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~ / w i l l  denote the algebra o f  measures defined on the real line and with compact  

support ,  rig, will denote the par t  o f  , #  consisting o f  measures having their support  
contained in an interval o f  length a. The main  problem that  we shall consider here 
can be formulated  as follows: " h o w  fast"  can the Fourier  t ransform /~(x) o f  a 

measure p~M{, t t ~ 0 ,  tend to zero as x tends to _+_~ through real values? A well 
known result is that  if we define I(/~) by 

dx 
I(p)  = f + ~  log I~(x)] + x 2 '  

then for  all pEdg, # ~ 0  we have 

(1) I ( ~ ) > - - ~ o .  

The condit ion (1) describes completely how fast the Fourier  t ransform of  a measure 

having its support  in the hal f  line can vanish at ~ .  (This is a classical result; a p r o o f  

can be found  for  instance in Paley--Wiener) .  However,  it is obvious that  more  
than the condit ion (1) is needed to give a complete description in the case o f  
measures with compact  support .  We now define the not ion o f  a multiplier. Let  

S(x) be a given cont inuous funct ion on the real line. We shall c a l l a  measure tt ~ / ,  

a multiplier o f  type ~ for S, provided that  

~(x)S(x)  is bounded  for x real. 

* The results which are presented here come from a joint work with A. Beurling and were 
exposed in this form at the Stanford conference in 1961. A more concise proof of the Main The- 
orem was published in Acta Math. 1962 (107), p. 291--309. This paper will be denoted [A. M.]. 
It is also referred to [A. M.] for a bibliography. 
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We obtain using (1) an obvious necessary condition for the existence of a multiplier, 
namely 

dx f log + ]S(x) I 1 ~ - .  < r 

or supposing, as we can do without any loss of generality, 1S(x)[>l,  

(2) I(S) < ~, (this integral being absolutely convergent). 

Conversely we can state 

Theorem 1. Suppose that log IS(x)l is uniformly continuous, and that (2) is 
satisfied then S has multipliers of arbitrarly small type. 

Theorem 2. Suppose that S is the restriction to the real axis of an entire function 
of exponential type and that (2) is satisfied. Then S has multipliers of arbitrary 
small type. 

The theorems 1 and 2 can be derived, as it is shown in [A. M.], from a more 
general statement given later in the Main Theorem 5. The Theorem 3 does not 
appear in [A. M]. and gives a link between potential theory and representation 
of  even entire functions of exponential type which can be of interest for some 
other problems. The solution of the multiplier problem is based on the same extre- 
real problem in potential theory as in [A. M.]. We state here this problem in several 
equivalent forms which show that it is equivalent (cf. Theorem 4) to the multiplier 
problem. We indicate also in the last remark an iterative scheme which converges 
to the solution of  the extremal problem. 

I. Reduction to a potential problem in one dimension 

We shall denote by G the function 

G(u) = log l + u  
i I-l-L--U- , u > 0 .  

G is the restriction to the positive real axis R* of the Green function for the half 
plane Re z>0 .  I f  q~ is a measure with support in R* we shall denote by U * its 
potential defined by 

U ~ =  G.~o 

where . denotes the convolution on the multiplicative group R*, that is 
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Now we can state the following representation formula. 

Theorem 3. Let f be an even entire function of exponential type a such that 

I ( f )  < r (this integral being absolutely convergent); 

then there exists a measure q) such that 

log If(x)l =-xU~ ' (x )  x > 0; 
furthermore q) satisfies 

(4) For all e > 0  the support o f  the negative part o f  &o + (a + ~) dt is compact 
t 

(5) lira f R  do 
R ~  ~ J 0  

exists and is finite. 

Conversely, let q)l be a measure satisfying (4) and (5); then for every ~l >0, it 
is possible to find a positive measure Q such that 

(6) h(z) = f o l o g  I1--z~t-~l do(t) 

will satisfy 
h(z) < rc(a+q)[z]+O(1) 

(7) h (x) = -- xU ~'1 (x) + 0 (log x), for x real large enough. 

