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Introduction

This paper touches upon several traditional topics of 1D linear complex analysis in-
cluding distribution of zeros of entire functions, completeness problem for complex
exponentials and for other families of special functions, some problems of spectral
theory of selfadjoint differential operators. Their common feature is the close rela-
tion to the theory of complex Fourier transform of compactly supported measures
or, more generally, Fourier-Weyl-Titchmarsh transforms associated with selfadjoint
differential operators with compact resolvent.

The last part of the title is a reference to the monograph [19], which contains a
large collection of results that could be described by the (informal) statement: ”it
is impossible for a non-zero function and its Fourier transform to be simultaneously
very small.” For example, if a function is supported on a small interval, then the
set of zeros of its Fourier transform has to be sparse. Another example: a small
amount of information about the potential of a Schrödinger operator requires a
large amount of information about the spectral measure to determine the operator
uniquely.

Our goal is to present a unified approach to certain problems of this type. The
method is based on the reduction (complete or partial) to the injectivity problem
for Toeplitz operators, which makes it possible to use the full strength of the theory
of Hardy-Nevanlinna classes and Hilbert transform rather than rely on the stan-
dard techniques of the theory of entire function (Jensen type formulae, canonical
products, Phragmen-Lindelöf principle). We have been able to reinterpret various
classical results (often with shorter proofs and stronger conclusions) in a way that
allows further generalizations. We explain the reason for such generalizations (and
their nature) below. We begin by briefly describing the background.

0.1. Complex exponentials, Paley-Wiener spaces, and Cartwright func-
tions. If a > 0 and Λ ⊂ C, then by the very definition of the classical Fourier
transform,

f(t) 7→ f̂(z) =

∫
eiztf(t)dt, (0.1)
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the family of exponential functions EΛ =
{
eiλt : λ ∈ Λ

}
is not complete in L2(−a, a)

if and only if there is a non-trivial function F from the Paley-Wiener space

PWa = {f̂ : f ∈ L2(−a, a)},

such that F = 0 on Λ. According to Paley-Wiener’s theorem, see [33], PWa can be
characterized as the space of entire functions which have exponential type at most
a and are square summable on the real line R.

The Cartwright class Carta, a ≥ 0, consists of entire functions F of exponential
type at most a satisfying a weaker integrability condition on R:

log+ |F | ∈ L1(R,Π), dΠ(t) :=
dt

1 + t2
.

Cartwright functions are considered in detail in the monographs [29], [6], [28],
[12], [25], [19]. The following Krein’s theorem [26] is important for the purpose
of this discussion: an entire function is Cartwright if and only if it belongs to
the Nevanlinna class in the lower and in the upper halfplanes. In a sense, Paley-
Wiener spaces are to Cartwright spaces as the Hardy space H2 is to the Smirnov-
Nevanlinna class N+. The precise meaning of this analogy, which is only true up
to an arbitrarily small gap in the exponential type, is a part of the deep Beurling-
Malliavin theory [4]–[5].

The growth limitations (exponential type and integrability conditions on R) on
Paley-Wiener and Cartwright functions carry with them severe limitations on the
distribution of zeros. This is a central theme of the classical theory of entire func-
tions, and numerous results have been obtained in the study of the relation between
the growth and zeros. Let us mention some principle facts. For a set Λ we denote
by N(R) the number of points λ ∈ Λ satisfying |λ| < R, and by N±(R) the number
of points λ, |λ| < R, such that <λ > 0 and <λ < 0 respectively.

Density and symmetry of zeros. If F is a non-trivial Cartwright function and Λ is
the set of all zeros, then the limits

lim
R→∞

N±(R)

R

exist, are finite and equal. Moreover, there exists a finite limit

v.p.
∑ 1

λ
≡ lim
R→∞

∑
|λ|<R

1

λ
.

See, e.g., [28], [25].

Levinson’s completeness theorem. If F is a non-trivial function in PWa and F = 0
on Λ (so EΛ is not complete in L2[−a, a]), then

lim
R→∞

[∫ R

1

N(t)

t
dt− 2a

π
R+

1

2
logR

]
= −∞.

Some other sufficient conditions for completeness are known, as well as some nec-
essary conditions, see [38], [41]. On the other hand, finding an effective general
metric criterion does not seem to be realistically possible.
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Beurling-Malliavin theory. The most interesting and deep result in the completeness
problem is the metric characterization of the ”radius of completeness”,

R(Λ) = sup{a : EΛ complete in L2(−a, a)},
obtained in [4]-[5]. Beurling and Malliavin described R(Λ) as a certain ”density”
dBM(Λ), which is defined in a non-trivial but completely computable way. We recall
the definition of dBM(Λ) and discuss the Beurling-Malliavin theory in the last part
of the paper.

Let us now explain how the completeness problem can be restated in terms of
Toeplitz kernels.

0.2. Model spaces and Toeplitz operators. By the Paley-Wiener theorem,
the Fourier transform (0.1) identifies L2(0,∞) with the Hardy space H2 in the
upper halfplane C+, and therefore it identifies L2(±a,∞) with S±aH2. Here and
throughout the paper, S denotes the singular inner function

S(z) = eiz.

It follows that the Paley-Wiener spaces have the following representation:

PWa = S−a
[
H2 	 S2aH2

]
.

The subspace H2 	 S2aH2 is the so called model space of the inner function S2a.
More generally, one defines model spaces

KΘ ≡ K[Θ] = H2 	ΘH2

for all inner functions Θ in C+; these spaces play an important role in the modern
function theory and also in the spectral theory, see [34], [27]. Strictly speaking,
the elements of KΘ are functions in C+ but if Θ is a meromorphic inner function,
then every element has a meromorphic continuation to the whole complex plane.
In particular, the completeness problem for exponentials is exactly the problem of
describing the uniqueness sets of the model spaces K[S2a].

If U ∈ L∞(R), then the Toeplitz operator with symbol U is the map

TU : H2 → H2, F 7→ P+(UF ),

where P+ is the orthogonal projection in L2(R) onto H2. A one line argument
shows that Λ ⊂ C+ is a uniqueness set of KΘ if and only if the kernel of the
Toeplitz operator TU is trivial, where

U = Θ̄BΛ, BΛ Blaschke product.

(There is a similar statement for general sets Λ ⊂ C, see Section 3.1.) The injectivity
problem – to characterize symbols U such that ker TU = 0 – is of interest in its own
right as part of the spectral theory of Toeplitz operators, see [8], [35]. Compared
with some other aspects of the theory such as invertibility problem, the injectivity
problem has attracted relatively little attention. Let us mention the important
paper [23] where the idea to use (invertibility) properties of Toeplitz operators in
the study of bases of exponentials was introduced, see also [3].

We can now explain our goal more clearly. We would like to see if the classical
results mentioned above could be extended to Toeplitz operators with more general
symbols. More precisely, we’ll be considering real-analytic symbols U = eiγ , γ ∈
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Cω(R), so that infinity is the only ”singularity” of the symbol. A special case
(which is in fact just as general, see [9]) is the case of symbols of the form

U = Θ̄J,

where Θ and J are meromorphic inner functions. We will show now that the
injectivity problem for operators with such symbols appears as naturally as in the
special case Θ = S2a.

0.3. Spectral theory. Consider the Schrödinger equation

− ü+ qu = λu (0.2)

on some interval (a, b) and assume that the potential q(t) is locally integrable and
a is a regular point, i.e. a if finite and q is L1 at a. Let us fix some selfadjoint
boundary condition at b and consider the Weyl m-function

m(λ) =
u̇λ(a)

uλ(a)
, λ 6∈ R,

where uλ(t) is any non-trivial solution of (0.2) satisfying the boundary condition.
We will deal only with the compact resolvent case, which is equivalent to saying
that m extends to a meromorphic function. Then we can define the meromorphic
inner function

Θ =
m− i
m+ i

,

which we call the Weyl inner function associated with the potential and the fixed
boundary condition at b. The transformation

f(t) 7→ F (λ) =

∫ b

a

f(t)
uλ(t)

u̇λ(a) + iuλ(a)
dt (0.3)

identifies L2(a, b) with the model space KΘ in the same way as the classical Fourier
transform (times Sa) identifies L2(−a, a) with K[S2a]. This allows us to interprete
the completeness problem for families of solutions {uλ : λ ∈ Λ} as a problem
of uniqueness sets in the model space of Θ. Completeness problems of this type,
particularly problems involving families of special functions, are well-known in the
literature, see e.g. [20]. As we explained, they are equivalent to the invertibility
problem for symbols Θ̄J , where Θ is a Weyl inner function.

Similar invertibility problems appear in connection with the uniqueness part of
the inverse spectral problem. We discuss such applications in Section 3. Here we
only mention that the results represent a rather broad generalization of such well-
known facts as Borg’s two spectra theorem [7]: two different spectra of a Schrodinger
operator with compact resolvent determine the operator uniquely, and Hochstadt-
Liberman theorem [21] that states that a regular Schrödinger operator on a finite
interval is determined by its spectrum and the potential on one half of the interval.
In the language of inner functions, the corresponding problems can be stated as
follows.

Given a meromorphic inner function Θ and one of its factors Ψ, the problem is to
decide whether this factor and the set {Θ = 1} determine Θ uniquely. The second
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problem is to describe defining sets of a given meromorphic inner function Φ. We
say that Λ ⊂ R is defining if

Φ̃ = Φ, arg Φ̃ = arg Φ on Λ ⇒ Φ̃ ≡ Φ.

0.4. Content of the paper.

Section 1. Meromorphic inner functions and spectral theory.

1.1–1.4: We recall standard facts concerning meromorphic inner functions, their
model spaces, and Weyl-Titchmarsh functions of second order selfadjoint differential
operators.

1.5: We discuss the modified Fourier transform (0.3). In the case of regular opera-
tors, this is essentially the usual Weyl-Titchmarsh transform, but the construction
is probably new in the (more interesting) singular case.

1.6–1.8: Basics of de Branges functions and associated spaces of Paley-Wiener and
Cartwright type.

Section 2. Toeplitz kernels.

2.1-2.4: We define the kernels and state some general (mostly known) facts. As an
example, we give a Toeplitz kernel interpretation of a standard asymptotic formula
for solutions of a regular Schrödinger equation.

2.5–2.6: Basic criterion for non-triviality of a Toeplitz kernel with real analytic
symbol. For instance, the kernel is non-trivial in the Smirnov-Nevanlinna class if
and only if the argument γ of the symbol has a representation γ = −α+ h̃, where
α ∈ Cω is an increasing function and h ∈ L1

Π. Though this observation is very
simple (and its versions in the non-analytic case are well known), the criterion
turns out to be quite workable, and the rest of the paper is mostly the study and
applications of this criterion.

2.7–2.8: Kolmogorov’s type criterion. This is a special case where the symbol is
H̄/H, H is an outer function, and the kernel is a priory finite dimensional. This
situation is typical when we explicitly know the de Branges functions. Another
useful example is the twin inner function theorem: if {Θ = 1} = {J = 1}, then
ker TΘ̄J = 0

2.9–2.11: General form of Levinson’s completeness theorem. We obtain a sufficient
condition for triviality of a Toeplitz kernel that improves Levinson’s theorem (and
other similar results) even in the classical situation. The key ingredient of the proof
is the Titchmarsh-Uly’anov theorem involving the so called A-integrals.

Section 3. Some applications.

3.1–3.2: Completeness and minimality problem, and uniqueness sets of the model
and de Branges spaces.

3.3–3.4: Distribution of zeros of functions in Cartwright-de Branges spaces. In
particular, we give a new proof of the density and symmetry result mentioned in
Section 0.1, which is based on our basic criterion and the Titchmarsh-Uly’anov
theorem.

3.5–3.7: Applications to the mixed data spectral problem stated in Section 0.3. For
the inner function version of the Hochstadt-Liberman problem we establish some
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necessary and some sufficient conditions in terms of Toeplitz kernels. We also give
a spectral theory interpretation of these conditions indicating stronger versions of
practically all known results in this area.

3.8–3.9: Remarks on defining sets of inner functions and regular Schrödinger oper-
ators.

Section 4. Beurling-Malliavin theory.

4.1-4.2: Multiplier theorems. First we state a multiplier theorem for Toeplitz ker-
nels in Hp-spaces. Then we discuss some consequences of the Beurling-Malliavin
multiplier theorem for Toeplitz kernels in the Smirnov-Nevanlinna class. We make
no comments on the proof of the Beurling-Malliavin multiplier theorem itself. The
presence of the Dirichlet space condition remains the most amazing feature of the
theory.

4.3–4.6: Second Beurling-Malliavin and little multiplier theorems. For symbols
U = eiγ with γ′ > −const, we present a complete proof of the metric criterion for
(non-)triviality of a Toeplitz kernel in the Smirnov-Nevanlinna class up to a gap
S±ε. The proof is of course not totally original but our version, we believe, is better
fit for generalizations.

4.7–4.9: We discuss possible generalizations of the Beurling-Malliavin theory. We
mention partial results, examples, and indicate applications in the case γ′(t) >
−const |t|a.

1. Meromorphic inner functions and spectral theory

Function Theory in the halfplane

1.1. Basic notations. C+ is the upper half plane {<z > 0}. For general references
concerning Hardy-Nevanlinna theory in C+ see [16] and [35].

We use the standard notation Hp = Hp(C+), 0 < p ≤ ∞, for the Hardy spaces, and
N+ = N+(C+) for the V. I. Smirnov (or Smirnov-Nevanlinna) class in C+. The
elements in N+ are ratios G/H, where G,H ∈ H∞ and H is an outer function.
Functions in N+ have angular boundary values (almost everywhere) on the real
line. As a general rule, we identify functions in the halfplane with their boundary
values on R. In this sense, we have

Hp = N+ ∩ Lp(R),

and
F ∈ N+ ⇒ log |F | ∈ L1

Π ≡ L1(R,Π),

where Π is the Poisson measure

dΠ(t) =
dt

1 + t2
.

If h ∈ L1
Π is a real-valued function, then its Schwarz integral is

Sh(z) =
1

πi

∫ [
1

t− z
− t

1 + t2

]
h(t)dt.

6



The real and the imaginary parts of Sh are the Poisson and the conjugate Poisson
integrals of h:

Sh = Ph+ iQh.
Outer functions are functions of the form

H = eSh, h ∈ L1
Π;

note that H ∈ N+ and H has modulus eh on R. Every function F in N+ has a
unique factorization F = IH, where H is the outer function with modulus |F | on
R and I is an inner function, i.e. I ∈ H∞ and |I| = 1 on R.

The Hilbert transform of h ∈ L1
Π is the angular limit of Qh, so the outer function

eSh is equal to eh+ih̃ on R. The Hilbert transform can also be defined as a singular
integral:

h̃(x) =
1

π
v.p.

∫ [
1

x− t
+

t

1 + t2

]
h(t)dt.

For further references, we recall some properties of the Hilbert transform. If both
h and g = h̃ are in L1

Π, then g̃ = −h+ const, i.e.

Sh̃ = −iSh+ iSh(i).

If h ∈ L1
Π, then h̃ ∈ Lo(1,∞)

Π (the weak L1 space), i.e.

Π{|h̃| > A} = o

(
1

A

)
, A→∞,

in particular h̃ ∈ LpΠ for all p < 1.

1.2. Meromorphic inner functions and Herglotz functions. A meromorphic
inner function is an inner function Θ in C+ which has a meromorphic extension
to C. Such a function can be characterized by parameters (a,Λ) in the canonical
(Riesz-Smirnov) factorization

Θ = BΛS
a, (1.1)

where a ≥ 0, and Λ is a discrete set (possibly with multiple points) in C+ satisfying
the Blaschke condition ∑ =λ

1 + |λ|2
<∞;

BΛ denotes the corresponding Blaschke product and Sa(z) = eiaz. Let us mention
an obvious but important property of meromorphic inner functions:

Θ = eiθ on R, θ is a real analytic, increasing function.

A meromorphic Herglotz function is a meromorphic functions m such that

=m > 0 in C+, m(z̄) = m(z).

One can establish a 1-to-1 correspondence between meromorphic inner and Herglotz
functions by means of the equations

m = i
1 + Θ

1−Θ
, Θ =

m− i
m+ i

. (1.2)

7



Meromorphic Herglotz functions (and therefore inner functions) can be described
by parameters (b, c, µ) in the Herglotz representation

m(z) = bz + c+ iSµ, (1.3)

where b ≥ 0, c ∈ R, and µ is a positive discrete measure on R satisfying∫
dµ(t)

1 + t2
<∞.

