∫∫

Vn

∣∣∣∣
∑

j∈� 1

aj∇ϕj(z)

∣∣∣∣
2

dA(z) ≤
36π

α − β

∑
�

13m>n

Vm∩Vn 6=∅

1

log 1
1−|zn|2

.

Let Jn be the arc on ∂
�

with the same center as Vn, yet 3 times as long as Vn ∩ ∂
�

. Then the

above is

≤
36π

α − β

∑

m∈
�

1
zm∈S(Jn )

1

log 1
1−|zn|2

≤
36π

α − β
C0

(
log

1

Cap(Jn)

)−1

≤ C

(
log

1

1 − |zn|2

)−1

.

Hence

Int1 ≤ 2
∑

n∈� 1

∫∫

Vn

∣∣∣∣
∑

j∈� 1

aj∇ϕj

∣∣∣∣
2

dA

≤ C
∑

n∈� 1

(
log

1

1 − |zn|2

)−1

≤ C
∑

zn∈S(∪Ĩk)

(
log

1

1 − |zn|2

)−1

≤ CC0

(
log

1

Cap(∪Ĩk)

)−1

.

We’ll complete the estimate for Int1 by showing

(29) γ(∪Ĩk) = log
1

Cap(∪Ĩk)
≥ C log

1

Cap(∪Ik)
= Cγ(∪Ik).

The following Lemma is well known, but we could not find a reference.

Lemma 17. Suppose E ⊂ ∂
�

and γ(E) = limz→∞ g(z, ∞) − log |z| is the Robin constant for E.

Then
log 2

log 2 + γ(E)
≤ ω(0, E, 3

�
\ E) ≤

log 4

log 4 + γ(E)
,

where ω(z, E, 3
�

\ E) is the harmonic measure of E in {z : |z| < 3} \ E.

Proof of Lemma 17. By consideration of boundary values,

g(z, ∞) − g(
1

z
, ∞) = log |z|.
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Letting z → ∞ we obtain g(0, ∞) = γ(E). Now

g(z, ∞) − γ(E) =

∫

E

log |z − ζ|dµ(ζ),

where µ is a probability measure, and hence if |z| = 3

log 2 ≤ g(z, ∞) − γ(E) ≤ log 4.

By consideration of boundary values

log 2 − g(z, ∞) + γ(E)

log 2 + γ(E)
≤ ω(z, E, 3

�
\ E) ≤

log 4 − g(z, ∞) + γ(E)

log 4 + γ(E)
.

Lemma 17 now follows by letting z = 0, since γ(E) = g(0, ∞).
�

We now continue our estimation of Int1. Using an explicit conformal map of � ∗ \ Ik onto
�

and making a easy estimate, shows that

ω(z, Ik, 3
�

\ Ik) ≥ C > 0

for z ∈ Ĩk. Thus if z ∈ Ĩk then

ω(z, ∪Ij , 3
�

\ ∪Ij) ≥ ω(z, Ik, 3
�

\ Ik) ≥ C.

and hence

ω(z, ∪Ij , 3
�

\ ∪Ij) ≥ Cω(z, ∪Ĩj , 3
�

\ ∪Ĩj),

for z ∈ 3
�

\∪Ĩj . Letting z = 0 and applying Lemma 17, we obtain (29), since
∑

|Ij | is small. Thus

Int1 ≤ C

(
log

1

Cap(∪Ik)

)−1

.

We now estimate Int2 in (28). Suppose Vj ∩ S(Ik) 6= ∅, but Vj 6⊂ S(Ĩk). Then since Ĩk and Ik

have the same center,

2(1 − |zj|
2)β = |Vj ∩ � | ≥

1

2
(|Ĩk| − |Ik|) ≥

1

3
|Ik|λ.