Remark. It is possible to go from the function h given by a positive continuous 
measure 0 to an entire function of exponential type. We shall call a function h of 
the kind given by (6) and satisfying log IS(x)l+h(x)<O a multiplier in the wide 
sense. (cf. [A.M.] p. 295--297). 

Proof of  Theorem 3. Let us first suppose that all the zeros of f are real; let 
n( t )=numbers  of zeros of f~(0,  t). Then 

log If(x)[ = fo log [1 --x2t-21 dn(t) 

or by making an integration by part 

or by defining the measure ~p by 

f ~ d~o - n(R) 
R ' 

we get by another integration by part 

log [f(x)[ = - - x ~  G ( t )  dq~(t ) = - xU~' (x). 
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Now the fact that  I ( f ) < ~  implies (cf., Boas, Entire Functions) that lira n(R) 
R 

exists and is equal to the type of  f .  We have 

_ dn(t) n(t) dt > _ ( a + ~ ) d t  
dq~(t) 

t t t t 

if  t is sufficiently large, and this proves (4). 
Let us now consider the case where the zeros of  f are not real. We shall 

reduce it in an obvious way to the case where f has only real zeros if we prove 
the following lemma. 

Lemma 1. Let f be an even entire function of exponential type such that 

l ( f )  < ~; 

then there exists a measure d~t, positive, with support on R*, such that 

log If(x)l = f o l o g  II-x=t-=l dl~(t), for x~R*. 

Furthermore, denoting by N(r) the numbers of zeros of  f i n  Iz[<R we have 

(8) N(R) = 2 f"o d (t) + o (R). 

Proof. Let 
Wo(x ) = log 11-x2e-Z~~ 1, 

Let A the sequence of  zeros of  f contained in the angle 

- -7C 7~ 

2 < arg z -<_ 

and let 

0, =a rgument  of  2, 

51,1=Dirac Mass put  at the point ]21. 

With these notations the Weierstrass factorization of f can be written, , 
denoting always the convolution on the multiplicative group of positive reals, 

in the following form: 

log l/(x)l = Zzca(mo~*alal)(x). 

Now we shall use a factorization form of  the balayage 

W0 = W0*Ko 



On the multiplier theorem for Fourier transforms of measures with compact support 73 

where 

2 x ( x 2 + l )  IsinOI 
Ko(x) = - -  

x 4 -  2x 2 cos 20 + 1 ' 

factorization which can be proved by looking at the Mellin transform of both members.  
Then we will get 

log If(x)l  = W o * Z ~ e a K o ~ * 6  N 

the interversion of integration used to obtain this formula being justified by the 
fact that  I ( f ) < o o  implies 

(9) 
which with the fact 

Z IO~l I~1 -~ < 

1 
I~o(x) = O(Ox) o < x < -y  

implies the absolute convergence of  

Z Ko~*61~l. 

Let d# be the measure equal to the sum of  this series, d/~ is positive. Finally (8) 
follows f rom (9), as an elementary computation shows. 

Now with Lemma 1 the first par t  o f  the Theorem 3 is proved in the case of  
complex zeros as in the case of  real zeros. 

Proof o f  the constructive part o f  Theorem 3: We now have to show how, given 
a potential U ~'1, we can construct a function h, of  the form given in (6), such that 
(7) holds. Denote by 

R 
(R) = ,,u ~ d q ) l '  fl =- l i m  q~ (R) tPl 

and let co be the measure defined by its differential do~: 

d~o - d (~ [~o~ (x)  - / ~  + a +, f l ) .  
We then have 

hence 

f :  log [1 " x2t '~ I d~(t)  = -xU~' l (x) .  

Furthermore,  for x sufficiently large, x>M,.o~ is a positive measure. Let O=positive 
part  of  co. Then 

f :  log [1 -- x 2 t -  21 [dQ (t) -- do) (t)] = f ?  log i l - x 2 t -  2[ [d Q (t) - do9 (t)], 
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and this last integral is 0 (log x) for x large, which proves (7) as 

I i "1 flog 1 ~ log 1+ 7 do(t) where r =  ]z I and 

~ r f  l r21 ( t )  Q(t) dt where Q(v)= 2v log 1+-~- d e ( t ) = f Q  7 t r~(l+v2)" 

When r - ~ o  the last integral is majorized by the lim sup of  t-xo(t). 