It is convenient to interprete the number πb as a point mass of µ at infinity. In the
case m = mΘ, see (1.2), we call this extended measure µΘ the spectral (or Herglotz)
measure of Θ. By definition, the (point) spectrum of Θ is the set

σ(Θ) = supp µΘ = {Θ = 1} or {Θ = 1} ∪ {∞},

and by residue calculus we have

µΘ(t) =
2π

|Θ′(t)|
, t ∈ σ(Θ). (1.4)

The following equivalent conditions are necessary and sufficient for µΘ(∞) 6= 0, see
e.g. [36]:

(i) Θ− 1 ∈ H2; (ii) Θ(∞) = 1, ∃Θ′(∞); (iii)
∑
=λ <∞.

In (ii), Θ(∞) and Θ′(∞) mean the angular limit and angular derivative at infinity:

Θ(∞) = lim
y→+∞

Θ(iy), Θ′(∞) = lim
y→+∞

y2Θ′(iy),

and in (iii) we also require that the singular factor is trivial.

Riesz-Smirnov and Herglotz parametrizations (1.1)-(1.3) reflect two different struc-
tures – multiplicative and convex – in the set of inner functions. These structures
are related in a non-trivial and intriguing way. For example, the middle point of
the segment [Θ1,Θ2], i.e. the inner function such that its Herglotz measure is the
average of µΘ1 and µΘ2 , is the function

Θ =
Θ1 + Θ2 − 2Θ1Θ2

2−Θ1 −Θ2
,

and we observe that

Ψ|Θ1, Ψ|Θ2 ⇒ Ψ|Θ,
where the notation Ψ|Θ for two inner functions means that Ψ is a factor of Θ, i.e.
Θ/Ψ is also an inner function.

1.3. Model spaces. The H2-model space of an inner function Θ,

KΘ ≡ K[Θ] = H2 	ΘH2 = H2 ∩ΘH̄2,

is a Hilbert space with reproducing kernel:

kΘ
λ (z) =

1

2πi

1−Θ(λ)Θ(z)

λ̄− z
, λ ∈ C+. (1.5)

If Θ is meromorphic, then all elements of KΘ are meromorphic, and one can extend
(1.5) to all λ ∈ R.
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The monograph [34] provides a comprehensive study of model spaces. One of the
important facts of the theory is the following Plancherel theorem (see Clark’s paper
[10] for the case of general inner functions): the restriction map

CΘ : f 7→ f |σ(Θ) (1.6)

is a unitary operator KΘ → L2(µΘ).

We also define the model spaces in the Smirnov class and in general Hardy spaces:

K+
Θ = {F ∈ N+ ∩ Cω(R) : ΘF̄ ∈ N+},

and

Kp
Θ = K+

Θ ∩ L
p(R).

If p ≥ 1, we can drop the requirement F ∈ Cω(R) by Morera’s theorem.

Second order differential operators

1.4. Weyl inner functions. Meromorphic inner functions appear in the theory
of 2nd order selfadjoint differential operators with compact resolvent. We will only
discuss the case of Schrödinger operators though similar theories exist for general
canonical systems. See [32] and [30] for the basics of the spectral theory.

Let q be a real locally integrable function on (a, b). We always assume that selfad-
joint operators associated with the differential operation u 7→ −ü+qu have compact
resolvent. We suppose that a is a regular point but we allow b to be infinite and/or
singular. Let us fix a selfadjoint boundary condition β at b; for example, β means
u ∈ L2 at b in the limit point case. The Weyl-Titchmarsh m-function of (q; b, β)
evaluated at a,

m(λ) = ma
b,β(λ), λ ∈ C,

is defined by the formula

m(λ) =
u̇λ(a)

uλ(a)
,

where uλ(·) is a non-trivial solution of the Schrödinger equation satisfying the
boundary condition at b. It is well-known that m is a Herglotz function, and
therefore we can define the corresponding inner function Θa

b,β by (1.2). We will call

Θa
b,β the Weyl (or Weyl-Titchmarsh) inner function of q.

Similarly, if b ∈ R is a regular point and α is a selfadjoint boundary condition at
a ∈ [−∞, b), we can consider the m-function of (q; a, α) evaluated at b,

mb
a,α(λ) = − u̇λ(b)

uλ(b)

(mind the sign!) and define the corresponding Weyl inner function Θb
a,α.

Example. The Weyl inner functions of the potential q ≡ 0 on [0, 1] with Dirichlet
and, respectively, Neumann boundary conditions at a = 0 are

ΘD(λ) =

√
λ cos

√
λ+ i sin

√
λ√

λ cos
√
λ− i sin

√
λ
, ΘN (λ) =

√
λ sin

√
λ− i cos

√
λ√

λ sin
√
λ+ i cos

√
λ
.

(1.7)
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(The m-functions are mD(λ) = −
√
λ cot

√
λ, and and mN (λ) =

√
λ tan

√
λ.) More

generally, for ν ≥ −1/2 consider the potential

q(t) =
ν2 − 1

4

t2
on (0, 1),

and let the boundary condition α at a = 0 be satisfied by the solution

uλ(t) =
√
tJν(t

√
λ)

of the Schrödinger equation. For example, if ν = −1/2 then α = (N), and if
ν = 1/2 then α = (D), and we have the limit point case if ν ≥ 1. Jν is of course
the standard notation for the Bessel function of order ν. Since

uλ(1) = Jν(
√
λ), u̇λ(1) =

1

2
Jν(
√
λ) +

√
λJ ′ν(

√
λ),

the corresponding Weyl inner function is

Θν(λ) =

√
λJ ′ν(

√
λ) + (1/2 + i)Jν(

√
λ)√

λJ ′ν(
√
λ) + (1/2− i)Jν(

√
λ)
. (1.8)

In particular, we have Θ−1/2 = ΘN and Θ1/2 = ΘD.

One can give many other similar examples involving special functions. We will
continue to discuss Bessel inner function in Sections 1.6 and 3.7. Our goal is to
illustrate certain constructions in the singular case as opposed to the regular case,
which is well presented in the literature.

1.5. Modified Fourier transform. Let Θ = Θa
b,β be the Weyl-Titchmarsh inner

function of a potential q defined in the previous section. We will construct a unitary
operator L2(a, b) → KΘ, which is a modification of the Weyl-Titchmarsh Fourier
transform. We modify the usual construction so that the case of a singular endpoint
b could be included.

For every z ∈ C we choose a non-trivial solution uz(t) of the Schrödinger equation
satisfying the boundary condition β. (For real z such a solution exists because of
the compact resolvent assumption). If z ∈ C+ ∪ R, then the solution

wz(t) =
uz(t)

u̇z(a) + iuz(a)

does not depend on the choice of uz, and wz ∈ L2(a, b). The transformW is defined
as follows:

W : f(t) 7→ F (z) =

∫ b

a

f(t)wz(t)dt, (z ∈ C+ ∪ R). (1.9)

To state the main result we introduce the dual reproducing kernel of the model
space KΘ. For λ ∈ C+ ∪ R we define

k∗λ(z) =
1

2πi

Θ(z)−Θ(λ)

z − λ
, (z ∈ C+ ∪ R), (1.10)

so we have
Θ̄kΘ

λ = k∗λ on R,
and k∗λ ∈ KΘ. Note that if λ ∈ R, then k∗λ = const kΘ

λ .
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Theorem. The modified Fourier transform W is (up to a factor
√
π) a unitary

operator L2(a, b)→ KΘ. Furthermore, we have

Wwλ = πk∗λ, Ww̄λ = πkλ (λ ∈ C+ ∪ R). (1.11)

Proof: The formulae (1.11) follow from the Lagrange identity

(z − λ)

∫ b

a

uλuz = uλ(a)u̇z(a)− u̇λ(a)uz(a).

(The Wronskian at b is zero because the two solutions satisfy the same boundary
conditions.) The rest is straightforward:

(w̄λ, w̄µ)L2 =

∫ b

a

wµw̄λ =Ww̄λ(µ) = πkλ(µ) = π(kλ, kµ)KΘ
,

etc. 2

Note that Weyl inner functions of Schrödinger operators have no point masses at
infinity, so if Θ = Θa

b,β , then

σ(Θ) = σ(q,D, β), σ(−Θ) = σ(q,N, β).

Here σ(q,D, β) means the spectrum of the Schrödinger operator with potential q,
Dirichlet boundary condition at a, and boundary condition β at b. More generally,
for α ∈ R let α denote the following selfadjoint boundary condition at a regular
endpoint a:

cos
α

2
u(a) + sin

α

2
u̇(a) = 0. (1.12)

Then

σ(e−iαΘ) = σ(q, α, β).

By definition, the spectral measure of the Schrödinger operator (q, α, β) is the
Herglotz measure of the inner function e−iαΘ.

Corollary. Let Θ = Θa
b,β. The composition of the modified Fourier transform and

the Plancherel-Clark operator (1.6),

L2(a, b)
W−→ KΘ

CΘ−→ L2(µΘ),

is a unitary operator; it provides a spectral representation of the Schrödinger oper-
ator (q,D, β).

Entire functions

1.6. de Branges functions. Following [28] we say that an entire function E is of
Hermite-Biehler class (HB) if E has no real zeros and

z ∈ C+ ⇒ |E(z̄)| < |E(z)|.
Every E ∈(HB) defines a meromorphic inner function

ΘE =
E#

E
, E#(z) := E(z̄).

Conversely, given an inner function Θ, any E ∈ (HB) satisfying Θ = ΘE is called
a de Branges function of Θ.

11



It can be shown, see [12], that every meromorphic inner function has at least one de
Branges function. In some cases one can construct de Branges functions explicitly.

Examples. (i) Let (a, b) be a finite interval and q ∈ L1(a, b). Given a selfadjoint
boundary condition (1.12) at a, let uλ(t) denote the solution of the initial value
problem

uλ(a) = − sin
α

2
, u̇λ(a) = cos

α

2
. (1.13)

for the Schrödinger equation. Then

E(λ) = −u̇λ(b) + iuλ(b) (1.14)

is a de Branges function of the Weyl inner function Θ = Θb
a,α. Indeed, we have

Θ(λ) =
−u̇λ(b)− iuλ(b)

−u̇λ(b) + iuλ(b)
,

and the functions λ 7→ uλ(b) and λ 7→ u̇λ(b) are entire because of the fixed initial
conditions; clearly, they can not be both zero at the same point λ ∈ R.

(ii) Consider now the Bessel inner functions Θν , see (1.8). Note that the above
construction does not apply in the singular case. From the theory of Bessel’s
functions we know that

Jν(z) = zνGν(z),

where Gν is an even real entire functions and Gν(0) 6= 0. We also introduce an
even real entire function

Fν(z) = zG′ν(z).

Since zJ ′ν = zν(νGν + Fν), we have

Θν(λ) =
Fν(
√
λ) + (1/2 + ν + i)Gν(

√
λ)

Fν(
√
λ) + (1/2 + ν − i)Gν(

√
λ)
.

The function

Eν(λ) := Fν(
√
λ) + (1/2 + ν − i)Gν(

√
λ)

does not vanish at λ = 0 and therefore it has no zeros on R. It follows that Eν is a
de Branges function of Θν . Similar considerations work for other special functions.

(iii) Some more elementary (but important) examples include the following. If
a > 0, then E(z) = e−iaz is a de Branges function of Θ = S2a. Polynomials with
all roots in C− are de Branges functions of finite Blaschke products.

1.7. Spaces of entire functions. We first define the Cartwright-de Branges space
B+(E) of entire functions associated with a Hermite-Biehler function E:

B+(E) =
{
F : F/E, F#/E ∈ N+(C+)

}
.

Proposition. B+(E) = EK+ [ΘE ] .
12



Proof: If G ∈ K+
Θ , then its meromorphic extention to C− is equal to H#/Θ# for

some H ∈ N+(C+). Since E = Θ#E# in C−, the function

F =

{
E(z) G(z), z ∈ C+

E#(z)H#(z), z ∈ C−

is entire, and F ∈ B+(E). The opposite direction is similar. 2

The special case E = S−a gives Cartwright spaces

Carta = B+
(
S−a

)
= S−aK+

[
S2a
]
, (a ≥ 0).

Next we define the de Branges space associated with E ∈ (HB), see [12]:

B(E) = B+(E) ∩ L2
(
|E(x)|−2dx

)
= EK [ΘE ] .

The special case E = S−a gives the Paley-Wiener spaces

PWa = B
(
S−a

)
= Carta ∩ L2(R), (a > 0).

De Branges space B(E) has a natural Hilbert space structure so that the multipli-
cation operator

E : K [ΘE ]→ B(E)

is an isometry. We denote by KE
λ , (λ ∈ C), the reproducing kernel of B(E).

Theorem 1.5 has the following corollary, which is a counterpart of the Paley-Wiener
theorem concerning the classical Fourier transform. Recall that W denotes the
modified Fourier transform (1.9).

Corollary. Let E be a de Branges function of the Weyl inner function Θa
b,β asso-

ciated with a potential q on (a, b). Then the map

F : L2(a, b)→ B(E), f 7→ E · Wf,

is a unitary operator. Furthermore, we have

Fuλ = const KE
λ̄ , λ ∈ C,

where uλ is any non-trivial solution of the Schrödinger equation satisfying the
boundary condition β.

In the regular case a, b ∈ R and q ∈ L1(a, b), the map F is precisely the Weyl-
Titchmarsh transform

f 7→
∫ b

a

f(t)uλ(t)dt,

where the solutions uλ(t) are normalized by initial conditions (1.13) and the de
Branges function is given by (1.14).

The classical Fourier transform (0.1) originates from the 1-st order selfadjoint oper-
ator u 7→ −iu′. Alternatively, it can be related to the Weyl-Titchmarsh transforms
corresponding to q ≡ 0 by a general construction which we describe below, cf. [14].

13



1.8. Square root transformation. It is well-known that if m is a Herglotz func-
tion such that

0 < m < +∞ on R−,
then m∗(λ) = λm(λ2) is again a Herglotz function. If Θ = (m − i)/(m + i), then
the inner function corresponding to m∗ is

Θ∗(z) =
(z + 1)Θ(z2) + (z − 1)

(z − 1)Θ(z2) + (z + 1)

We call Θ∗ the square root transform of Θ. Suppose now that E = A+ iB is a de
Branges function of Θ, where A and B are real entire functions, and also suppose
B(0) 6= 0. Then

E∗(z) = zA(z2) + iB(z2)

is a de Branges function of Θ∗.

Example. Let q ∈ L1[0, 1] be such that the operator L(q,D,N) ≥ 0. Consider the
function

m(λ) =
u(λ)

u̇(λ)
:=

uλ(1)

u̇λ(1)
,

where uλ is the solution of the Schrödinger equation with initial conditions uλ(0) =
0 and u̇λ(0) = 1. (In other words, m is the Herglotz function of −Θ1

0,D.) Then we
have E = u+ iu̇ and therefore

E∗(z) = zu(z2) + iu̇(z2).

In particular, if q ≡ 0, then E∗(z) = ie−iz, and we get the classical Paley-Wiener
space.

2. Toeplitz kernels

Some generalities

2.1. Definition of Toeplitz kernels. Recall that to every U ∈ L∞(R), there
corresponds the Toeplitz operator TU : H2 → H2. We need to consider only the
case of unimodular symbols

U = eiγ , γ : R→ R,

and we will concentrate on the question whether the Toeplitz kernel

N [U ] = ker TU

is trivial or non-trivial. The best known situation is when γ ∈ C(R) and there exist
finite limits γ(±∞). (This corresponds to the case of piecewise continuous symbols
in the theory on the unit circle.) If we denote

δ = γ(+∞)− γ(−∞),

then

N [U ] = 0 if δ > −π, N [U ] 6= 0 if δ < −π.
(If δ = −π, then either case is possible.)

14



Along with H2-kernels, we define Toeplitz kernels in the Smirnov class,

N+[U ] = {F ∈ N+ ∩ L1
loc(R) : Ū F̄ ∈ N+},

and in all Hardy spaces,

Np[U ] = N+[U ] ∩ Lp(R), (0 < p ≤ ∞).

These definitions are oriented to studying the case where∞ is the only ”singularity”
of the symbol. In particular, if Θ is a meromorphic inner function, then N+[Θ̄] =
K+

Θ and Np[Θ̄] = Kp
Θ.

We use the notation b for the Blaschke factor

b(z) =
i− z
i+ z

.

The argument 2 arctan(x) of b increases from −π at −∞ to +π at +∞. One can
characterize the dimension of a Toeplitz kernel by multiplying the symbol by integer
powers of b.

Lemma. For n ∈ N, dim Np[U ] = n+ 1 iff dim Np[bnU ] = 1.