Hence

||∇ϕj||∞ ≤
1

(α − β)(1 − |zj |2)α log 1
1−|zj |2

≤
C

|Ik|αλ/β

1

log 1
1−|zj |2

.
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This shows that for z ∈ S(Ik),

∣∣∣∣
∑

j∈� 2

aj∇ϕj(z)

∣∣∣∣
2

≤
9C

|Ik|2αλ/β


∑

j∈� 2

1

log 1
1−|zj |2




2

≤ CC2
0

1

|Ik|2αλ/β
.

since |aj | ≤ 3 and since (5) holds. Hence

∫

S(Ik)

∣∣∣∣
∑

j∈� 2

aj∇ϕj

∣∣∣∣
2

dA ≤ C|Ik|2−2αλ/β ≤ C|Ik|,

since λ < β/(2α). Thus

Int2 ≤ C| ∪ Ik| < Ce−γ(∪Ik ) ≤
C

γ(∪Ik)
= C

(
log

1

Cap(∪Ik)

)−1

.

Adding Int1 and Int2, we obtain

∫∫

∪S(Ik)

|∇ϕ|2dA ≤ C

(
log

1

Cap(∪Ik)

)−1

.

By Stegenga’s Theorem, |∇ϕ|2dA is a Carleson measure for D, with constant depending only on

C0, α, β, γ, ε, λ, η, completing the proof of Lemma 16.
�

Now suppose u ∈ Dh is real-valued. Then u = Ref , for some f ∈ D and |∇u| = |f ′|. By

Stegenga’s Theorem, Lemma 13 and Lemma 14,

∫∫

�

|∇(ϕu)|2dA ≤ C2

∫∫

�

|∇u|2dA.

Let u∗ be the boundary function of u and let P [ϕ∗u∗] be the Poisson integral of the boundary

function ϕ∗u∗. By the Dirichlet principle,

∫∫

�

|∇P [ϕ∗u∗]|2dA ≤ C2

∫∫
|∇(ϕu)|2dA.

Since ||ϕ||∞ ≤ 2, we see that

||P [ϕ∗u∗]||D ≤ C||u||D.

The estimate in the next Lemma will allow us to “correct” P [ϕ∗u∗] so as to obtain v ∈ Dh

with v(zn) = tnu(zn).
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Lemma 18.
∑

n

|P [ϕ∗u∗](zn) − tnu(zn)| ≤ C||u||D.

Proof. Fix n and let
W1 = ∂

�
\ Un,

W2 = ∂
�

∩ Un ∩ (∪j>nVj), and

W3 = ∂
�

∩ Un \ ∪j>nVj.

Let Pzn
be the Poisson kernel for zn. Then

|P [ϕ∗u∗](zn) − tnu(zn)| ≤

∫

W1

+

∫

W2

+

∫

W3

|ϕ(eiθ)u(eiθ) − tnu(eiθ)|Pzn
(eiθ)

dθ

2π

= Int1 + Int2 + Int3.

Note that if I is an arc on ∂
�

then

∫

S(I)

|∇u|2(1 − |z|2)dA ≤ 2|I | ||u||2D,

so u ∈ BMO and for all q < ∞ ||u∗||q ≤ Cq||u||BMO ≤ C̃q ||u||D, by Fefferman’s characterization

of BMO (see [G]).

Estimate for Int1 (on W1 = ∂
�

\ Un):

Writing eis = wn = zn/|zn| we see that

Pzn
(eiθ) =

1 − |zn|2

1 − 2|zn| cos(θ − s) + |zn|2

=
1 − |zn|2

(1 − |zn|2)2 + 2|zn|(1 − cos(θ − s))

≤
1 − |zn|2

2|zn|(1 − cos(θ − s))
,

and hence

∫

W1

Pzn
(eiθ)p dθ

2π
≤ C(1 − |zn|2)p

∫ π

(1−|zn|2)α

dt

t2p
≤ C(1 − |zn|2)p−α(2p−1).