H. Solution of an extremal problem 

We shall reduce the multiplier problem to a problem on the potentials U ~'. Let 

tT(x) -- log IS(x)l 
Ixl 

(We can suppose without loss of generality that tr >0,  that ~(x)=  0 (1) near zero, 
and that o-(x) is even - -  if not, we shall introduce S l (x)=  S(x)S( -x) ) .  Now a 
being a positive number given, Jet us consider the convex set d = d ( ~ ,  a) of  
measures tp defined by 

(10) d ( e , a ) =  q o l U ~ c r  and dq~>--a . 

Now according to Theorem 3 we have: S has multipliers in the wide sense of type 
arbitrarily small if  and only if  for every b>O there exists q~d(~r, b) such that 

(11) J im  f R  dcp 

exists and is finite. 

We can delete the factor c log ~ appearing in (7) multiplying by the entire 
sin ez 

function - -  where P is a polynomial of  degree >c.  P(z) 
The next step consists in replacing the condition (11) by a condition on U ~. 

As a ~ O  we have, for all tp~r  a), 

U ~ O .  

Let 

(12) l(r = f o  U~ (x) dx.  
X 
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Then I((0) is a number  finite or  infinite well defined. We have 

Lemma 2. The condition (11) holds i f  and only i f  

Proof. We have 
l(rp) < oo. 

I f  cp (t) tends to a finite limit when t ~  ~o it will be the same for  the first integral 
as R-+ oo. 

To prove the converse we shall proceed as follows. Let ~ denote a given number  
~ > 1 ,  and denote by h~ a four  times differentiable function such that  

h ~ ( t ) = l ,  for  t : > ~  

h~(t)=O for  t < l .  

Then let k~ be the bounded  funct ion defined by the convolut ion equat ion 

U'% = h~ where de% = k~(t) dt - - .  

t 

We have on the Mellin t ransforms k~( s )=(~s )co tg (~s )h~( s ) , - - l<Res<0 .  
Then 

2 
k ~ ( t ) ~ - -  when t ~ o o .  

7~ 

Hence 

lim f h.(~}&o(t) 

This is t rue for  all a > 1. Fur thermore ,  

dq~ > b dt 
t 

These two facts imply that  (11) is satisfied and  the 1emma is proved. 
N o w  we can state our  extremal problem:  

Minimize the integral l(q~) when q~E~(a, b). 

Let us denote by ab the funct ion defined by 

(13) ab(x) = infU~(x)  for  all q ~ M ( a ,  b). 

N o w  using the theorem o f  the infimum envelope o f  a family o f  potentials, we see 
that  

(14) O'b = U% 

2 = U~( t ) -~ .  
- - T f ~  

I0" " " '  w (x) 7 = f o  G ~0 (t)-7-. 
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where 0 b is a measure satisfying 

dt 
dOb >= -- b ~ . 

t 

Hence 0b~r b) and as we obviously have 

l(0b) <= l(~o) for all ~0 E d (o', b) 

0b will give us the solution of  our extremal problem. We then have 

Theorem 4. S has multipliers in the wide sense o f  arbitrarily small type i f  and 

only i f  for all b > 0  

(15) f+= )dx gb  ( X  -~ co 
1 X 

(where a b is defined by (10) and (13) ) .  

Now the problem is to evaluate (15). We shall do that using the properties 
of the extremal measure 0 b. Let us denote by II Ih the energy norm on the measures 
defined by 

1 

It*It2 = ( f  v* d,)Y 
I f  a can be written as a potential 

O" ~ U e,  

we shall denote by ~(o-) the Dirichlet integral of  o- defined by 

(16) ,.~(a) = [lollS- 

This integral coincides with the integral defined in [A. M.], formula 3.2. We shall 
denote by (u[v)u the scalar product  associated to the Dirichlet integral. 