Proof: If, for instance, dim Np[U ] ≥ 2, then we can find an F ∈ Np[U ] such that
F (i) = 0, and so b̄F ∈ Np[bU ] and dim Np[bU ] ≥ 1. In the opposite direction, if
G ∈ Np[bU ], then both G and bG are in Np[U ]. 2

One can also consider fractional powers of b:

bs(x) = exp{2si arctanx}, (s ∈ R).

The identity

b̄s(1− b)s = (b̄− 1)s

shows that N∞[b̄s] 6= 0 for s ≥ 0. It follows that for every U and p > 0 there is a
critical value s∗ ∈ R ∪ {±∞} such that

Np[b̄sU ] 6= 0 if s > s∗, Np[b̄sU ] = 0 if s < s∗.

One can interpret s∗ as a fractional and possibly negative ”dimension” of the kernel.
For example, ”dim”N [1] = −1/2 , but ”dim”N [Θ̄NΘD] = −1/4 for the Dirichlet
and Neumann inner functions (1.7), see Section 2.7 below.

2.2. Basic criterion. The following well-known observation is extremely simple
but quite useful. In fact, most of our further constructions are built upon this
lemma.

Lemma. Np[U ] 6= 0 iff the symbol has the following representation:

U = Φ̄
H̄

H
,

where H ∈ Hp ∩ L1
loc(R) is an outer function and Φ is an inner function.
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Proof: If UF = Ḡ, then |F | = |G| on R. Consider the inner-outer factorization:
F = FiFe and G = GiGe. We have Fe = Ge, and

U = (F̄iḠi)
F̄e
Fe
.

The converse is obvious. 2

Corollary. If γ ∈ L∞ ∩ C(R), then ∃p > 0, ”dim”Np[eiγ ] > −∞.

A more precise statement is

‖γ‖∞ <
π

p
⇒ Np[b̄2/peiγ ] 6= 0,

which follows from the Smirnov-Kolmogorov estimate

‖h‖∞ <
π

2
⇒ eh̃ ∈ L1

Π,

and from the construction of outer functions.

Of course, instead of ‖γ‖∞ < ∞ we can only require that γ be the sum of a de-
creasing and a BMO functions, and we don’t need continuity if p ≥ 1. It is also
important to realize that p can not be arbitrary in the statement of the corol-
lary. For instance, it is easy to construct γ ∈ Cω(R) such that ‖γ‖∞ = π/2 but
N [b̄neiγ ] = 0 for all n > 0.

2.3. Sufficient conditions for dimNp[u] < ∞. The following statement is a
version of Coburn’s lemma, which states that either ker TU = 0 or ker TŪ = 0.

Lemma. If 1/p+ 1/q > s, then

Nq[Ū ] ∩ L2
loc(R) 6= 0 ⇒ Np[b̄sU ] ∩ L2

loc(R) = 0.

Proof: Suppose both kernels are non-trivial:

ŪF1 = Ḡ1, b̄sUF2 = Ḡ2

for some F1, G1 ∈ Hq and F2, G2 ∈ Hp. Then

(i+ z)sF1(z)F2(z) = (i− z̄)sḠ1(z̄)Ḡ2(z̄) on R,

so we have an entire Cartwright function with at most a polynomial growth along
iR. The growth at +i∞ is

ysy−1/qy−1/p,

so the entire function is zero if 1/p+ 1/q > s. 2

Corollary. If γ is the sum of an increasing and a bounded functions, then for all
p > 0, dimNp[eiγ ] <∞.

Corollary. If U = H̄/H and H is an outer function such that

∃q > 0 ∃N, 1

H
∈ Lq

(
dt

1 + |t|N

)
,

then for all p > 0, dim Np[U ] <∞.
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2.4. Trivial factors. The following lemma is obvious.

Lemma. If V = H̄/H with H±1 ∈ H∞, then Np[UV ] 6= 0 iff Np[U ] 6= 0.

We will call such functions V trivial factors of the symbol. Examples:

(i) If B1 and B2 are finite Blaschke products of the same degree, then Np[U ] = 0
iff Np[B̄1B2U ] = 0.

(ii) If we modify a smooth symbol on a compact part of R, then this does not affect
(non-)triviality of the Toeplitz kernels. Thus the injectivity property depends only
on the behavior of a smooth symbol at infinity.

(iii) It is shown in [9] that up to a trivial factor every unimodular function is the
ratio of two inner functions.

More relevant to the subject of the paper is our next

Example: Weyl inner functions of regular operators.

Let q ∈ L1[0, 1] and let α be a non-Dirichlet selfadjoint boundary condition at a = 0.
Denote by Θ the Weyl inner function of (q, α) computed at b = 1, i.e. Θ = Θb

α,a

in the notation of Section 1.4. We want to compare Θ with the ”Neumann” inner
function ΘN , see (1.7), which corresponds to the special case q ≡ 0 and α = (N).

Claim. The ratio Θ/ΘN is a trivial factor.

In other words, in all problems involving Toeplitz kernels we are free to replace reg-
ular potentials with the trivial potential, and any non-Dirichlet boundary condition
with the Neumann condition.

Proof: We will express the ratio of the Weyl inner functions in terms of their de
Branges functions. The de Branges function of ΘN is

EN (λ) = cos
√
λ− i

√
λ sin

√
λ,

and by (1.14) the de Branges function of Θ is

E(λ) = −u̇(λ) + iu(λ), u(λ) := uλ(1), u̇(λ) := u̇λ(1),

where uλ(t) is the solution of the Schrödinger equation with boundary condition α
and initial value uλ(0) = 1. We have

Θ

ΘN
=
H̄

H
, H =

E

EN
.

Since both de Branges functions are outer in C+, all we need to check is that
|E| � |EN | on R. To this end we can use the standard asymptotic formulae for
solutions of a regular Schrödinger equation, see e.g. [30]:

|u(λ)− cos
√
λ| = O

(
1√
λ

)
, |u̇(λ) +

√
λ sin

√
λ| = O(1), (λ→ ±∞).

For instance if q ≡ 0 but α 6= (N), then

u(λ) =
cos(
√
λ+ ψ(λ))

cosψ(λ)
,

√
λ tanψ(λ) = cot

α

2
,

and the asymptotic is obvious.
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If λ→ +∞, then

|E(λ)|2, |EN (λ)|2 � [cos
√
λ+O(λ−1/2)]2 + λ[sin

√
λ+O(λ−1/2)]2 := I + II,

and we consider three cases:

if | sin
√
λ| . λ−1/2, then I � 1 and 0 ≤ II . 1, so I + II � 1;

if | cos
√
λ| . λ−1/2, then sin2

√
λ ≈ 1 and both |E|2 and |EN |2 are � λ;

if | sin
√
λ| and | cos

√
λ| are � λ−1/2, then I + II � cos2

√
λ+ λ sin2

√
λ.

The estimates for λ→ −∞ are even easier. 2

Toeplitz kernels with real analytic symbols

From now on we will be considering unimodular functions with real analytic argu-
ments, U = eiγ , γ ∈ Cω(R). In this case, all elements of the Toeplitz kernels are
also real analytic on R.

Lemma. If γ ∈ Cω(R), then N+[eiγ ] ⊂ Cω(R).

Proof: Let F ∈ N+[U ] and let G− be the analytic extension of UF to C−. Since
U 6= 0 in a neighborhood of R and F = U−1G− on R, F can be extended to a
neighborhood of R. 2

2.5. Basic criterion in N+.

Proposition. Let γ ∈ Cω(R). Then N+[eiγ ] 6= 0 iff γ has a representation

γ = −α+ h̃,

where α ∈ Cω(R) is an increasing function and h ∈ L1
Π.

Proof: We first observe that N+[u] 6= 0 iff

U = Φ̄
H̄

H
on R (2.1)

or some outer function H ∈ Cω(R) that does not vanish on R, and some meromor-
phic inner function Φ. Indeed, suppose N+[U ] 6= 0. Reasoning as in Lemma 2.2,
we see that

U = Ī
F̄

F
,

for some meromorphic inner function I and an outer function F ∈ Cω(R). The
outer function may have zeros on the real line. Suppose the zeros are simple. Take
any meromorphic inner function J such that {J = 1} = {F = 0}. Then the outer
function

H =
F

1− J
(2.2)

is zero-free on R and

U = Ī · 1− J̄
1− J

· H̄
H

= −Ī J̄ H̄
H

:= Φ̄
H̄

H
.

If F has multiple zeros, then we simply repeat this reasoning taking care of the
convergence.
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Next we restate (2.1) in terms of the arguments of the involved functions. Since H
is an outer function, it has the following representation:

H = e−(h+ih̃)/2, h ∈ L1
Π,

and since H is zero free we have h̃ ∈ Cω(R). It follows that γ = −φ+ h̃, where φ is
a continuous argument of Φ. Since φ is strictly increasing, this gives the ”only if”
part of the theorem. To prove the ”if” part, we observe that given an increasing
function α, we can find an inner function with argument φ such that

β := α− φ ∈ L∞(R),

so
γ = −α+ h̃ = −φ− β + h̃ = −φ+ h̃1, h1 := h+ β̃.

2

2.6. Basic criterion in Hp.

Proposition. Let U = eiγ with γ ∈ Cω(R). Then Np[U ] 6= 0 iff

U = Φ̄
H̄

H
,

where H is an outer function in Hp∩Cω(R), H 6= 0 on R, and Φ is a meromorphic
inner function. Alternatively, Np[U ] 6= 0 iff

γ = −φ+ h̃, h ∈ L1
Π, e−h ∈ Lp/2(R), (2.3)

where φ is the argument of some meromorphic inner function.

To prove the statement we just repeat the previous proof using the following lemma,
in which we construct the Herglotz measure of a meromorphic inner function J so
that the function H in (2.2) in the previous proof belongs to Hp.

Lemma. If 0 < p ≤ ∞ and F ∈ Hp∩Cω(R), then there is a finite positive measure
ν supported exactly on {F = 0} ∩ R such that

F · Sν ∈ Hp ∩ Cω(R), Sν(z) :=

∫
dν(t)

t− z
.

Proof: Let {bk} be all real zeros of F ; we assume for simplicity that the zeros are
simple. Choose small positive numbers εk,∑

εk < 1, (2.4)

such that the εk-neighborhoods of bk are disjoint. We have

|F (z)| ≤ Ck|z − bk|
if z is in the εk-neighborhood of bk. Take

ν =
∑

νkδbk , νk = C−1
k 2−kεk,

and observe that
|Sν(z)| ≤

∑
k

νk
|z − bk|

.

If z is outside of all neighborhoods, then

|FSν|(z) ≤ |F (z)|
∑

2−k = |F (z)|.
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If z is in the k-th neighborhood, then

|FSν|(z) ≤ |F (z)|+ |F (z)|νk
|z − bk|

≤ |F (z)|+ Ckνk ≤ |F (z)|+ 1.

We have FSν ∈ Hp by (2.4). 2

2.7. Kolmogorov-type criterion. The basic criterion is particularly useful in
the case when we can represent γ as the argument of some explicitly given outer
function, e.g., when U is the ratio of two inner functions with known de Branges
functions.

Proposition. Let U = H̄/H, and H is an outer function real analytic and zero
free on R. Suppose dimNp[U ] <∞. Then

Np[U ] 6= 0 ⇔ H ∈ Hp.

Proof: If Np[U ] 6= 0, then dimNp[bsU ] = 1 for some s ≥ 0. We have

bsU = H̄s/Hs, Hs = (1− b)−sH.

By Proposition 2.6 we have a representation

H̄s/Hs = F̄ /F

for some outer function F ∈ Hp ∩ Cω(R), F 6= 0 on R. Since the function Hs is
also outer and zero-free, it follows that H = const(1 − b)sF and so H ∈ Hp. The
converse is trivial. 2

Comments. (a) If p = 2 and 1/H ∈ H2, then the proof shows that the conclusion
is true even without the assumption H ∈ Cω(R). The corresponding statement in
the unit disc is equivalent to Kolmogorov’s minimality criterion in the theory of
stationary Gaussian processes: {zn} is minimal in L2(w) iff w−1 ∈ L1.

(b) The condition dim Np[u] < ∞ is essential and related to the concept of
”rigid functions”, see [37]. We already mentioned two sufficient conditions for
dim Np[u] <∞ in Section 2.3.

Example. This simple example is meant to illustrate the above criterion. Let ΘD

and ΘN be the Weyl inner functions (1.7) for potential q = 0 on [0,1] with Dirichlet
and Neumann boundary conditions at 0. We claim that the ”fractional dimension”
of the kernel N [Θ̄NΘD] is −1/4, see Section 2.1.

Proof: We represent the ratio ΘD/ΘN in terms of de Branges functions:

ΘD

ΘN
=
H̄

H
, H =

ED
EN

,

where

EN (λ) = cos
√
λ− i

√
λ sin

√
λ, ED(λ) =

sin
√
λ√

λ
+ i cos

√
λ,

so

U :=
H̄

H
, H =

1√
λ
· sin

√
λ+ i

√
λ cos

√
λ

cos
√
λ− i

√
λ sin

√
λ
.
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Clearly, dimN [U ] < ∞, and by Kolmogorov’s criterion we have N [b̄sU ] 6= 0 iff
F := (1− b)sH ∈ L2(R). If x > 0, then

|H(x)|2 =
1

x

sin2√x+ x cos2
√
x

cos2
√
x+ x sin2√x

.

Let us estimate |F |2 on an interval In about π2n2 where | sin
√
x| � 1. If we write

x = π2n2 + s, so

|
√
x− πn| � |s|

n
, sin2√x � s2

n2
, x sin2√x � s2,

then

|H(x)|2 � 1

x

x

1 + x sin2√x
� 1

1 + s2
,

|F (x)|2 � n−4s 1

1 + s2
,

∫
In

|F |2 � n−4s.

Thus F ∈ L2(R+) iff 4s > 1. Finally we note that

|H(x)| ∼ 1√
|x|
, x→ −∞,

and so F ∈ L2(R−) iff s > 0. 2

Similarly one can show that ” dim ”N [Θ̄DΘN ] = −5/4. One can also compute the
dimensions of kernels in other Hardy spaces. In particular, ” dim ”N∞[Θ̄NΘD] =
0 and ” dim ”N∞[Θ̄DΘN ] = −1; moreover, N∞[Θ̄NΘD] 6= 0 and N∞[b̄Θ̄DΘN ] 6= 0.

2.8. Twin inner functions. We say that two meromorphic inner functions are
twins if they have the same point spectrum (possibly including infinity). Twin
functions appear in several applications (see, e.g., Section 3.5 below), and the main
result is that the Toeplitz operator corresponding to their ratio is injective. This
fact is quite different from Levinson’s type conditions discussed later in this section.

Theorem. Let Θ and J be twin meromorphic inner functions. Then N [Θ̄J ] = 0.

Proof: We have

Θ̄J =
H̄

H
, H =

1−Θ

1− J
.

Since H±1 ∈ Cω(R), we can apply Kolmogorov’s criterion. (The kernel is finite
dimensional because the argument of Θ̄J is bounded.) We claim that H 6∈ H2.
Indeed, if Θ has no point mass at infinity, then

|H| ≥ 1

2
|1−Θ| 6∈ L2.

If both functions have a point mass at infinity, then by l’Hôpital’s rule the angular
limit

lim
∞

1−Θ

1− J
=

Θ′(∞)

J ′(∞)

exists and is non-zero (see Section 1.2), so H can not be in H2. 2

Remarks. (a) The proof shows that N [Θ̄J ] = 0 if we have {Θ = 1} = {J = 1}
and ∞ 6∈ σ(Θ). Moreover, it can be shown that

σ(Θ) ⊂ σ(J) ⇒ N [Θ̄J ] = 0.
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(b) Similar technique applies to symbols of the form u = Θ̄JH̄/H where Θ and J
are twin inner functions, and H is an outer function real-analytic and zero free on
R. If dim Np[H̄/H] <∞, then

Np[b̄sΘ̄JH̄/H] 6= 0 ⇔ (1− b)s 1−Θ

1− J
H ∈ Hp.

General form of Levinson’s completeness theorem

As we mentioned in Section 2.1, if ∃ γ(±∞), then

δ = γ(+∞)− γ(−∞) > −2π

p
⇒ Np[eiγ ] = 0, (0 < p <∞).

We extend this fact to general symbols by considering the ”mean” behavior at +∞
of the function

δ(x) = γ(x)− γ(−x).

Our result has the same form as Kolmogorov’s type condition in Section 3.7, but
this time we don’t assume a priory that the kernel is finite dimensional. The new
idea is to apply the Poisson A-integral transform to the equation (2.3) in the basic
criterion. (See Section 3.4 for another application of this idea.)