Note that α(2 − 1/p) < 1. Thus

Int1 ≤ C
(
1 − |zn|2

)1−α(2−1/p)
||u∗||q

≤ C||u||D
(
1 − |zn|2)

)1−α(2−1/p)

≤ C||u||D

(
log

1

1 − |zn|2

)−1

.
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Estimate for Int2 (on W2 = ∂
�

∩ Un ∩ (∪j>nVj) ):

By (24), if j > n and Vj ∩ Vn 6= ∅, then 1 − |zj |2 ≤ (1 − |zn|2)η, so∣∣∣∣
⋃

j>n

Vj∩Un 6=∅

(Vj ∩ ∂
�

)

∣∣∣∣ ≤
∑

j>n

Vj∩Un 6=∅

2(1 − |zj |
2)β

=
∑

j>n

Vj∩Un 6=∅

2(1 − |zj |
2)β

(
log

1

1 − |zj |2

)
1

log 1
1−|zj |2

≤
∑

j>n

Vj∩Un 6=∅

2(1 − |zj |
2)β−ε 1

log 1
1−|zj |2

≤ C0(1 − |zn|2)η(β−ε).

Hence ∫

W2

Pzn
(eiθ)p dθ

2π
≤ C||Pzn

||p∞C0(1 − |zn|2)η(β−ε) ≤ C(1 − |zn|2)η(β−ε)−p,

and so

Int2 ≤ C(1 − |zn|2)η(β−ε)/p−1||u∗||q ≤ C||u||D

(
log

1

1 − |zn|2

)−1

.

Estimate for Int3 (on W3 = ∂
�

∩ [Un \ (∪j>nVj)] ):

Since ϕ(zn) = tn, for z ∈ ∂
�

∩ [Un \ (∪j>nVj)] we have by (26) again

|tn − ϕ(z)| = |
n∑

j=1

ajϕj(zn) −
n∑

j=1

ajϕj(z)|

= |
n−1∑

j=1

ajϕj(zn) −
n−1∑

j=1

ajϕj(z)|

≤
3C0

α − β

1

(1 − |zn|2)α/η
2(1 − |zn|2)α

≤ C(1 − |zn|2)α(1−1/η).

Hence

Int3 ≤ C(1 − |zn|2)α(1−1/η)P [|u∗|](zn) ≤ CP [|u∗|](zn)

(
log

1

1 − |zn|2

)−1

.

Combining the estimates for Int1, Int2, Int3 and summing over n yields

∑

n

|P [ϕ∗u∗](zn) − tnu(zn)| ≤ C||u||D
∑(

log
1

1 − |zn|2

)−1

+
∑

n

P [|u∗|](zn)

(
log

1

1 − |zn|2

)−1

≤ C||u||D + C

[∑

n

P [|u∗|](zn)2
(

log
1

1 − |zn|2

)−1
] 1

2
[∑(

log
1

1 − |zn|2

)−1
] 1

2

≤ C||u||D + C||P [|u∗|]||D

≤ C||u||D.
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The last two inequalities above follow from (5′) and the Dirichlet principle. This completes the

proof of Lemma 18.
�

We now finish the proof of the claim stated at the start of the proof of Theorem 14. Shapiro

and Shields [SS2] proved that if

∑(
log

1

1 − |zn|2

)−1

≤ M,

then there exists g ∈ D with g(zn) = 0, g′(0) = 1 and
∫∫

� |g′|2dA ≤ C(M) where C(M) is a

constant depending on M . By (4), 1 − ρ2(zm, zn) ≤ (1 − |zn|2)γ and thus

∑

m6=n

(
log

1

1 − ρ2(zm, zn)

)−1

≤
C0

γ
.

Fix n. Then this estimate together with the result of Shapiro and Shields shows there exists gn ∈
�

such that

gn

(
zm − zn

1 − znzm

)
= 0 if m 6= n

g′
n(0) = 1 and

∫∫

�

|g′
n|2dA < C.

We can also arrange that gn(−zn) = 0. Define

fn(z) =
gn

(
z−zn

1−znz

)

z−zn

1−znz

.