Let us define 

dx [ + ~  du ~ 
(17) fo Ta(x)12x+ -=-Ycfs la(xe")-a(x)[2dXx 
Then looking at the Mellin transform of  G it is easy to show that ~ (a )  and ~1 (a) 
define equivalent norms. (cf. A .M.p .  303) 

We can now state our main theorem. 

Main Theorem 5. Suppose that a has a finite Dirichlet integral and that (2) 
holds; then S has multipliers in the wide sense o f  arbitrary small type. 

Proof. We shall study an extremal problem which has as extremal function 
the function a b introduced in Theorem 3. We will not  use this fact in the proof, 
we mention it only to explain the success of  the method. The proof  of  this fact 
will be found in Remark 1 at the end of  this paper. 
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Recall that  a function f ,  such that  N ( f ) < o o  is called a pure potential if 
there exists a positive measure co such that  

f =  U ~. 

Then the following is a well known and elementary fact f is a pure potential i f  and 
only i f  

( f l g ) ~ > 0  for all g > 0 .  

We have the following use of  this characterization. 

Lemma 3. Let f be a given function such that 

~ ( f )  < co. 

Let BI= { g l ~ ( g ) < o o  and g>=f almost everywhere for the Lebesgue measure}. 
Denote by f*  the projection of the origin on the closed convex set B I. Then 
f*  is a pure potential: f * =  U '~, 
f * = f  almost everywhere for the measure co. 

For every pure potential h we have 

Proof. I f  g > 0  we have 
~( f* - -h )  <- ~ ( f - h ) .  

f*+tgEB I for all t > 0. 
Hence 

~( f*+ tg )  >= ~( f* )  t > 0 
which implies 

(f*Jg)~ > 0 for all g > 0; 

hence f *  has to be a pure potent ia l  
Now if t > - I  we have 

(1 +t) f*  >- (1 + t ) f .  
Hence 

f*+t( f*-- f )~Bs,  for t > - - l ,  
which implies as before 

( f * l f * - f ) e  = 0 
o r  

f ( f * - f )  aco = o. 

As co>O, f *>f ,  this implies f * = f  a.e. for the measure co. Finally 

~ ( f * - h ) - ~ ( f - h )  = ~( f* ) -~ ( , f ) - t - (h[ f - f* )e .  
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Now i f  h is a pure potential the last integral is negative as f - f * < 0 .  From the 
definition o f f *  we have 

~ ( f * )  <= ~ ( f )  
and this proves the lemma. 

Lemma 4. Let a be a given function such that 

~ (~) < 0% 

and let ~J be an absolutely continuous positive measure given, such that the restr&tion 
of  ~J to every compact set K is o f  finite energy. 

Then there exists a measure O, such that 
co=O+~b is a positive measure; 
U~ almost everywhere for the Lebesgue measure, 
U ~ = a co-almost everywhere and 

f (u  ~  aO < oo. 

Proof. Let KN be an increasing sequence of  compact sets, to KN being the positive 
real line. Let ~k N be the restriction of  ~/, to K~ and let us apply the lemma 3 to the 
function 

fN = rr+U*~,; 

denote by f ~  the projection of  the origin to the convex set Bs, ,. Then 

fTg=U~162 con > 0. 
Let 

ON = coN--$N. 
We have by Lemma 3 

(18) IIONII~ = ~(f~r < ~(a ) ,  

U~ >- tr a.e. for the Lebesgue measure 

f ( v ~  d(O~+ON) = O. 

Let us now select a sequence 02v J which converges weakly to a measure 0. We 
will still have 

U~ a.e. 
Also 

f (u~ ao,, = - f  (voN_,~) a~,,,. 

Denote by hN the characteristic function of  KN; this equality gives us using (18) 

f ( u ~  < 2~(~) .  