2.9. Titchmarsh and Uly’anov Theorems. Let h ∈ L1
loc(R) be a real valued

function. For each A > 0 we denote

hA =

{
h(x), |h(x)| ≤ A,
0, |h(x)| ≥ A.

The Schwarz A-integral of h is defined by the formula

S(A)h(z) = lim
A→∞

SfA(z), z ∈ C+,

provided that the limit exists for all z. Similarly, one defined the Poisson and the
conjugate Poisson A-integrals P(A)h and Q(A)h respectively so that

S(A)h = P(A)h+ iQ(A)h.

Recall that if h, h̃ ∈ L1
Π, then Sh̃ = −iSh+ iSh(i).

Theorem. If h ∈ L1
Π, then the Schwarz A-integral of h̃ exists, and we have

S(A)h̃(z) = −iSh(z) + iSh(i), z ∈ C+. (2.5)

The real part of the equation (2.5), or rather its special case

P(A)h̃(i) = 0, (2.6)

is due to Titchmarsh, see [42], and the imaginary part of (2.5),

Q(A)h̃ = −Ph+ Ph(i), (2.7)

is the Uly’anov’s theorem, see [2] for a shorter proof. Note that we use a slightly
different definition of the A-transforms but the definitions are in fact equivalent

because h̃ ∈ Lo(1,∞)
Π .
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2.10. A sufficient condition for Np[U ] = 0. For an odd function δ : R → R we
define

Lδ(y) =
2

π

∫ ∞
0

[
1

1 + t2
− 1

y2 + t2

]
tδ(t) dt, y > 0.

The integral makes sense (it might be + or - ∞) if we assume that

either

∫ ∞
δ+(t) t−3dt <∞ or

∫ ∞
δ−(t) t−3dt <∞, (2.8)

where, as usual, δ± := max{±δ, 0}. Note that if δ ∈ L1
Π, then Lδ(y) = δ̃(iy).

Theorem. Let γ ∈ Cω(R) and let δ(x) = γ(x)− γ(−x) satisfy (2.8). Then

Np[eiγ ] 6= 0 ⇒ ∃F ∈ Hp/4(C+), eLδ(y) ≤ |F (iy)|, (y > 1).

Proof: By (2.3) we have

γ = −φ+ h̃1, h1 ∈ L1
Π, e−h1 ∈ Lp/2.

Then

−γ(−x) = φ(−x) + h̃2(x), h2 ∈ L1
Π, e−h2 ∈ Lp/2.

It follows that

δ = −ψ + h̃, h ∈ L1
Π, e−h ∈ Lp/4,

where ψ is an odd increasing function. We apply the Uly’anov theorem to

h̃ = δ1 := ψ + δ.

By (2.7) we have

QAδ1 = QAh̃ = −Ph+ const,

so

eQAδ1 = const |F |, F := e−Sh ∈ Hp/4

and it remains to show that

Lδ(y) ≤ QAδ1(iy).

Since tδ1(t) ≥ tδ(t) for all t ∈ R, and since the kernel of L is positive for y > 1, we
have

πQAδ1(iy) = lim
A→∞

∫
{|δ1|<A}

[
1

1 + t2
− 1

y2 + t2

]
tδ1(t) dt

≥ lim
A→∞

∫
{|δ1|<A}

[
1

1 + t2
− 1

y2 + t2

]
tδ(t) dt

=

∫
R

[
1

1 + t2
− 1

y2 + t2

]
tδ(t) dt = πLδ(y).

2

Remark. The proof works for any γ such that

γ = −φ+ h̃, h ∈ L1
Π, e−h ∈ Lp/2.

We don’t need to assume γ ∈ Cω as long as we have such a representation.

23



2.11. Levinson-type conditions. We can use standard growth estimates of Hardy
space functions to derive more familiar looking conditions.

(a)

Np[eiγ ] 6= 0 ⇒ eLδ(y) = o
(
y−4/p

)
, y → +∞,

In other words,

lim sup
y→∞

[
Lδ(y) +

4

p
log y

]
> −∞ ⇒ Np[u] = 0. (2.9)

Example. A simple computation shows

[Lsign](y) =
2

π
log y.

It follows that N [eiγ ] = 0 if γ(x) ≥ γ(−x)− π for x ≥ x0. Indeed, we have δ ≥ −π
for large x, and therefore

Lδ(y) ≥ −π[Lsign](y) +O(1) = −2 log y +O(1).

(b)

Np[eiγ ] 6= 0 ⇒
∫ ∞

e
p
4Lδ(y)dy <∞.

For example,

Lδ(y) ≥ −4

p
log y − log log y ⇒ Np[eiγ ] = 0.

A more general statement is

Np[eiγ ] 6= 0 ⇒
∫ ∞

0

e
p
4Lδ(y)dν(y) <∞

for any Carleson measure ν in C+.

(c) For each y > 1, the quantity

Lδ(y)

[Lsign](y)
=
π

2

Lδ(y)

log y

is some sort of ”averaging” of δ near +∞. The meaning of (2.9) is that the ”mean”
value of δ in infinity has to be ”less” than −2π/p for the Toeplitz kernel Np[eiγ ] to
be non-trivial. Here is a different way to express the same idea.

Corollary. Suppose δ(x) satisfies the integrability conditions (2.8). Then Np[eiγ ] =
0 if ∫ x

0

δ(t)

t
dt ≥ −2π

p
log x+O(1), x→ +∞.

Proof: Integration by parts shows: if∫ x

0

a(t)

t
dt ≤ log x+O(1), x→∞,

then ∫ ∞
0

y2

y2 + t2
· a(t)dt

t
≤ log y +O(1), y →∞.

(If the latter integral is not converging, then we understand it as lim sup
∫ x

0
.) 2
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3. Some applications

Completeness and minimality problem

3.1. Restatement in terms of uniqueness sets and Toeplitz kernels. We
will study the following situation. Consider the Schrödinger equation (0.2) on an
interval (a, b) with potential q and some fixed selfadjoint boundary condition β at
b. We assume that the endpoint a is regular. For each λ ∈ C we choose a non-
trivial solution uλ satisfying the boundary condition; this solution is unique up to
a constant. If Λ ⊂ C, we say that the family {uλ}λ∈Λ is complete if

span{uλ : λ ∈ Λ} = L2(a, b),

and is minimal if

∀λ0 ∈ Λ, uλ0 6∈ span{uλ : λ ∈ Λ \ λ0}.

We will use the notation of Sections 1.4–1.6: Θ = Θa
b,β is the Weyl inner function,

and E is a de Branges function of Θ. For λ ∈ C+ ∪R we have reproducing kernels
kλ and dual reproducing kernels k∗λ of KΘ, see (1.10). For λ ∈ C, let KE

λ denote
the reproducing kernel in B(E). Finally, we represent

Λ = Λ+ ∪ Λ−, Λ+ := Λ ∩ (C+ ∪ R), Λ− := Λ ∩C−.

Lemma. The following assertions are equivalent:

(i) the family {uλ}λ∈Λ is complete (minimal) in L2(a, b);

(ii) the family {KE
λ̄
}λ∈Λ is complete (minimal) in B(E);

(iii) the family {kλ̄}λ∈Λ− ∪ {k∗λ}λ∈Λ+
is complete (minimal) in KΘ.

Proof: This follows from Theorem 1.5 and and Corollary 1.7. 2

We say that Λ ⊂ C is a uniqueness set of B(E) if there is no non-trivial function
F ∈ B(E) such that F = 0 on Λ. The equivalence (i)⇔(ii) in the above lemma
means that {uλ}λ∈Λ is complete if and only if Λ is a uniqueness set of B(E), and
that {uλ}λ∈Λ is minimal if and only if Λ\λ0 is not a uniqueness set for any λ0 ∈ Λ.

We define uniqueness sets Λ of KΘ in a similar way; in this case Λ ⊂ C+ ∪R. The
definition obviously extends to divisors, i.e. sets of points with assigned multiplic-
ities.

Lemma. Let Λ ⊂ C+ ∪ R and let M ⊂ C+. Then the family

{kλ}λ∈Λ ∪ {k∗µ}µ∈M

is complete in KΘ if and only if Λ ∪M is a uniqueness divisor.
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Proof: Suppose the family is not complete, so there is a non-trivial F ∈ KΘ orthog-
onal to all kλ and k∗µ. Let H ∈ KΘ be defined by the relation

Θ̄F = H̄ on R.

Then we have F = 0 on Λ and H = 0 on M . (Recall that Θ̄kµ = k∗µ.) From the
latter fact we have a representation

H = BMG, G ∈ H2,

where BM is the Blaschke product, and therefore

Θ̄(BMF ) = Ḡ.

The function BMF is in KΘ and is zero on Λ∪M . The opposite direction is similar.
2

The equivalence (i)⇔ (iii) in the first lemma now means that {uλ}λ∈Λ is complete
in L2(a, b) if and only if Λ+ ∪ Λ− is a uniqueness divisor of B(E). The characteri-
zation of minimality is similar.

It is very easy to characterize uniqueness sets (or divisors) Λ of KΘ in the terms
of Toeplitz kernels in the case Λ ⊂ C+. (The case Λ ⊂ R is discussed in the next
subsection.) A necessary and sufficient condition for uniqueness is the following:

N [Θ̄BΛ] = 0.

Indeed, f ∈ KΘ is zero on Λ if and only if g = B̄Λf ∈ N [Θ̄BΛ].

Let us summarize the above discussion.

Theorem. Let Λ = Λ+ ∪ Λ−, Λ± ⊂ C±, and let B denote the Blaschke product
corresponding to the divisor Λ+ ∪ Λ−. The family {uλ}λ∈Λ is complete in L2(a, b)
iff N [Θ̄B] = 0 and is minimal iff N [b̄Θ̄B] 6= 0. The family is complete and minimal
if and only if

dim [b̄Θ̄B] = 1.

The ”dimension” of the kernel, which may be negative, see Section 2.1, can be
interpreted as the excess/deficiency of the family.

3.2. Uniqueness sets of Kp
Θ. We will consider the case of an arbitrary p > 0. As

we explained, if Λ ⊂ C+, then

Λ is a uniqueness set of Kp
Θ ⇔ Np[Θ̄B] = 0. (3.1)

Now we concentrate on the case Λ ⊂ R.

Proposition. Let Θ be a meromorphic inner function and Λ ⊂ R. Then Λ is
a uniqueness set of Kp

Θ if and only if Np[Θ̄J ] = 0 for every meromorphic inner
function J such that {J = 1} = Λ.
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Proof: Suppose we have a non-trivial function F ∈ Kp
Θ which is zero on Λ. By

Lemma 2.6, we can find an inner function J with {J = 1} = Λ such that

G =
F

1− J
∈ Hp.

Then G ∈ Kp
Θ, and we have

Θ̄JG = Θ̄(G− F ) = Θ̄F
J

1− J
= − Θ̄F

1− J̄
∈ H̄p,

so the Toeplitz kernel is non-trivial.

Conversely, if G is a non-trivial element of Np[Θ̄J ], then F = (1− J)G ∈ Kp
Θ, and

so Λ is not a uniqueness set. Indeed, since G ∈ Np[Θ̄J ], we have JG ∈ Kp
Θ, and

therefore G ∈ Kp
Θ and G− JG ∈ Kp

Θ. 2

Compared to the case Λ ⊂ C+, the condition in the last lemma seems to be less
useful since it involves an infinite set of inner functions J . Nevertheless, we can
overcome this difficulty and restate the criterion in both cases Λ ⊂ C+ and Λ ⊂ R
in a unified way.

If Λ ⊂ C+, then combining (3.1) and (2.3) we see that Λ is not a uniqueness set of
Kp

Θ iff the function

γ = argBΛ − arg Θ (3.2)

has a representation

γ = −φ+ h̃, h ∈ L1
Π, e−h ∈ Lp/2,

where φ is the argument of a meromorphic inner function.

In the case Λ ⊂ R, we will use the counting function nΛ of Λ instead of the argument
function of BΛ in (3.2). By definition,

nΛ =
∑

nλ, nλ =

{
χ(λ,+∞), λ > 0,

−χ(−∞, λ), λ < 0.
(3.3)

Theorem. Let Θ be a meromorphic inner function and Λ ⊂ R. Then Λ is not a
uniqueness set of Kp

Θ if and only if the function

γ = 2πnΛ − arg Θ

has a representation

γ = −φ+ h̃, h ∈ L1
Π, e−h ∈ Lp/2, (3.4)

where φ is the argument of a meromorphic inner function.

Proof: If Λ is not a uniqueness set, then by the last proposition there is a mero-
morphic inner function J such that {J = 1} = Λ and such that the kernel Np[Θ̄J ]
contains an outer function G which has no zeros on R. We have

Θ̄J = −Φ̄
Ḡ

G

for some inner function Φ, and if we denote F = (1− J)G, then

Θ = Φ
F

F̄
= Φ exp {2i(log |F |)∼} = Φ exp {i [2(log |F |)∼ + 2πnΛ]}.
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The key observation is that the function in the square brackets is continuous – this
follows from the fact that F is an outer function with zero set Λ, and from the
identity (log |x|)∼ = πχR− . We conclude that

γ = −φ+ h̃, h := −2 log |F |,
which proves one half of the statement. Reversing the argument we get the second
half. 2

Example. Λ is a uniqueness set of Kp[Sa] if γ(t) = 2πnΛ(t) − at has a represen-
tation (3.4). As in Section 2.10 consider the function

δ(t) = γ(t)− γ(−t) = 2πN(t)− 2at, N(t) = #[Λ ∩ (−t, t)].
Applying Corollary 2.11 (and also Remark 2.10) we get a sufficient condition∫ x

1

N(t)

t
dt ≥ a

π
x− 1

p
log x+O(1), (x→ +∞).

In fact, Theorem 2.10 implies the latter condition in the lim sup sense, as well as
some other sufficient conditions. Similar results can be stated for various families
of special functions.

Zero sets of entire functions

3.3. Exact zero sets of B+(E)-functions. We will be considering general
Cartwright-de Branges spaces, see Section 1.7. A set Λ ⊂ C is said to be an exact
zero set of B+(E) if there exists an entire function F ∈ B+(E) such that F = 0
exactly on Λ. We’ll restrict the discussion to the case Λ ⊂ R.

Recall that B+(E) = EK+(Θ) where Θ = ΘE = E#/E, so Λ ⊂ R is also an exact
zero set of K+(Θ). The following description is essentially our basic criterion in
Proposition 2.5. In the next subsection we will see that in the special case E = S−a,
this description contains main results of the theory of Cartwright’s functions. As
usual, S denotes the singular inner function eiz.

Theorem. Λ ⊂ R is an exact zero set of B+(E) if and only if

2πnΛ − arg ΘE = −bx+ h̃, h ∈ L1
Π, b ≥ 0.

Proof: We need to show that a function F ∈ B+(E) with zero set Λ exists if and
only

Θ = JSb
H

H̄
(3.5)

for some inner function J with {J = 1} = Λ, some b ≥ 0, and some outer function
H ∈ Cω(R) which has no zeros on R.

⇐: The function

F (z) =

{
(1− J(z)) H(z)E(z)Sb(z), z ∈ C+

(J#(z)− 1) H#(z)E#(z), z ∈ C−

is in B+(E) and vanishes exactly on Λ.
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⇒: Suppose F ∈ B+(E) vanishes exactly on Λ. Since B+(E) = EK+
Θ , there is

G ∈ K+
Θ such that F = EG in C+. Clearly, we can assume that G is an outer

function. Define G− ∈ N+(C+) by the equation

Θ̄G = Ḡ− on R.

Since

F (z) = E#(z)G−(z̄), z ∈ C−,

G− has no zeros in C+, and therefore its inner-outer factorization has the form

G− = SbG, b ≥ 0. (3.6)

We now take any meromorphic inner function J with {J = 1} = Λ and define

H =
G

1− J
.

This is an outer function with the stated properties. We have

G = H(1− J), G− = H(1− J)Sb,

and from (3.6) we get the representation (3.5). 2

Example: Λ ⊂ R is an exact zero set of a Cartwright function if and only

nΛ(x) = cx+ h̃, c ≥ 0, , h ∈ L1
Π. (3.7)

3.4. Zeros of Cartwright’s functions. We need the following elementary lemma.

Lemma. Suppose g ∈ Lo(1,∞)
Π and g′ ≥ −const. Then

g(x) = o(x), x→ ±∞.