Then fn(zm) = δm,n and
∫∫

� |f ′
n|2dA < C. Since fn(0) = −gn(−zn)/zn = 0, we have ||fn||D < 2C,

as can be seen from the series expansion. Defining

v = P [ϕ∗u∗] +
∑

(tnu(zn) − P [ϕ∗u∗](zn))Refn,

we see that v ∈ Dh is real-valued, with v(zn) = tnu(zn) for all n and ||v||D ≤ C||u||D by Lemma

18, proving the claim and finishing the proof of Theorem 14.
�

We now prove our main result.

Proof of Theorem 1. Suppose (4) and (5) hold. As above, let kn = kzn
and Kn = Kzn

. By

Theorem 14, {Kn/||Kn||D} is a (UBS), so by the Köthe-Toeplitz Theorem, it is a (RS). We will

use this fact to show that kn/||kn|| is a Riesz sequence (RS).
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One inequality is now easy. Let PD be the orthogonal projection onto D. If αn ∈ � , then

∥∥∥∥
∑

αn
kn

||kn||

∥∥∥∥ =

∥∥∥∥PD

∑
αn

Kn

||kn||

∥∥∥∥

≤

∥∥∥∥
∑

αn
Kn

||kn||

∥∥∥∥

=

∥∥∥∥
∑

αn
||Kn||

||kn||

Kn

||Kn||

∥∥∥∥

≤ C
(∑

|αn|2
) 1

2

,

since {Kn/||Kn||} is a (RS) and ||Kn|| ∼ ||kn||.

For the opposite inequality, write αn = an + ibn, with an, bn ∈ � . Replacing αn by λαn

with |λ| = 1, we may suppose Im
∑

αn/||kn|| = 0. If f is analytic and Imf(0) = 0, then

||f ||D = ||Ref ||D. Thus

∥∥∥∥
∑

αn
kn

||kn||

∥∥∥∥
2

=

∥∥∥∥
∑(

an
Rekn

||kn||
− bn

Imkn

||kn||

)∥∥∥∥
2

=

∥∥∥∥
∑

an
Rekn

||kn||

∥∥∥∥
2

+

∥∥∥∥
∑

bn
Imkn

||kn||

∥∥∥∥
2

−2
∑

ambn
< Rekm, Imkn >

||km|| ||kn||
.

Now

(30)

∥∥∥∥
∑

an
Rekn

||kn||

∥∥∥∥
2

=
1

2

∥∥∥∥
∑

an
Kn + 1

||kn||

∥∥∥∥
2

=
1

2

∥∥∥∥
∑

an
Kn

||kn||
+

(∑
an

Kn

||kn||

)
(0)

∥∥∥∥
2

≥
1

2

∥∥∥∥
∑

an
Kn

||kn||

∥∥∥∥
2

≥
1

C

∑
|an|2,

since ||u+u(0)||2 ≥ ||u||2, as can be seen from the norm expressed in terms of the Fourier coefficients.

Since
∑

bn/||kn|| = Im
∑

αn/||kn|| = 0,

∥∥∥∥
∑

bn
Imkn

||kn||

∥∥∥∥
2

=

∥∥∥∥
∑

bn
Rekn

||kn||

∥∥∥∥
2

≥
1

C

∑
|bn|2,

by (30).
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For the cross terms, note that

Imkn(zm) =< Imkn, Km >= 2 < Imkn, Rekm >,

since Imkn(0) = 0. When ζ = eiθ, the elementary estimate |1
2
Im
(

1
ζ

log(1 − ζ)
)

| ≤ 5 holds, and

hence the same inequality holds for all ζ ∈
�

. Thus

| < Imkn, Rekm > | ≤
1

2
|Imkn(zm)| ≤ 5,

and so

∣∣∣∣
∑

ambn
< Rekm, Imkn >

||km|| ||kn||

∣∣∣∣ ≤ 5

(∑
|am|

1

||km||

)(∑
|bn|

1

||kn||

)

≤ 5
(∑

|an|2
) 1

2
(∑

|bn|2
) 1

2
∑(

log
1

1 − |zn|2

)−1

.