As we integrate positive functions this means that 
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Proof o f  Theorem 5. Let b be a positive number given; denote by ~ the measure 

d~9 = b dx - - .  

x 

and apply Lemma 4 to (a, ~b). Then we construct in this way a measure 0 such that 

We have 

f UO d__xx 
x 

dO > : - b  dx . 
x 

" X "J X 

By (2) the last integral of  the right hand side is convergent. Using the lemma 4 
we get that the first integral is convergent and so 

f u o dx 
x 

To finish we have only to remark that the fact that d O > - b  d x  implies that U ~ 
x 

is lower semi-continuous. With the hypothesis that S(x) is continuous and [S(x) l> 1, 
we get that 

U ~  - -  tr 

is a lower semi continuous function, positive almost everywhere, hence everywhere 
positive and this proves the theorem. 

Remark 1. We shall prove 
r b : U 0 

Obviously OE,~r b) and therefore ab <- U ~ We shall denote by t.7~ the extension 
of  U ~ at the half plane Re z > 0 :  

( z ) = f + ~ l o g  z+t[dO(t) ,  R e z > O  0o 
z - - t  

dt 
Let K be the support of  t n = 0 + b  -" , and denote by O the complement of  

t 
K i n  R e z > 0 .  Then on K 

~r < UOb < U ~ 

Therefore 0 ~176 is a superharmonic function on O, which vanishes on 00,  which 
implies a b_-> U ~ 
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Remark 2. The class d (a, I) is defined by two inequalities. We have a partition 
of  R + in (K, KO such that, for the extremal function ab, on each part, one of these 
inequalities become an equality. 

[ U% -- a on K 

(19) [dOb = - b  dtt on K c 

Conversely, a measure 0 E d ( a ,  b) satisfying such equalities on a partition 
/~,/~c of R + is the extremal measure 0 b (cf. Remark 1). Therefore (19) characterizes 
the extremal measure. 

This type of equalities (19) is now in frequent use in the theory of variational 
inequalities. 

When a is the potential of a measure p it is possible to describe a nonlinear 
algorithm B which by iteration, gives the extremal measure 0 b. 

Denote by g -  the negative part of a measure Z (X=g + - g - ) .  Introduce 

Let HI be the support of 0 and denote by (0)* the swept measure (mesure balay6e) 
of  0 on //1. 

Define 
dt , 

el  = B ( e )  = 1 , 1 e - l , q b - 7 - - ( 5 )  . 

where K1 is the complement of/-/1 in R*, 1H1, l r l  being the characteristic functions 
of  H I ,  KI .  

Then 
Uq~(x) = Uq(x), xEH 1 

QI+ b'-~- 1 ~ = 0  

gQ,(x) >= GO(x), x~R § 
Then 

f uq~(x)dQl(X) = f •  de - f uol(x)b dx 
"~ K 1  - - X 

We remark that 
dQ~<de  on //1, 

U ~ ~ U Q > O. 

Therefore 

(20) ~(e~) ~ ~(e).  
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Define 

~ = ~(~1) . . . .  , 4 .  = ~ ( ~ . - 0 .  

Then {~(Q,)} is a decreasing sequence. Therefore we can find 2 with 

2 0 )  --< ~ ( ~ )  

converges weakly to 2. such that  a subsequence Onj 
We remark that 

Therefore we have 

On the other hand, 

H .  c n . _ l .  

d2 = - b d t  
t 

U a = lim Ue"s implies 

U~(x)  = Ur  on n H, .  

Then 2 satisfies the system (19). Furthermore B (2) = 2 implies 2 E ~r (tr, b). Therefore 
2 is the extremal measure 0 b . I t  is clear that this iterative scheme gives an independent 
construction of  the multiplier in the case where tr is the potential of  a measure. 
This last restriction can be overcome by regularization and in fact we can prove 
the main theorem 5 completely by this approach. 

The finiteness of  the Dirichlet norm of a appears in this approach only as 
a technical tool which by (20) insures the convergence of  the sequence of  iterates 

B~(Q), and the estimate of  f u~(x)dx. 
x 

It  is possible that the main Theorem is still valid with Ll-capacity-type of  
condition on a (instead of  the L2-capacity-type of  condition consisting of  the 
finiteness of  the Dirichlet norm). Then a possible start to prove that  could be this 
iterative construction. 
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