Proof: If g(x∗) ≥ cx∗, x∗ � 1, then for x > x∗ we have (assuming g′ ≥ −1)

g(x) ≥ g(x∗)− (x− x∗) ≥ (1 + c)x∗ − x,

and so g(x) & x∗ on an interval [x∗, (1+δ)x∗]. The Poisson measure of this interval
is � 1/x∗, which contradicts the weak L1-condition. 2

Corollary. Let Λ ⊂ R be the exact zero set of some Cartwright function. Then

∃c ≥ 0, lim
x→−∞

nΛ(x)

x
= lim
x→+∞

nΛ(x)

x
= c.

Proof: From (3.7) we conclude that g(x) = nΛ(x) − cx satisfied the conditions of
the lemma. 2

Corollary. If Λ ⊂ R is the exact zero set of a Cartwright function, then there
exists a limit

v.p.
∑
λ∈Λ

1

λ
.
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Proof: For every B > 0 we define the function

ηB(t) =


B, t > B,

t, t ∈ [−B,B],

−B, t < −B.

Using the notation (3.3), we have∑
|λ|≤B

nλ = nΛ ◦ ηB .

We also introduce an elementary function

g(λ) =

∫
nλdΠ =

π

2
sign(λ)− arctanλ =

1

λ
+O

(
1

λ2

)
, λ→ ±∞.

By the previous corollary we have

∃ v.p.
∑ 1

λ
⇔ ∃ v.p.

∑
g(λ).

By (3.7), nΛ = cx+ f , where we write f for h̃, and therefore∑
|λ|≤B

g(λ) =

∫
nΛ ◦ ηB dΠ =

∫
f ◦ ηB dΠ + const.

The only properties of f that we use in the rest of the proof are: f(x) = o(x) as
x→∞, and Titchmarsh’s theorem (2.6),

lim
A→∞

∫
fAdΠ = 0, fA = f · (χ[−A,A] ◦ f).

Since f(x) = o(x), we have

sup
[−B,B]

|f | = o(B), B →∞.

It follows that there is a function A = A(B) such that A = o(B), A(∞) =∞, and

f = fA(B) on [−B,B].

Then we also have

|f ◦ ηB |, |fA(B)| ≤ A(B) on R,
and therefore∫ ∣∣∣f ◦ ηB − fA(B)

∣∣∣ dΠ ≤ A(B)

∫
R\[−B,B]

dΠ → 0, B →∞.

2

We leave it to the reader to state relevant results concerning zeros of functions from
more general Cartwright-de Branges spaces B+(E). For example, the key property

h̃ = o(t) is valid if

lim
δ→0

lim sup
x→∞

θ(x+ δx)− θ(x)

x
= 0,

where θ is the argument of ΘE .
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Spectral problems with mixed data

3.5. Abstract Hochstadt-Liberman problem. We will be considering the fol-
lowing problem concerning general meromorphic inner functions. In the next section
we will explain its relation to Hochstadt-Liberman’s theorem [21].

Let Φ and Ψ be meromorphic inner function and Θ = ΨΦ. As usual, σ(Θ) denotes
the (point) spectrum of Θ, see Section 1.2; recall that σ(Θ) may include ∞. We

say that the data [Ψ, σ(Θ)] determine Θ if for any inner function Φ̃,

Θ̃ = ΨΦ̃, σ(Θ̃) = σ(Θ) ⇒ Θ = Θ̃.

Alternatively, we can say that Ψ and σ(ΦΨ) determine Φ. Given Φ and Ψ, the
problem is to decide if this is the case.

The set of Herglotz measures of inner functions Θ̃ satisfying Ψ|Θ̃ and σ(Θ̃) = σ(Θ)
is convex, see Section 1.2. We will refer to the dimension of this set as the dimension
of the set of solutions.

Example. Suppose Θ is a finite Blaschke product. Then

[Ψ, σ(Θ)] determine Θ ⇔ 2 deg Ψ > deg Θ.

The proof is elementary; it also follows from the results below. As an illustration
consider the simplest case Θ = b2, Ψ = b. Then σ(Θ) = {0,∞}, and the data
[Ψ, σ(Θ)] does not determine Θ. In fact, the set of solutions is one-dimensional; the
solutions are given by the formula

Φ̃(z) =
z − ia
z + ia

, (a > 0).

We will state some conditions in terms of the Toeplitz kernels with symbol U = Φ̄Ψ.
The rough meaning of these conditions is the following: for the data [Ψ, σ(Θ)] to
determine Θ, the known factor Ψ of the inner function has to be ”bigger” than the
unknown factor Φ.

Proposition. If N∞[Φ̄Ψ] 6= {0}, then the data [Ψ, σ(Θ)] does not determine Θ.

Proof: Take

a ∈ N∞[Θ̄Ψ2], ‖a‖∞ <
1

2
.

Then
Θ̄Ψ2a = b̄,

and
Θ̄Ψ2(a+ b) = ā+ b̄.

Denote
g = a+ b, f = Ψg,

so that
Θ̄f = f̄ , Ψ|f, ‖f‖∞ < 1.

Then the function

Θ̃ =
f + Θ

f + 1
(3.8)
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is inner:

|Θ̃|2 =
(f + Θ)(f̄ + Θ̄)

(f + 1)(f̄ + 1)
=

(f + Θ)(Θ̄f + Θ̄)

(f + 1)(Θ̄f + 1)
= 1,

and Ψ|Θ̃. Let us check that σ(Θ) = σ(Θ̃). This is clear for finite eigenvalues, and

we also note that ∞ ∈ σ(Θ) iff ∞ ∈ σ(Θ̃) because Θ− 1 ∈ H2 iff

Θ̃− 1 =
Θ− 1

f + 1
∈ H2.

2

Here is a partial converse. We write Np
Π[U ] for N+[U ] ∩ LpΠ.

Proposition. If Np
Π[Φ̄Ψ] = {0} for some p < 1, then [Ψ, σ(Θ)] determine Θ.

Proof: Suppose σ(Θ1) = σ(Θ) and Ψ|Θ1. Then the function

f =
Θ1 −Θ

1−Θ1

is in HpΠ ∩Cω(R) for all p < 1 because (1−Θ1)−1 has positive real part in C+ and
Θ1 = Θ on {Θ1 = 1}. Observe that

Θ̄f = Θ̄
Θ1 −Θ

1−Θ1
=

Θ1Θ̄− 1

1−Θ1
=

Θ̄− Θ̄1

Θ̄1 − 1
= f̄ .

Since Ψ|f, we can define
g = Ψ̄f ∈ HpΠ ∩ C

ω(R).

We have
Φ̄Ψg = Θ̄Ψ2g = ΨΘ̄f = Ψf̄ = ḡ,

and so g ∈ Np
Π[Φ̄Ψ] = {0} and Θ1 = Θ. 2

How big is the gap between the conditions in the above statements? As we will see
in Section 4.1, the gap is just finite dimensional if the inner function Φ is not very
”wild”. Namely, if the argument of Φ has a polynomial growth at infinity, then
Np

Π[Φ̄Ψ] = {0} implies N∞[bnΦ̄Ψ] = {0} for some n <∞.

We now demonstrate a different way to state a partial converse of the first state-
ment. We get precisely the converse statement up to a factor which is the ratio of
two twin inner functions, see Section 2.8.

Proposition. If the data [Ψ, σ(Θ)] don’t determine Θ, then there are inner func-
tions Θ1 and J such that {Θ1 = 1} = {J = 1} and

N∞[(Θ̄1J)Φ̄Ψ] 6= 0.

Proof: Suppose we have σ(Θ1) = σ(Θ), Θ1 = Φ1Ψ. Then the function Φ−Φ1 is in
K∞[ΦΦ1] and is zero on {Θ1 = 1}. By Proposition 3.2, there is an inner function
J such that J = 1 exactly on {Θ1 = 1} and N∞[Φ̄1Φ̄J)] 6= 0. Finally, we note

Φ̄Φ̄1J = Φ̄Ψ(Θ̄1J).

2

We can apply our results on Toeplitz kernels (Sections 2 and 4) to obtain various
necessary or sufficient conditions in the Hochstadt-Liberman problem. Here is a
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simple example that extends the original Hochstadt-Liberman theorem, which we
will recall in the next subsection.

Corollary. Suppose Θ = Ψ2 and ∞ 6∈ σ(Θ). Then the set of solutions is exactly

one-dimensional: Θ̃ satisfies Ψ|Θ̃, σ(Θ̃) = σ(Θ) iff

∃r ∈ (−1, 1), Θ̃ = Ψ
r + Ψ

1 + rΨ
. (3.9)

Proof: We have Φ = Ψ, so N∞[Φ̄Ψ] 6= 0 and by the first proposition the dimension
is at least 1. On the other hand, the dimension can not be ≥ 2, for otherwise by
the last proposition we would have N∞[bΘ̄1J ] 6= 0 and therefore N [Θ̄1J ] 6= 0 for
some inner functions Θ1 and J such that {J = 1} = {Θ1 = 1} and σ(Θ1) = σ(Θ).
By assumption, ∞ 6∈ σ(Θ1), so and we get a contradiction with the twin function
theorem in Section 2.8. The formula (3.9) now follows from the construction (3.8)
in the proof of the first proposition. 2

Remark. One can show that the statement is true even without assumption ∞ 6∈
σ(Θ). Also, one can state the following ”one-sided” version (see Remark (a) in
Section 2.8):

Let Θ = Ψ2. Then Θ̃ satisfies Ψ|Θ̃, σ(Θ̃) ⊂ σ(Θ) iff

∃r ∈ [−1, 1], Θ̃ = Ψ
r + Ψ

1 + rΨ
.

In other words, the (convex) set of all such Θ̃’s is the segment [−Ψ,Ψ]. Once we
know that the dimension is one, the formula follows from the obvious fact that ±Ψ
are extreme points of this set.

3.6. Spectral theory interpretation: Hochstadt-Liberman and Khodakovski
theorems. Consider a Schrödinger operator L = (q, α, β) on (a, b), where q ∈
L1

loc(a, b) and α, β are selfadjoint boundary conditions at a and b respectively; the
endpoints can be infinite and/or singular. We assume that L has compact resolvent.
As usual, σ(L) denotes the spectrum of L.

Suppose a < c < b. We will write q− for the restriction of q to (a, c) and q+ for the
restriction of q to (c, b). We say that the data (q−, α, σ(L)) determines L if for any

other Schrödinger operator L̃ = (q̃, α̃, β̃),

q− = q, α = α̃, σ(L̃) = σ(L) ⇒ q̃+ = q+, β̃ = β.

Let Θ− denote the Weyl inner function of (q−, α) computed at c and Θ+ the Weyl
inner function of (q+, β) computed at c.

Lemma. σ(L) = σ(Θ−Θ+).

Proof: The equation Θ−(λ)Θ+(λ) = 1 is equivalent to the statement

m+(λ) +m−(λ) = 0 or m−(λ) = m+(λ) =∞
for the corresponding m-functions. The latter means that we have the matching

u̇−(c, λ)

u−(c, λ)
=
u̇+(c, λ)

u+(c, λ)
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for any two non-trivial solutions u−(·, λ) and u+(·, λ) of the Schrödinger equation
with boundary conditions α and β respectively, which is possible if and only if λ is
an eigenvalue of L. 2

Corollary. (q−, α, σ(L)) determine L if the data (Θ−, σ(Θ−Θ+)) determine Θ+.

Here we of course rely on the fundamental uniqueness theorem of Borg and Marchenko
[Borg], [M1]: the m-function (and therefore the Weyl inner function) determines
both the potential and the boundary condition.

Remark. We would have an ”iff” statement if we considered the problem in some
class of canonical systems with a one-to-one correspondence between the systems
and inner functions such as the class of Krein’s ”strings”, see [12], [14]. The effective
characterization of inner functions of Schrödinger operators is an open problem, so
we will use our general results to state only sufficient conditions for Schrödinger
operators. To obtain necessary condition one has to use more specific techniques
of the Schrödinger operator theory, see [7], [22].

Let us apply the above corollary to the situation described at the end of the last
subsection.

Example 1. Let L be a Schrödinger operator on R with compact resolvent and limit
point boundary conditions at ±∞. Suppose the potential q(x) is an even function:

q(−x) = q(x), (x > 0).

Then q|R− and σ(L) determine L.

Proof: By Everitt’s theorem [15] (we recall it in the next subsection), all the inner
functions (r + Ψ)/(1 + r + Ψ) in (3.9) with r 6= 0 are not Weyl inner functions
corresponding to a Schrödinger operator. 2

This result is a special case of Khodakovski’s theorem [24], where only the equal-
ity q(−x) ≤ q(x) for x > 0 is assumed. The full version of Khodakovski’s theorem
requires a slightly different approach which we describe in the next subsection. Sim-
ilarly, from the remark at the end of Section 2.5 we derive the following statement.

Let L be as above, and let L̃ be another Schrödinger operator on (−∞, b), b ≥ 0. If

q = q̃ on R− and σ(L̃) ⊂ σ(L),

then either L̃ = L or b = 0 and L̃ is the operator with potential q− and Dirichlet
or Neumann condition at 0.

Example 2. Let L be a regular selfadjoint Schrödinger operator on [a, b] with non-
Dirichlet boundary conditions α and β at a and b respectively. If c = (a + b)/2,
then (q−, α, σ(L)) determine L.

The statement is also true if one or both boundary conditions are Dirichlet, see
next subsection. This is a stronger version of the Hochstadt-Liberman theorem
[21], see also [17] which states that if both L and L̃ are regular, and q̃− = q−,

α̃ = α, σ(L̃) = σ(L), then L̃ = L. We do not require L̃ to be regular. Also, we can

replace σ(L̃) = σ(L) with σ(L̃) ⊂ σ(L).
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3.7. Everitt’s class of inner functions. We need the following well-known fact,
see [15]:

If m(z) is an m-function of a Schrödinger operator, then

m(z) = i
√
z + o(1), (z →∞, z ∈ iR+).

It follows that if Ψ(z) is a Weyl inner function of a Schrödinger operator, then

Ψ(z) = 1− 2√
z

+
2

z
+ o

(
1

z

)
, (z →∞, z ∈ iR+). (3.10)

This motivates the following definitions. We say that a meromorphic inner function
Ψ belongs to the class (Ev) if it satisfies the asymptotic relation (3.10). (Note
though that (3.10) is by no means a full characterization of Weyl inner functions
of Schrödinger operators.)

Definition. Let Ψ,Φ ∈ (Ev). We say that [Ψ, σ(ΨΦ)] determine Φ in the class (Ev)
if

Φ̃ ∈ (Ev), σ(ΨΦ) = σ(ΨΦ̃) ⇒ Φ̃ = Φ.

Proposition. Let Ψ,Φ ∈ (Ev). Suppose

∃p < 1, dim Np[Φ̄Ψ] <∞.
Furthermore, suppose we have a representation Φ̄Ψ = H̄/H, where H is an outer
function such that H±1 ∈ Cω(R), and

H 6= o

(
1√
|z|

)
, (z →∞, z ∈ iR+).

Then (Ψ, σ(ΨΦ)) determine Φ in the class (Ev).

Proof: We first argue as in the proof of the second proposition in Section 3.5. The
function

G =
Φ̃− Φ

1− Φ̃Ψ
∈ HpΠ ∩ C

ω(R)

satisfies

Φ̄ΨG = Ḡ. (3.11)

We also derive from (3.10) that

G(z) = o

(
1√
z

)
, (z →∞, z ∈ iR+).

Since the dimension of the Toeplitz kernel is finite, G has at most finitely many
zeros on R and its inner factor is a finite Blaschke product (if any). Thus we can
assume that G is an outer function zero free on R satisfying (3.11). But in this case
H = G, and we have a contradiction. 2

(Remark. One can show that the statement is true for all p ≤ 2.)

Examples. (i) If Φ = Ψ ∈ (Ev), then (Ψ, σ(ΨΦ)) determine Φ in the class (Ev).

Proof: H = 1 6= o(|z|−1/2). 2

(ii) If Ψ = ΘD and Φ = ΘN , see (1.7), then Ψ and σ(ΨΦ) determine Φ in (Ev),
and if Ψ = ΘN and Φ = ΘD, then Ψ and the spectrum σ(ΨΦ) minus any one point
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determine (in an obvious sense) Φ in the class (Ev). In particular, we have the
Hochstadt-Liberman type result for all regular operators with arbitrary boundary
conditions.

Proof: Reasoning as in Example 2.7, in the first case we have H = ED/EN and so
|H| ∼ |z|−1/2. In the second case, |H| = |EN/ED| ∼ |z|1/2. 2

Example: Bessel inner functions. This is an extension of the previous example.
We want to show that the Hochstadt-Liberman phenomenon occurs not only for
regular potentials.