By throwing away finitely many zn we may assume that

∑(
log

1

1 − |zn|2

)−1

<
1

10C
,

where C is the constant appearing in (30). Thus

∥∥∥∥
∑

αn
kn

||kn||

∥∥∥∥
2

≥
1

C

∑(
|an|2 + |bn|2

)
− 10

(∑
|an|2

) 1
2
(∑

|bn|2
) 1

2
∑(

log
1

1 − |zn|2

)−1

≥
1

C

[∑(
|an|2 + |bn|2

)
−
(∑

|an|2
) 1

2
(∑

|bn|2
) 1

2

]

≥
1

2C

∑(
|an|2 + |bn|2

)

=
1

2C

∑
|αn|2.

Thus kn/||kn|| is a Riesz sequence. By Agler’s Theorem, D has the Pick property. By Corollary

7, {zn} is an interpolating sequence for MD.

Now suppose {zn} is an interpolating sequence for MD. As noted previously, by Stegenga’s

theorem, (5) is equivalent to
∑ δzn

||kn||2
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is a Carleson measure. In other words,

∑
| < f,

kn

||kn||
> |2 =

∑ |f(zn)|2

||kn||2
≤ C||f ||D

for all f ∈ D. This is exactly the lower estimate of the norm in (SS). Thus by the Corollary 7, if

{zn} is an interpolating sequence for MD then (5) holds. To interpret (4), we prove the following

elementary lemma.

Lemma 19. There is a constant γ > 0 so that

(31) 1 − ρ2(zn, zm) ≤ (1 − |zn|2)γ for all n 6= m

if and only if there is a σ < 1 so that

(32)

∣∣∣∣<
kn

||kn||
,

km

||km||
>

∣∣∣∣ ≤ σ for all n 6= m.

Proof of Lemma 19. If (32) holds, then since 2ab ≤ a2 + b2, we have

log
1

|1 − znzm|2
≤ 2

(
σ2 log

1

1 − |zn|2

) 1
2
(

log
1

1 − |zm|2

) 1
2

≤ σ2 log
1

1 − |zn|2
+ log

1

1 − |zm|2
.

Exponentiating, we get
1

|1 − znzm|2
≤

1

(1 − |zn|2)σ2

1

1 − |zm|2
.

Together with (12) this gives (31) with γ = 1−σ2. Conversely suppose (31) holds and without loss

of generality, suppose that

log
1

1 − |zm|2
≤ log

1

1 − |zn|2
.

By (12) and (31)

(33) log
1

|1 − znzm|2
≤ (1 − γ) log

1

1 − |zn|2
+ log

1

1 − |zm|2
.

Note that if 0 ≤ a ≤ b ≤ (1 + γ)a, then (1 − γ)b + a ≤ (2 − γ2)a
1
2 b

1
2 . Thus if

log
1

1 − |zn|2
≤ (1 + γ) log

1

1 − |zm|2
,

then by (33)

log
1

|1 − znzm|2
≤ 2(1 −

γ2

2
)

(
log

1

1 − |zn|2

) 1
2
(

log
1

1 − |zm|2

) 1
2

.
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If

log
1

1 − |zn|2
≥ (1 + γ) log

1

1 − |zm|2
,

then

log
1

|1 − znzm|
≤ log

1

1 − |zn||zm|
≤ log

1

1 − |zm|

≤

(
1

1 + γ

) 1
2
(

log
1

1 − |zn|2

) 1
2
(

log
1

1 − |zm|2

) 1
2

.

Since | arg(1 − znzm)| ≤ π/2, if 1 − |zn|2 and 1 − |zm|2 are sufficiently small then

∣∣∣∣log
1

1 − znzm

∣∣∣∣ ≤ σ

(
log

1

1 − |zn|2

) 1
2
(

log
1

1 − |zm|2

) 1
2

,

for some σ < 1. This gives (32) for n and m sufficiently large. Since the inequality (32) is obviously

true for any fixed zm, (32) holds for all n and m with n 6= m by increasing σ slightly.
�

If {zn} is an interpolating sequence for MD then for each pair zn, zm with n 6= m we can find

an f ∈ MD so that f(zn) = 1, f(zm) = 0, and ||f ||MD
≤ C. If ϕ = f/C then and Corollary 3,

1/C ≤ 1 −
|kn,m|2

kn,nkm,m

which is exactly (32) with σ = (1−1/C)
1
2 . Thus by Lemma 19, if {zn} is an interpolating sequence

(4) must hold. This completes the proof of Theorem 1.
�

The next Corollary follows immediately from Corollary 7 and Theorem 1.

Corollary 20. A sequence {zn} is interpolating for D if and only if both (4) and (5) hold.

If zn ∈ (0, 1) → 1 then a standard estimate using (12) shows that there is a constant σ < 1 so

that

(1 − zn+1)
σ ≤ (1 − zn)

for all n if and only if both (4) and (5) hold. This yields the following Corollary.

Corollary 21. If zn ∈ (0, 1) then zn is an interpolating sequence for MD if and only if there is a

constant σ < 1 so that

(1 − zn+1)
σ ≤ (1 − zn)

for all n.
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We can now answer Axler’s question (i) by noting that for σ < 1,

zn = 1 − σσ−n

,

satisfies the hypotheses of Corollary 21 and hence is interpolating.

Since the inequalities in (4) and (5) are harder to satisfy if we replace zn by |zn| for all n, we

can answer Axler’s question (ii).

Corollary 22. If {zn} ⊂
�

and if there is a constant σ < 1 so that

(1 − |zn+1|)
σ ≤ (1 − |zn|)

for all n, then zn is interpolating for MD.

By Corollary 21, the growth rate in Corollary 22 is best possible.

There is a sequence {zn} which is not interpolating for MD, yet there are functions ϕn ∈ MD

with ϕn(zm) = δn,m the Dirac delta function, and ||ϕn||MD
≤ C. To see this, we first give a

sufficient condition for the existence of such functions.

Proposition 23. Suppose A is a Hilbert space of analytic functions on
�

with reproducing kernels

k(αz) which satisfy the hypotheses of Corollary 11. Let ki,j =< kzi
, kzj

>, i, j = 0, 1, 2, . . . , and

suppose

C =
∞∏

i=1

(
1 −

|ki,0|2

ki,ik0,0

)−1

< ∞.

Then there is a ϕ ∈ MA with ||ϕ||MA
≤ C, ϕ(z0) = 1, and ϕ(zj) = 0, for j = 1, 2, . . ..

Proof. By Corollary 11, A has the Pick property. Fix m and let

Mm = {ki,j}i,j=1,...,m

and

M0
m = {ki,j}i,j=0,...,m

If w1 = w2 = . . . = wm = 0 then the Pick matrix

Pm = {(1 − wiwj)ki,j}i,j=0,...,m
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satisfies

detPm = detM0
m − |w0|

2k0,0 detMm.

Thus there is a ϕm ∈ MA with ||ϕm||MA
< 1, ϕm(z0) = w0, and ϕm(zj) = 0, j = 1, . . . , m if and

only if

(34) |w0|
2 <

detM0
p

k0,0 det Mp

for p = 1, . . . , m. As in Shapiro and Shields [SS2], subtracting ki,0/k0,0 times the first row of M0
m

from the ith row does not affect the determinant. Thus

detM0
m = k0,0 det

({
ki,j −

ki,0kj,0

k0,0

})
.

Since

ki,j −
ki,0kj,0

k0,0
= ki,j

[
1 −

ki,0kj,0

ki,jk0,0

]
,

by Lemma 10 and a result of Oppenheim[O],

det M0
m ≥ k0,0 detMm

m∏

i=1

(
1 −

|ki,0|
2

ki,ik0,0

)
.