We consider the Bessel inner functions Θν , ν ≥ −1/2, see (1.8). Recall that

Eν(λ) = (1 + i/2 + iν)Gν(
√
λ) + iFν(

√
λ)

is a de Branges function of Θν , where Gν(z) = z−νJν(z) and Fν(z) = zG′ν(z), see
Section 1.6. If Ψ = Θν1

and Φ = Θν2
, then we have a representation

Φ̄Ψ =
H̄

H
, H =

Eν1

Eν2

.

Lemma. ∣∣∣∣Eν1
(λ)

Eν2(λ)

∣∣∣∣ ∼ |λ| ν2−ν12 , λ ∈ iR+, λ→∞.

Proof: It is known that |Jν(z)| ∼ |J0(z)| as z → ∞ in any Stolz angle in C+.
Therefore,

|Gν(z)| ∼ |z−νJ0(z)|,
and we also have

|Fν(z)| ∼ |Gν−1(z)| ∼ |z1−νJ0(z)|.
(The first relation follows from the identity zJ ′ν(z) = zJν−1(z) − νJν(z), which
implies Fν = Gν−1 − 2νGν .) 2

We can now apply Proposition. In particular, we get the following result.

Theorem. Let L be the Schrödinger operator with potential q(t) = 2t−2 on [0, 2]
and with Dirichlet boundary condition at t = 2. Then q|(0,1) and the spectrum σ(L)
determine L in the class of Schrödinger operators.

Proof: In our usual notation we have

Ψ = Θ3/2, Φ̄Θ1/2 =
F̄

F
, F±1 ∈ H∞,

see Section 2.4. Therefore,

Φ̄Ψ = (Φ̄Θ1/2)Θ̄1/2Θ3/2

=
F̄

F

E1/2

Ē1/2

Ē3/2

E3/2
=

H̄

H
,

where

H =
FE3/2

E1/2

is an outer function such that H±1 ∈ Cω(R) and H(iy) 6= o(1/
√
y) as y → +∞.

We can apply the proposition because the argument of the unimodular function
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Φ̄Ψ is bounded, which is a consequence of the well-known asymptotic for the zeros
of Bessel’s functions. 2

Defining sets

3.8. Defining sets of inner functions. Let Φ = eiφ be a meromorphic inner
function, and let Λ ⊂ R. We say that Λ is a defining set for Φ if

Φ̃ = eiφ̃, φ̃ = φ on Λ ⇒ Φ ≡ Φ̃.

In this definition we tacitly assume φ(±∞) = ±∞. In the ”one-sided” case, say if
φ(−∞) > −∞ and φ(+∞) = +∞, one should modify the definition in an obvious
way.

One can extend this definition to divisors. For instance, if all points in Λ ⊂ σ(Φ)

are double, then the equality Φ̃ = Φ on Λ means that the spectral measures the
inner functions coincide on Λ.

Let us mention several special cases.

(a) Two spectra problem. This corresponds to the case

Λ = {Φ = 1} ∪ {Φ = −1}.
The meaning of the following statement is that Λ is defining for Φ with deficiency
one (in the case φ(±∞) = ±∞, to be accurate). Various related statements are of
course well-known, see e.g. [7].

Let Φ be a meromorphic inner function. Then a meromorphic inner function Φ̃
satisfies {Φ̃ = 1} = {Φ = 1} and {Φ̃ = −1} = {Φ = −1} iff

Φ̃ =
Φ− c
1− cΦ

, c ∈ (−1, 1). (3.12)

The easiest way to see this is use Krein’s shift construction: since

<

[
1

πi
log

Φ̃ + 1

Φ̃− 1

]
= χe on R,

where e = {=Φ > 0}, we have

1

πi
log

Φ̃ + 1

Φ̃− 1
= Sχe + const. 2

This argument also shows that given any two intertwining discrete sets Λ± of real
numbers there is a meromorphic inner function Φ such that

{Φ = ±1} = Λ±.

Let us also mention that the statement (3.12) can be derived from the twin inner

function theorem, see Section 2.8. For instance, suppose I := Φ̃Φ has no point
mass at infinity. We want to show that Φ̃ − Φ = c(1 − I). It is enough to check
that the dimension of the set of functions F ∈ K∞I vanishing on {I = 1} is at most

one. (Obviously, both Φ̃ − Φ and 1 − I belong to this set.) If not, we would have
37



dim N∞[ĪJ ] ≥ 2 for some J vanishing on {I = 1}. But then N∞[bĪJ ] 6= 0, and
N [ĪJ ] 6= 0, which is impossible by the twin inner function theorem. 2

(b) General mixed data spectral problem. The Hochstadt-Liberman problem for
inner functions that we discussed above can be viewed as a special case of the
defining sets problem. It is easy to see that if (assuming arg Θ(±∞) = ±∞)
Θ = ΨΦ and Λ = σ(Θ), then

(Ψ, σ(Θ)) determine Θ ⇔ Λ is defining for Φ.

This can be generalized in the following way. Let Θ = ΨΦ be a given meromorphic
inner function and let {λn} be the set of its eigenvalues numbered in the increasing
order. Given M ⊂ Z we denote

σM (Θ) = {λn : n ∈M}.

The question is whether the factor Ψ and the partial spectrum σM (Θ) determine
Θ, i.e. whether

Θ̃ = ΨΦ̃, λ̃n = λn (n ∈M) ⇒ Θ̃ ≡ Θ.

Once again, this is equivalent (assuming φ(±∞) = ±∞) to saying that Λ = σM (Θ)
is a defining set for Φ. The spectral theory meaning was explained in Section 3.6
(but now we consider eigenvalues from different spectra), and the partial spectral
problem for Schrödinger operators and Jacobi matrices appeared in several publi-
cations, e.g. [17], [18].

(c) A version for spectral measures. Given a meromorphic inner function Θ and
a factor Ψ|Θ, and also given a part of the spectrum Λ = σM (Θ), the question is

whether there is another inner function Θ̃ 6= Θ such that Ψ|Θ̃ and the spectral
measures µ = µΘ and µ̃ = µΘ̃ coincide on Λ:

λ̃n = λn, µ̃{λn} = µ̃{λn}, (n ∈M).

Claim: If Θ = ΨΦ, then Ψ and the spectral measure on Λ = σM (Θ) determine Θ
iff the divisor 2χΛ is defining for Φ.

Indeed, if Θ̃ = ΨΦ̃, and

arg Θ̃(λn) = arg Θ̃(λn) = 2πn, (n ∈M),

then

arg Φ̃ = arg Φ on Λ.

The relation

µ{λ} = µ̃{λ}, λ ∈ Λ

then implies, see (1.4), Θ̃′(λ) = Θ′(λ), so

Ψ′(λ)Φ̃(λ) + Ψ(λ)Φ̃′(λ) = Ψ′(λ)Φ(λ) + Ψ(λ)Φ′(λ), (λ ∈ Λ),

and

(arg Φ̃)′ = (arg Φ)′ on Λ. 2

Again, the spectral theory interpretation is the same as above: we know some part
of a differential operator and some part of its spectral measure and we want to
know if this information determines the operator uniquely.
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As usual we can consider the problem in a restricted class of inner functions. Here
is the simplest example.

Example. Let Θ = ΨΦ be a finite Blaschke product. Then Ψ and Λ ⊂ σ(Θ)
determine Θ iff #Λ > 2 deg Φ in the class of Blaschke products of a fixed degree.
Similarly, Ψ and the spectral measure on Λ determine Θ iff #Λ > deg Φ. This
extends in an obvious way to the cases where only Φ or Ψ has a finite degree.
These facts follow for instance from the statements in the next section, also cf.
[18].

3.9. Relation to uniqueness sets.

Proposition. Λ is not defining for Φ if there is a non-constant function G ∈ K∞Φ
such that

G = Ḡ on Λ. (3.13)

Proof: We can assume ‖G‖∞ < 1. Define F ∈ H∞ by the equation Φ̄G = F̄ on R,
and consider

Φ̃ =
Φ + F

1 +G
.

Then Φ̃ is an inner function because it is in N+ and

|Φ + F | = |Φ + ΦḠ| = |1 +G| on R.

Also, Φ̃ 6= Φ because otherwise we would have F = GΦ, which together with
F = ΦḠ implies G = Ḡ, so G = const. Finally, we have

Φ̃ = Φ
1 + Φ̄F

1 +G
= Φ

1 + Ḡ

1 +G
= Φ on Λ,

and since
‖ arg Φ̃− arg Φ‖L∞(R) < 2π

by construction, we get arg Φ̃ = arg Φ on Λ. 2

Remark. The condition (3.13) is very close to the condition that Λ is a not a
uniqueness set for K∞[Φ2]. The precise relation between the two statements is
an interesting question, which we will not discuss here. We only mention that if
p ∈ (1,∞), then

∃G ∈ Kp[Φ], G 6≡ const, G = Ḡ on Λ,

iff
∃F ∈ Kp[Φ2], F 6≡ 0, F = 0 on Λ.

The above proposition gives a necessary condition for a set Λ to be defining for Φ.
To get sufficient conditions one can use the following obvious observation.

Lemma. If Φ̃ = Φ on Λ and F = Φ̃− Φ, then

F ∈ K∞[Φ̃Φ], F = 0 on Λ.

If we also have arg Φ̃ = arg Φ on Λ (as in the definition of defining sets), then we

can estimate the argument of Φ̃Φ in terms of the data (Φ,Λ), so we can apply our
results concerning uniqueness sets.
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3.10. Defining sets of regular operators. Horváth theorem. We now con-
sider the defining sets problem in some restricted classes of inner functions. We
will use the spectral theory language. For r ≥ 1 let Schr(Lr, D) denote the class
of selfadjoint Schrödinger operators on [0, 1] with an Lr potential and Dirichlet
boundary condition at 0.

We say that Λ ⊂ R is a defining set for the class Schr(Lr, D) if for any two operators

in Schr(Lr, D) with potentials q and q̃, the equality Θ̃ = Θ on Λ implies q̃ ≡ q,

where Θ̃ and Θ are the corresponding Weyl inner functions.

We have a similar definition for the classes Schr(Lr, N) of Schrödinger operators
with Neumann boundary condition at 0.

Let ΘD denote the standard inner function (1.7), i.e. the Weyl inner function in
the case q ≡ 0. From Lemma 3.9 we immediately conclude that

Λ is defining in the class Schr(L1, D) if Λ is a uniqueness set of K∞[Θ2
D].

This sufficient condition is not optimal because for regular operators, the function
Φ̃− Φ (see the statement of Lemma 3.9) has some extra smoothness at infinity as
follows from the standard asymptotic formulae (see the end of the section), which
are getting more precise if we require more regularity of the potential, in particular
if we consider the case q ∈ Lr with r > 1.

In an interesting paper [22], Horváth gives a complete description of defining sets
in terms of uniqueness sets of certain model spaces (or, equivalently, in terms of
the completeness problem for exponential functions). The description involves the
spaces FLr ≡ FLr(−2, 2), where F stands for the classical Fourier transform (0.1).
Recall that

PW2 = FL2 ⊂ FL1 ⊂ Cart2 ∩ L∞(R).

Here’s a selection of Horváth’ results. We use the following notation:
√

Λ = {z :

z2 ∈ Λ}, and
√

Λ ∪ {∗, ∗} means
√

Λ plus any two points.

(i) Λ is defining in the class Schr(Lr, D) iff
√

Λ∪{∗, ∗} is a uniqueness set of FLr;

(ii) Λ is defining in Schr(Lr, N) if
√

Λ is not a zero set of FLr.
(In the second case, the ”only if” part of Horváth’ theorem comes with some addi-
tional condition.)

Let us explain how to prove the ”if” parts of these statements using the methods
of this paper. We prove for example (ii).

Proposition. Λ is defining in the class Schr(L2, D) if
√

Λ∪{∗, ∗} is a uniqueness
set of PW2.

Proof: Let q, q̃ ∈ L2(0, 1). Without loss of generality we will assume that the
corresponding Schrödinger operators with boundary conditions (D) at 0 and (N)
at 1 are positive. Otherwise, we simply add a large positive constant a to both
potentials, and using the transformation

F (z) 7→ F (
√
z2 + a2)

for even entire functions we observe that
√

Λ is a uniqueness set iff
√

Λ + a is.
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Let Θ∗ and Θ̃∗(z) be the square root transforms of Θ and Θ̃, the Weyl functions
taken with sign minus, see Section 1.8. From the standard asymptotic formula for
solutions of a regular Schrödinger equation we obtain

Θ∗

S2
=
H̄

H
on R, H±1 ∈ H∞, (3.14)

and

x[Θ∗(x)− Θ̃∗(x)] ∈ L2(R). (3.15)

(For convenience we reproduce the standard argument at the end of the proof .)

If Θ̃ = Θ on Λ, then since Θ̃∗(0) = Θ∗(0), we have

Θ∗ = Θ̃∗ on {0} ∪
√

Λ,

where we regard Θ∗ and Θ̃∗ as meromorphic functions in the whole plane. By
(3.15),

(z − 1)(Θ∗ − Θ̃∗) ∈ K[Θ∗Θ̃∗],

so
√

Λ∪{0, 1} is a zero set of some K[Θ∗Θ̃∗] function, and therefore by (3.14) a zero
set of some function in K[S4] or PW2 . (For zeros in C− we can use the argument
with dual reproducing kernels as in Section 3.1.) 2

Proof of (3.14)–(3.15). If s > 0, then the solution us(t) of the IVP

−ü+ qu = s2u, u(0) = 0, u̇(0) = 1,

satisfies the integral equation

us(x) = sin sx+
1

s

∫ x

0

cos s(x− t) q(t) us(t) dt.

Iterating, we have

us(1) = sin s+
F (s)

s
+
R(s)

s2
,

where

F (s) =

∫ 1

0

cos s(1− t) sin st q(t) dt,

and

R(s) =

∫ 1

0

cos s(1− x) q(x) dx

∫ x

0

cos s(x− t) q(t) us(t) dt.

We have an elementary a priori bound

|us(t)| ≤ C, (s > 0, t ∈ [0, 1]),

so

∀s, |R(s)| ≤ const.

On the other hand, F is basically the Fourier transform of a function on (−1, 1),
and

q ∈ L2 ⇒ F ∈ L2(R).

We also get the corresponding estimates of u̇s(1). The resulting estimates of Θ
imply both statements.
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4. Beurling-Malliavin theory

Multiplier theorems

4.1. Tempered inner functions. A meromorphic inner function Θ = eiΘ is called
tempered if Θ′ has at most polynomial growth at ±∞:

∃N, Θ′(x) = O
(
|x|N

)
, x→∞.

Theorem. Suppose Θ is a tempered inner function. Then for any meromorphic
inner function J and any p > 0,

Np[Θ̄J ] 6= 0 ⇒ ∃n, N∞[b̄nΘ̄J ] 6= 0.

Note that the opposite is trivial: if q > p then Nq[Θ̄J ] 6= 0 implies Np[b̄nΘ̄J ] 6= 0
with n = n(p, q). Questions of this type were studied by Dyakonov [13] who was
the first to observe the analogy with the Beurling-Malliavin multiplier theorem.

The proof for p = 2 is elementary: if F ∈ N [Θ̄J ], then JF ∈ KΘ and by (1.6) and
(1.4), ∑

λ∈σ(Θ)

|F (λ)|2

|Θ′(λ)|
� ‖F‖2.

Thus |F (λ)| . |Θ′(λ)|, and this is true for all λ ∈ R because we can replace Θ with
e−iαΘ. It follows that (z + i)−nF (z) ∈ N∞[b̄nΘ̄J ].

We will derive the theorem from the following special case of Carleson’s type em-
bedding theorem of Treil and Volberg [40]. For a given meromorphic inner function
Θ denote

d(x) = dist{x, {|Θ| = 0.5}), (x ∈ R).

Claim: the measure νx = d(x)δx is a Carleson measure for Kp
Θ, i.e.

Kp
Θ ⊂ L

p(ν),

where the norm of the embedding depends only on p.

In other word, if F ∈ Kp
Θ, then

d(x) |F (x)|p ≤ const, (x ∈ R). (4.1)

Lemma. If Θ is tempered, then there is an N such that

dist(x, {|Φ| = 0.5}) & (1 + |x|)−N .