Thus if

|w0|
2 ≤

∞∏

i=1

(
1 −

|ki,0|2

ki,ik0,0

)

then there is a ϕ ∈ MA with ||ϕ||MA
≤ 1, ϕ(z0) = w0 and ϕ(zj) = 0, for j = 1, 2, . . .. This easily

implies the Proposition.
�

We remark that the determinant conditions (34) characterize the zero sets of MDβ by Corollary

13, though it is difficult to extract more geometric information than the sufficent condition of the

Proposition. In the case of A = H2, the conditions (1) and (2) can be stated in terms of the

product C, by interchanging the role of z0 and each zn (see (14)).

Example 24. There is a sequence {zn} ⊂
�

, C < ∞, and functions ϕn ∈ MD with ||ϕn|| ≤ C

for all n, and ϕn(zm) = δn,m, yet {zn} is not an interpolating sequence for MD.

Here δn,m denotes the Dirac delta function which equals 1 if m = n and equals 0 if m 6= n.

Proof. As in [St] we construct a Cantor-like set. For m ≥ 1, Em consists of 2m intervals of length

e−2m

. Let E0 = [0, e−1] and let E1 consists of two intervals [0, e−2]∪ [1−e−2, 1]. In other words, we
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removed an open interval from the middle of E0 so that the remaining intervals have length e−2.

Form Em from Em−1 by removing an open interval from the middle of each interval in Em−1 . The

removed intervals are chosen so that each interval in Em has length e−2m

. Fix m, let r = 1− e−2m

and let zn = reiθn where θn is the center of the n-th interval in Em, for n = 1, . . . , 2m.

Then by fairly straightforward estimates we have

1 − ρ2(zn, zk) ≤ 5(1 − |zn|2)

and
∑

zn∈S(I)

(
log

1

1 − |zn|

)−1

≤

(
log

1

|I |

)−1

for all arcs I ⊂ ∂
�

. We also have that

∑

zn

(
log

1

1 − |zn|

)−1

= 1.

However, (see [St]), Cap(Em) → 0 and hence

1

log 1
Cap(Em)

→ 0.

In other words, the sequences satisfy (4) uniformly and satisfy (5) uniformly for intervals, but do

not satisfy (5) uniformly for all finite unions of intervals. By rescaling the initial interval E0, and

taking a union over a subsequence mj , we obtain a sequence {zn} which does not satisfy (5), and

hence is not interpolating, yet

(35)
∑

zn∈S(I)

(
log

1

1 − |zn|

)−1

≤ 2

(
log

1

|I |

)−1

To prove the example, it suffices by Proposition 23 to show

(36) sup
m

∑

i

| log 1
1−zizm

|2

log 1
1−|zi|2

≤ C log
1

1 − |zm|2
.

Let Im be the arc on ∂
�

with center zm/|zm| and length 2(1− |zm|). Then for zi ∈ S(Im) we have

| log
1

1 − zizm
| ≤ C log

1

1 − |zm|2
,

for some universal constant C < ∞, and hence by (35)

∑

zi∈S(Im)

| log 1
1−zizm

|2

log 1
1−|zi|2

log 1
1−|zm|2

≤ C log
1

1 − |zm|2

∑

zi∈S(Im)

1

log 1
1−|zi |2

≤ 2C.
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Let Ik
m be the arc with center zm/|zm| and length 2(1 − |zm|)1/2k

, for k = 1, 2, . . .. Then for

zi ∈ S(Ik
m) \ S(Ik−1

m ) we have

∣∣∣∣log
1

1 − zizm

∣∣∣∣ ≤
C

2k
log

1

1 − |zm|2
,

and hence by (35)

∞∑

k=1

∑

zi∈S(Ik
m)\S(Ik−1

m )

| log 1
1−zizm

|2

log 1
1−|zi|2

log 1
1−|zm|2

≤
∑

k

C

2k
= 2C

proving (36) and completing the proof of the example.
�
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