Proof: We can only consider the case of Blaschke products. If

Θ = BΛ =
∏

ελ
z − λ
z − λ̄

,

then we have

Θ′(x) =
∑ 2=λ
|x− λ|2

(4.2)
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and

− log |Θ(z)| �
∑ =λ · =z
|z − λ̄|2

. (4.3)

Indeed,

− log |Θ(z)|2 =
∑

log

∣∣∣∣z − λ̄z − λ

∣∣∣∣2
�
∑[

1− |z − λ|
2

|z − λ̄|2

]
(see below)

=
∑ (z − z̄)(λ− λ̄)

|z − λ̄|2

We want to show that if z = x+ iy and y � |x|−N , then (4.3)< const. For each x
consider the Stolz sector of some fixed angle at x of height x−N and observe that
this sector does not contain any λ, for otherwise, the corresponding term in (4.2)
would be of the order 1/=λ ≥ xN . This justifies the ”see below” item, and makes
the estimate of (4.3) in terms of (4.2) obvious. 2

Proof of Theorem. Suppose Np[Θ̄J ] 6= 0, so

Θ̄JF = Ḡ, F,G ∈ Hp ∩ Cω(R).

We have

JF ∈ Kp
Θ

so by the lemma and by (4.1) we have

|F (x)| . 1 + |x|N

for all x ∈ R and some N . It follows that (z + i)−NF (z) ∈ N∞[b̄N Θ̄J ]. 2

Corollary. Let U = Θ̄J = eiγ and let Θ be tempered. If γ is the sum of a bounded
and a decreasing functions, then N∞[b̄nU ] 6= 0 for some n.

Note that in the case of a general bounded γ, we can not multiply down to H∞
elements of N [U ] even by using factors like S̄.

Also note that in the statement of the theorem one can give explicit bounds on
n in terms of the growth of |Θ′(x)|. For example, if U = Θ̄J and Θ′ ≤ 1, then
N [U ] ⊂ N∞[U ].

4.2. Beurling-Malliavin multiplier theorem.

Theorem. Suppose Θ is a meromorphic inner function satisfying |Θ′| ≤ const.
Then for any meromorphic inner function J , we have

N+[Θ̄J ] 6= 0 ⇒ ∀ε, N∞[S̄εΘ̄J ] 6= 0.
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This theorem follows from the Beurling-Malliavin multiplier theorem [4]: if W is
an outer function, then

z−1 logW (z) ∈ D(C+) ⇒ W ∈ (BM). (4.4)

Here D(C+) is the notation for the usual Dirichlet space in the halfplane, and by
definition, W is a Beurling-Malliavin multiplier, or W ∈ (BM), if

∀ε > 0, ∃G ∈ K[Sε], WG ∈ L2(R).

Note that if |W | ≤ |W1| and W1 ∈ (BM), then W ∈ (BM).

Lemma. If W ∈ Cω(R), |W | ≥ 1, and (argW )′ ≤ const on R, then W ∈ (BM).

Proof: We will use some ideas from the proof of Theorem 64 in [12]. We can assume
|W (0)| = 1. Otherwise, multiply W by (z + i) to get W (∞) = ∞. In this case
there’s a global minimum, which we can take for 0.

Denote

z−1 logW (z) = u(z) + iv(z),

where u and v are real-valued functions. Then we have

x−1u(x) ∈ L1(R), x−1u(x) ≥ 0 on R. (4.5)

Since argW ∈ L̃1
Π and (argW )′ ≤ const on R, by Lemma 3.4 we have

argW (x) = o(|x|), x ∈ R, x→∞, (4.6)

and it follows that v is a bounded function in C+. For r > 0 let D(r) denote the
semidics {|z| < r} ∩C+. We have

‖u+ iv‖2D = lim
r→∞

∫
∂D(r)

udv,

and ∫
∂D(r)

udv =

∫ r

−r
uv′dx− uv

∣∣∣r
−r

+ rI ′(r), I(r) :=
1

2

∫ π

0

v2
(
reiθ

)
dθ.

By (4.5) and (4.6), the integrals
∫
uv′dx are uniformly bounded from above:∫ r

−r
uv′dx =

∫ r

−r

u(x)

x
(argW )′(x)dx−

∫ r

−r

u(x)

x
· argW (x)

x
dx < const.

It remains to show that

lim inf
r→∞

A(r) <∞, A(r) := rI ′(r)− uv
∣∣∣r
−r
.

Suppose A(r) ≥ 1 for all r � 1. Then since v is bounded, we have

I ′(r) ≥ 1

r
− const

u(r) + u(−r)
r

.

By (4.5), this contradicts the uniform boundedness of I(r). 2

Corollary. If W ∈ K+
Θ and (arg Θ)′ ≤ const, then W ∈ (BM).
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Proof: We have W Θ̄ = H̄ for some H ∈ N+. Define

W1 = WH + Θ.

Clearly, W1 ∈ N+, and since

Θ̄2W1 = Θ̄W Θ̄H + Θ̄ = H̄W̄ + Θ̄ = W̄1,

we have W1 ∈ K+[Θ2]. Notice that

|W1| = |WW̄Θ + Θ| = 1 + |W |2 ≥ 1.

Also, |W | ≤ |W1|. Since (arg Θ)′ ≤ const, from the equation Θ̄2W1 = W̄1Φ̄, where
Φ is an inner function, we obtain (argW1)′ ≤ const. By the previous lemma,
W1 ∈ (BM), and therefore W ∈ (BM). 2

Proof of Theorem. Take an outer function W ∈ N+[Θ̄J ]. Then W ∈ K+
Θ and by

the last corollary, W ∈ (BM), and therefore WG ∈ H2 for some G ∈ N+[S̄ε]. It
then follows that

WG ∈ N+[S̄εΘ̄J ] ∩H2 = N [S̄εΘ̄J ].

It remains to multiply down to H∞, which is possible by Theorem 4.1. 2

N+-part of the Beurling-Malliavin theory

In this part of the section we will assume

γ′ ≥ −const. (4.7)

We’ll give a metric criterion for (non)triviality of the Toeplitz kernel N+[eiγ ] up to
a gap S±ε. Recall the basic criterion: N+[eiγ ] 6= 0 iff

γ = −α+ h̃ (4.8)

for some increasing function α ∈ Cω(R) and some h ∈ L1
Π. As usual we denote

U = eiγ .

Lemma. Suppose γ′ ≥ −const. Then ∀ε > 0, N+[USε] = 0 unless γ(∓∞) = ±∞.

Proof: If N+[USε] 6= 0, then by (4.8) γ + εx + α = h̃, so (h̃)′ ≥ −const and of

course h̃ ∈ Lo(1,∞)
Π . By Lemma 3.4 it then follows that h̃(x) = o(x) as x → ±∞,

so γ + εx+ α = o(x), which is possible only if γ(∓∞) = ±∞. 2

4.3. Beurling-Malliavin intervals. Suppose a continuous function γ : R → R
satisfies

γ(−∞) = +∞, γ(+∞) = −∞. (4.9)

The family BM(γ) is defined as the collection of the components of the open set
{γ? 6= γ}, where

γ?(x) = max
[x,+∞]

γ.

For an interval l = [a, b] ⊂ R+ or ⊂ R− we write |l| for the Euclidian length, and
δ(l) for the distance from the origin. A family of finite disjoint intervals {l} is called
long if ∑

δ(l)≥1

|l|2

δ(l)2
=∞.
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Otherwise, we call the family short.

Theorem. Suppose γ′ > −const.

(i) If γ 6∈ (4.9), or if γ ∈ (4.9) but the family BM(γ) is long, then

∀ε > 0, N+[SεU ] = 0.

(ii) If γ ∈ (4.9) and BM(γ) is short, then

∀ε > 0, N+[S̄εU ] 6= 0.

The first statement corresponds to the ”second Beurling-Malliavin theorem” [5],
and statement (ii) to the so called ”little multiplier theorem”, see [25], [19].

4.4. Second Beurling-Malliavin theorem. The first part of Theorem 4.3 fol-
lows from a more general fact; we don’t need to assume (4.7). For an interval l ⊂ R
we denote

∆∗l [γ] = inf
l′′
γ − sup

l′
γ,

where l′ and l′′ are the left and the right adjacent intervals of length |l|.

Theorem. If ∃c > 0 and a long family of intervals {l} such that

∆∗l [γ] ≥ c|l|, (4.10)

then N+[U ] = 0.

A simple standard argument shows that we can assume without loss of generality
that all intervals satisfy the inequality 10|l| < δ(l), and that the multiplicity of the
covering {10l} is finite. (The interval 10l is concentric with l and has length 10|l|.)
The idea of the proof is quite simple. According to the basic criterion (4.8) we have
to exclude the possibility

γ + α = h̃, α ↑, h ∈ L1
Π.

Since α is increasing we have

∆∗l [h̃] & |l|.
Suppose we can localize this estimate to each function h̃l, where hl is the restriction
of h to the interval 10l. Choosing A � |l| and applying the weak type inequality,
we have

|l|
δ(l)2

. Π{|h̃l| > A} . ‖hl‖Π
A

, (4.11)

so

|l|2

δ(l)2
. ‖hl‖Π. (4.12)

Summing up over l’s we arrive to a contradiction:

∞ =
∑ |l|2

δ(l)2
.
∑
‖hl‖Π . ‖h‖Π <∞.

Proof of Theorem. For an interval l we denote by Ql its Carleson square:

Ql = {z : x ∈ l, |l| < y < 2|l|}.
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Also, denote

H(z) =

∫
R

h−(t)dt

(t− z)2
, (z ∈ C+),

where as usual h− = max{0,−h}. We claim that if the estimate (4.12) does not
hold for some interval l in our family, then

|H| & 1 on Ql. (4.13)

To see this we observe that the argument (4.11) is valid unless there is an interval
l1, l ⊂ l1 ⊂ l ∪ l′ ∪ l′′, such that

∆l1 f̃ ≥ (c/2)|l|, f := h− hl.

Let’s assume (for simplicity of notation) l1 = l, so ∆f̃ ≡ ∆lf̃ & l. Represent

f = f+ − f−, f± ≥ 0. The functions f̃± are decreasing on l:

f̃ ′±(x) = − 1

π

∫
R\(10l)

f±(t)dt

(t− x)2
> 0, (x ∈ l).

It follows that −∆f̃− & |l|, and so there is a point x∗ ∈ l such that

1

π

∫
f−(t)dt

(t− x∗)2
= −f̃ ′−(x∗) = −∆f̃−

|l|
& 1.

If z ∈ Ql, then∣∣∣∣∫ f−(t)dt

(t− z)2

∣∣∣∣ ≥ ∫ < [ 1

(t− z)2

]
f−(t)dt �

∫
f−(t)dt

(t− x∗)2
& 1.

On the other hand, if z ∈ Ql and if (4.12) is not true, then∣∣∣∣∫ h−l (t)dt

(t− z)2

∣∣∣∣ .
1

|l|2

∫
(10l)

|h| � δ(l)2

|l|2

∫
(10l)

|h|dΠ � δ(l)2

|l|2
· |l|

2

δ(l)2
= 1,

and we get

|H(z)| =
∣∣∣∣∫ f−(t) + h−l (t)

(t− z)2
dt

∣∣∣∣ ≥ ∣∣∣∣∫ f−(t)dt

(t− z)2

∣∣∣∣− ∣∣∣∣∫ h−l (t)dt

(t− z)2

∣∣∣∣ & 1.

To finish the proof of the theorem it remains to show that∑
l∈(∗)

|l|2

δ(l)2
<∞,

where we write l ∈ (∗) if (4.13) holds for l. Denote ψ =
∑
l∈(∗) |l|χl, so∑

l∈(∗)

|l|2

δ(l)2
�
∫
ψ(t)dt

1 + t2
.

Then we have ∫
ψ(t)

1 + t2
dt .

∫ ∞
1

dA

A3

∫ A

−A
ψ(t)dt.

Fix C � 1 such that ∫
|t|≥C

h−(t)dt

1 + t2
� 1.
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We claim that ∫ A

−A
ψ(t)dt .

∫ CA

−CA
h−(t)dt,

so we have ∫
ψ(t)

1 + t2
dt .

∫ ∞
1

dA

A3

∫ CA

−CA
h−(t)dt . ‖h‖Π

(and we are done). To prove the claim, fix A and consider the 2D Hilbert transform

HA(z) =

∫ CA

−CA

h−(t)dt

(t− z)2
.

If l ⊂ (−A,A) and l ∈ (∗), then

|HA(z)| � |H(z)| & 1, z ∈ Ql,
by the choice of C. Applying the weak-L1 estimate for the Hilbert transform, we
get ∫ A

−A
ψ(t)dt . Area(|HA| & 1) .

∫ CA

−CA
h−(t)dt. 2

4.5. Little multiplier theorem. We now turn to the proof of the second part of
Theorem 4.3. We assume (4.7) and γ(∓∞) = ±∞. The function γ? and the family
BM(γ) were defined in section 4.3. Note that γ? is decreasing and γ? − γ ≥ 0.

Lemma. If the family BM(γ) is short, then γ? − γ ∈ L1
Π.

Proof: ∫
l

γ? − γ
1 + x2

dx .
1

δ(l)2

∫ |l|
0

tdt � |l|2

δ(l)2
.

2

The proof of the little multiplier is extremely simple if we settle for a slightly weaker
statement: ∑

BM(γ)

|l|2 log+ |l|
δ(l)2

<∞ ⇒ N+[U ] 6= 0.

Indeed, the last computation shows that in this case we have∫
(γ? − γ) log+(γ? − γ) dΠ <∞,

which is a (necessary and) sufficient condition for (γ?−γ)̃ ∈ L1
Π, see [42]. We have

a representation

γ = γ? + (γ − γ?),
where the first term is decreasing and the second one is in L̃1

Π, so N+[U ] 6= 0 by
the basic criterion.

Main Lemma. If the family BM(γ) is short, then for any given ε > 0 there is a
function β such that β′ ≤ ε near ±∞ and

γ? − γ + β ∈ L̃1
Π.
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The little multiplier theorem now follows immediately:

γ(x)− εx = (γ − γ? − β) + (β − εx) + γ?.

The first term is in L̃1
Π, and the last two terms are decreasing at infinities.

Proof of Main Lemma. Denote f = γ? − γ, so f is a non-negative function in L1
Π,

f ′ ≤ const, and the family L = BM(γ) of the components of {f 6= 0} satisfies∑
l∈L

|l|2

δ(l)2
<∞.

These are the only properties of f that will be used. We will also need the following
notation: for an interval l = [a, b] we define its ”tent” function

Tl(x) =


x− a, a ≤ x ≤ (a+ b)/2,

b− x, (a+ b)/2 ≤ x ≤ b,
0, x ∈ R \ l.

Note that

‖Tl‖Π &
|l|2

(δ(l) + |l|)2
. (4.14)

We will construct disjoint intervals ln such that {f 6= 0} ⊂ ∪ ln,∑
n

|ln|2

δ(ln)2
<∞, (4.15)

and

∀n ∃εn ∈ [0, ε],

∫
ln

(f − εnTln) dΠ = 0. (4.16)

Let us show that the existence of such intervals ln implies the main lemma. We
will use the easier part of the atomic decomposition technique of Hardy spaces, see
[11].

We define

β = −
∑
n

εnTln , g = f + β,

so β is in Lip(ε), and all we need to check is that g̃ ∈ L1
Π or, in other words, that g

belongs to the real Hardy space H1
Π(R). We can represent g as follows:

g =
∑

χng =
∑

λn
χng

λn
:=
∑

λnAn,

where χn is the characteristic function of ln, and we choose

λn = Π(ln) ‖χng‖∞.

It is clear that the functions An = λ−1
n (χng) are ”atoms”:∫

AndΠ =
1

λn

∫
ln

gdΠ = 0 by (4.16),

and

‖An‖∞ =
‖χng‖∞
λn

=
1

Π(ln)
.
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By (4.15) we also have∑
λn .

∑
Π(ln)|ln| �

∑ |ln|2

δ(ln)2
<∞.

It follows that
∑
λnAn ∈ H1

Π(R), see [11].

To finish the proof it remains to describe the construction of the intervals l̃n and
the slopes εn. We consider the case where all intervals l ∈ L are in (1,+∞). The
construction for intervals in [−∞,−1) is similar.

Suppose the left endpoint an = a of ln has been constructed, and a is also the left
endpoint of some interval l = (a, b(l)) ∈ L. (To start the induction we take the
leftmost endpoint for a1.) Consider the function

F (b) ≡ Fε(b) =

∫ b

a

[
f − εT(a,b)

]
dΠ,

and define

bn = min{b ≥ b(l) : f(b) = 0, F (b) ≤ 0}.
For example, if we already have F (b(l)) ≤ 0, then bn = b(l). Since f ∈ L1

Π, we have
F (+∞) = −∞ and so bn <∞. We also define εn from the equation∫ bn

an

[
f − εnT(an,bn)

]
dΠ = 0.

Finally, we define an+1 as the leftmost endpoint of all intervals l ∈ L to the right
of ln.

It is clear from the construction that the intervals ln cover {f 6= 0}, that all εn’s
are ≤ ε, and that we have (4.16). Let us check (4.15). We consider three types of
intervals ln:

(a) F (bn) < 0 but ∃l ∈ L such that l ⊂ ln and |l|/δ(l) � |ln|/δ(ln),

(b) F (bn) = 0,

(c) other intervals.

Property (4.15) is obvious for the group (a). For the group (b), we use (4.14):

∑
(b)

|ln|2

(δ(ln) + |ln|)2
.

1

ε

∫
∪(a)ln

fdΠ <∞.

The argument for the group (c) is similar as long as we can show that the slopes are
> ε/2, i.e. Fε/2(bn) > 0. Since F (bn) < 0, bn is by construction the right endpoint
of some interval l ∈ L, and since ln 6∈ (a) we have |l| � |ln| . Let c be the left
endpoint of the above l; by construction, F (c) > 0. We have

Fε/2(bn) =

(∫ c

an

+

∫ bn

c

)[
f − ε

2
T(a,b)

]
dΠ >

∫ c

an

[
f − εT(a,c)

]
dΠ = F (c) > 0.
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Beurling-Malliavin density

4.6. Radius of completeness. Let Λ ⊂ R and let EΛ denote the family of expo-
nential functions {eiλt : λ ∈ Λ}. By definition, the radius of completeness of the
family EΛ is the number

R(Λ) = sup
{
a : EΛ is complete in L2(0, a)

}
.

In terms of Toeplitz kernels, by Proposition 3.2 we have

R(Λ) = sup
{
a : N [S̄aJΛ] = 0

}
,

where JΛ denotes some/any meromorphic inner function J such that {J = 1} = Λ.
By the Beurling-Malliavin multiplier theorem we also have

R(Λ) = sup
{
a : N+[S̄aJΛ] = 0

}
.

The combination of the second Beurling-Malliavin and the little multiplier theo-
rems, see Theorem 4.3, then gives the following metric characterization of R(Λ).
By definition, the Beurling-Malliavin density of Λ is the number

dBM(Λ) = inf{a : γa(±∞) = ∓∞ and BM[γa] is short}, γa := 2πnΛ − at.

Corollary. R(Λ) = dBM(Λ).

4.7. General transition parameter problems. Let M be a unimodular func-
tion with non-decreasing continuous argument; we call it a gap function. For a
given unimodular function U = eiγ we want to compute the critical exponent

sup
{
a : N [M̄aU ] = 0

}
.

This number of course can be ±∞. The Beurling-Malliavin density theorem corre-
sponds to the case M = S and U = J (or S̄cJ). More generally, Theorems 4.2 and
4.3 allow us to compute the transition parameter in the case M = S and U = Θ̄J
where |Θ′| ≤ const.

Of course, one can state similar problems concerning families of Toeplitz kernels in
other functional spaces. Theorem 4.1 states that the critical exponent is the same
in all Hp-spaces if both M and Θ are tempered and the ”gap” is wide enough:
N∞[bNM̄ ε] 6= 0 for all ε > 0 and ∀N .

One could try to generalize the Beurling-Malliavin theory (M = S) to arbitrary
gap functions. As a first step it is natural to consider the ”standard” gap functions

S(α) and S
(α)
+ , α > 0, defined as follows:

S(α)(x) =

{
S(xα), x > 0,

S(−|x|α), x < 0,
S

(α)
+ (x) =

{
S(xα), x > 0,

S(0), x < 0.

Note that these functions satisfy identities like

S(α)(kx) =
[
S(α)(x)

]kα
, (k > 0).

For each standard gap function, one would expect to have some kind of a Beurling-
Malliavin theory, i.e. a combination of theorems that allow to express the transition
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parameter in terms of the Beurling-Malliavin intervals under an appropriate growth
restriction on γ.

Here is a typical example of a transition parameter problem with a standard gap
function.

Example 1. Let Ai(x) denote the usual Airy function: it is a solution of the
equation y′′ = xy, which is L2 at +∞. It is well-known that the Airy function is
entire and also

Ai(x) =
√
xF

(
2

3
ix3/2

)
for some solution F of the Bessel equation of order 1/3. If x = −λ and λ > 0, then
we have

Ai(−λ) = i
√
λF

(
2

3
λ3/2

)
∼ λ−1/4 cos

(
2

3
λ3/2 + const

)
, λ→ +∞.

(4.17)

Given Λ ⊂ R we ask if the family of shifts

EΛ = {Ai(t− λ) : λ ∈ Λ}
is complete in L2(R+). Note that uλ(t) = Ai(t − λ) is an L2-solution of the
Schrödinger equation

−ü+ tu = λu, t ∈ R+,

so we can apply our general approach, see Section 3.1.

Claim. Up to a finite dimensional gap, the family EΛ is complete in L2(R+) iff

N [M̄JΛ] = 0, M =
[
S

(3/2)
+

]2/3
.

Proof: According to Section 3.1 and Theorem 4.1, the criterion for completeness (up
to a finite dimensional gap) is N [Θ̄JΛ] = 0, where Θ is the Weyl inner function. We
can replace Θ by M because of the asymptotic formula (4.17) for uλ(0) = Ai(−λ)
and a similar formula for u̇λ(0). 2

Remark. This completeness problem, which involves shifts of a given function
in L2(R+)) is different from the well-known Wiener problem concerning shifts in
L2(R). The latter is essentially the problem concerning exponential families in
weighted L2-spaces; it can also be restated in terms of Toeplitz kernels.

Let us now state the transition parameter problem. Given Λ, denote by E(a)
Λ the

family {uλ : λ ∈ Λ} of L2-solutions of the Schrödinger equation with potential
q(t) = t/a, (a > 0). We want to compute the ”radius of completeness” R(Λ), i.e.

the critical value of a such that E(a)
Λ is complete in L2(R+). In terms of Toeplitz

kernels we have

R(Λ) = sup
{
a : N [M̄aJΛ] = 0

}
, M =

[
S

(3/2)
+

]2/3
.

This is similar to the Beurling-Malliavin situation, which can be reformulated as
the completeness problem for the solutions of the Schrödinger equation with q ≡ 0
on [0, a] :

R(Λ) = sup
{
a : N [M̄aJΛ] = 0

}
, M = S

(1/2)
+ .

In the Airy situation, the parameter a characterizes the ”size” of the singularity,
which plays the same role as the length of the interval in the regular case.
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Transition parameter problems arise also in connection with the spectral theory
problems that we discussed in Section 3.

Example 2. Let L is a regular Schrödinger operator on [0,1] and let Λ ⊂ σ(L).
We want to characterize the numbers c such that

(i) the potential on [0, c] and the partial spectrum Λ determine L,

(ii) the potential on [0, c] and the spectral measure on Λ determine L,

see Section 3.8. According to the results of Section 3.9 (and Theorem 4.1), these

questions are equivalent to the transition parameter problems with M = S
(1/2)
+ –

to find the values of

inf
{
c : N

[
M̄2(1−c)JΛ

]
= 0
}
, inf

{
c : N

[
M̄2(1−c)J2

Λ

]
= 0
}

in the cases (i) and (ii) respectively.

Indeed, in the case (i), Λ has to be defining for Φ, the Weyl function corresponding
to the restriction of the potential to [c, 1], which means that N [Φ̄2JΛ] = 0 within
the admissible gap. Also, we can replace Φ by M (1−c). In the case (ii), we use the
same argument for the divisor 2χΛ.

4.8. Square root transformation. The following construction and its corollaries
in this and the next subsections are meant to give some isea of what the Beurling-
Malliavin theories of standard gap functions may look like.

Let U = eiγ be a unimodular function such that γ = 0 on R−, and let U∗ = eiγ∗

be a unimodular function with an odd argument related to γ by the equation

γ∗(t) = γ(t2), (t ≥ 0).

Proposition.

N∞[U ] 6= 0 ⇔ N∞[U∗] 6= 0.

Proof: ⇐ Suppose we have U∗H = Ḡ on R for some H,G ∈ H∞. Then we also
have U∗H

[ = Ḡ[, where we use the notation

H[(z) = H(−z̄).

(Note U∗ = U [∗.) Thus we have

U∗F = F̄ [, F := H +G[.

Consider now the functions f, g ∈ H∞(C+),

f(z) = F (
√
z), g(z) = F̄ (

√
z̄),

where the square root denotes the conformal map C \R+ → C+. Let us check that
Uf = ḡ on R. If t > 0, then f(−t2) = F (it) and g(−t2) = F̄ (it), so

ḡ(−t2)

f(−t2)
= 1 = U(−t2).

On the other hand, f(t2) = F (t) and g(t2) = F̄ (−t) = F [(t), and therefore

ḡ(t2)

f(t2)
=
F̄ [(t)

F (t)
= U∗(t) = U(t2).
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⇒ Suppose Uf = ḡ on R for some f, g ∈ H∞. Since U ≡ 1 on R−, the analytic
functions f ∈ H∞(C+) and g# ∈ H∞(C−) match on R+ and therefore define a
function in C\R+. Applying the square root transformation, we get F ∈ H∞(C+),

F (z) =

{
f(z2), < z > 0

g#(z2), < z < 0

Let us check that U∗F = F̄ [ on R. If x > 0, then F (x) = f(x2), F̄ [(x) = F (−x) =
ḡ(x2), and

F̄ [(x)

F (x)
=
ḡ(x2)

f(x2)
= U(x2) = U∗(x).

On the other hand, if x < 0, then F (x) = ḡ(x2), F̄ [(x) = F (−x) = f(x2), and

F̄ [(x)

F (x)
=
f(x2)

ḡ(x2)
=

1

U(x2)
= U∗(x).

2

The square root transformation makes it possible to derive the Beurling-Malliavin

theory of the gap function M = S
(1/2)
+ from Theorems 4.2-4.3 (we also use Theorem

4.1).

Corollary. Let U = eiγ = Θ̄J and suppose that both Θ and J have bounded
arguments at −∞. Suppose in addition

(arg Θ)′(t) ≤ const√
t
, t→ +∞.

(i) If γ(t) 6→ −∞ as t → +∞, or if γ(+∞) = −∞ but the family BM(γ) is long,
then

∀ε > 0, N
[(
S

(1/2)
+

)ε
U
]

= 0.

(ii) If γ(+∞) = −∞ and the family BM(γ) is short, then

∀ε > 0, N
[(
S̄

(1/2)
+

)ε
U
]
6= 0.

Here we consider only the Beurling-Malliavin intervals in R+, and the meaning of
the terms ”long” and ”short” is the same as in Section 4.3.

Example. Let L be the Schrödinger operator on R with potential q(t) = t2/4
(”quantum harmonic oscillator”) and let Λ ⊂ σ(L) = N − 1

2 . We want to find
the critical value c∗ of real numbers c such that q on (−∞,−c) and the spectral
measure on Λ (including the numbering of eigenvalues) determine L, see Section
3.8. We can explicitely compute c∗ in terms of Beurling-Malliavin intervals if the
set Λ satisfies the inequality

#(Λ ∩ l) ≥ |l|
2
− const (4.18)

for all intervals l = [a, b] ⊂ R+ such that b ≤ a+
√
a. Claim:

c∗ = inf{c : γc(+∞) = −∞ and BM[γc] is short}, γc := 2nΛ(t)−t−2c
√
t.

Sketch of Proof: Let Θ be the Weyl inner function corresponding to the restriction
of the potential to R+, so Θ2 is essentially the same (i.e. up to a finite dimensional
gap) as S+. Then the Weyl inner function corresponding to (−c,∞) is essentially
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the same as Φ = ΘM c, where M = S
(1/2)
+ . The data determine L if the divisor

2χΛ is defining for K[Φ2], i.e. (again up to a finite dimensional gap)

N [M̄2cU ] = 0, U = S̄+J
2
Λ.

Note that
γ(t) ≡ argU(t) = 2nΛ(t)− t+O(1), (t > 0).

To apply the corollary, we need to make sure that γ(t) does not drop by more
than a constant on each interval l described in the statement. This is exactly our
condition (4.18). 2

Let us state another corollary, which gives a necessary condition for the non-
triviality of a Toeplitz kernel in the ”one-sided” situation.

Corollary. Let U = eiγ and γ = 0 on R−. If N∞[U ] 6= 0, then∫
{γ>A}

dt

t
√
t

=
o(1)

A
, A→ +∞, (4.19)

in particular

γ+ ∈ Lp
(

dt

1 + t
√
t

)
, (0 < p < 1).

Proof: Consider the square root transform U∗. By the basic criterion, N+[U∗] 6= 0
implies

Π{γ∗ > A} =
o(1)

A
, A→ +∞.

2

One can state similar results for tempered γ’s satisfying γ = O(1) at −∞: if
Np[U ] 6= 0, then we have (4.19) at +∞.

4.9. Final thoughts. Except for the ”two-sided” case M = S and the ”one-sided”

case M = S
(1/2)
+ , the complete Beurling-Malliavin theory of the standard gap func-

tions is not known. Here we mention some preliminary considerations.

Two facts seem to be certain. First, the theories should be different in the subexpo-
nential case (α < 1 for two-sided gap functions and α < 1/2 for one-sided functions)
and superexponential case (α > 1 and α > 1/2 respectively). Second, the role of
the Smirnov class N+ in the case S(α), α 6= 1, is not the same as in the classical
case M = S. One should probably introduce appropriate ”Smirnov classes” for all
α < 1, e.g. the preimage of N+ under the square root transformation in the case
α = 1/2, cf. the last corollary.

Subexponential case. We have the following partial results. From the last corollary
we immediately derive

Corollary. Let M = S(1/2) and U = eiγ . Suppose

γ′(x) ≥ − C√
|x|
, x→ ±∞.

If γ(∓∞) = ±∞ and the family BM(γ) is short, then

∀ε > 0, N∞
[
M̄ εU

]
6= 0.
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Applying the square root transformation one more time we get

Corollary. Let M = S(1/4) and U = eiγ . Suppose

γ′(x) ≥ −C|x|−3/4, x→ ±∞.
If γ(∓∞) = ±∞ and the family BM(γ) is short, then

∀ε > 0, N∞
[
M̄ εU

]
6= 0.

These facts should extend to all S(α) with α < 1. The ”converse” statements (if
true) should follow from Theorem 4.4 in appropriate ”Smirnov classes”.

Superexponential case. We only discuss the gap function S+, which corresponds to
the two-sided case M = S(2). The proof of Thorem 4.3 applies verbatim to give
the following criterion in the class N+.

Proposition. Let U = eiγ . Suppose γ is bounded on R− and γ′ ≥ −const on R+.

(i) If γ 6→ −∞ at +∞, or if γ(+∞) = −∞ but BM(γ) is long, then

∀ε > 0, N+
[
Sε+U

]
= 0.

(ii) If γ(+∞) = −∞ and BM(γ) is short, then

∀ε > 0, N+
[
S̄ε+U

]
6= 0.

On the other hand, it is false that we have N∞
[
S̄ε+U

]
6= 0 in the case (ii). (Of

course, we still have N∞
[
uS̄ε

]
6= 0.) The criterion in H∞ should involve a different

definition of long families, probably the following:∑
l∈BM(γ)

|l|2

δ(l)3/2
=∞. (4.20)

Let us state a partial result in the language of S(2). Note that under the square
root transformation, the condition (4.20) becomes∑

l∈BM(γ)

|l|2

δ(l)
=∞.

We get the exactly this condition if we apply the non-rigorous argument preceeding
the proof of Theorem 4.4.

Proposition. Let M = S(2) and U = eiγ . Suppose

γ′(x) ≥ −C|x|, x→ ±∞.

(i) If γ(x) 6→ ±∞ as x→ ∓∞, or if γ(∓∞) = ±∞ but∑
l∈BM(γ)

|l|2

δ(l)(1 + log+ |l|)
=∞,

then
∀ε > 0, N+ [M εU ] = 0.

(ii) If γ(+∞) = −∞ and ∑
BM(γ)

|l|2 log+ |l|
δ(l)

<∞,
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then

∀ε > 0, N+
[
M̄ εU

]
6= 0.

Example. Let L be the harmonic oscillator considered in Example 4.9, and let
Λ ⊂ σ(L). The first part of the last proposition provides a sufficient condition for
the fact that q on R− and the spectral measure on Λ determine L. This condition is
less precise than the one stated in Example 4.9 because we have a larger gap, which
characterizes the singularity at infinity rather than the extra length of the known
part of the spectrum. On the other hand, the condition in the above proposition
does not require any extra assumptions on Λ, cf. (4.18).

In conclusion, we mention that the study of gap functions which are less regular
than the standard ones (or even arbitrary) is an interesting and probably difficult
problem.
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