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Annals of Mathematics, 149 (1999), 831-869 

Menger curvature and rectifiability 

By J. C. LEGER 

Introduction 

Let us first introduce some basic definitions needed to better understand 
this introduction and the rest of the paper. For a Borel set E C IRn, we call 
"total Menger curvature of E" the nonnegative number c(E) defined by 

c2(E) = /JJE 2(x, y, z)dll (x)dRl (y)de (z) 

where 'HI is the 1-dimensional Hausdorff measure in Rn, c(x, y, z) is the inverse 
of the radius of the circumcircle of the triangle (x, y, z), that is, following the 
terminology of [6], the Menger curvature of the triple (x, y, z). 

A Borel set E C Rn is said to be "purely unrectifiable" if for any Lipschitz 
function y: R -t R, 1H l(E n -(R)) = 0 whereas it is said to be rectifiable if 
there exists a countable family of Lipschitz functions yi : R -E Rn such that 
Hi1(E\ Ui yi(IR)) = 0. It may be seen from this definition that any 1-set E 
(that is, E Borel and 0 < 7-(t(E) < oo) can be decomposed into two subsets 

E = Eirr U Erect 

where Eirr is purely unrectifiable and Erect is rectifiable (see [4]). We can now 
state the main theorem of this paper. 

THEOREM 0.1. If E C R[n is a 1-set and c2(E) < oo then E is rectifiable. 

Before going on, I would like to mention that this result was previously 
proved by G. David in a paper which is to remain unpublished. His construc- 
tion is a kind of variant of P. Jones' Traveling Salesman Theorem (see [5]) 
and its main drawback is that it is very difficult to extend it to dimensions 
higher than 1. The construction given here to prove Theorem 0.1 extends nat- 
urally to any dimension, the main problem being to find interesting analytic 
or geometric criteria for it to hold. 

Here is a brief account of the origin and main application of Theorem 0.1. 
A compact subset E of C is said to be removable for the bounded analytic 

functions if the constants are the only bounded analytic functions on C\E. 
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J. C. LEGER 

A well-known conjecture of Vitushkin (see [8]) stated that a compact 1-set 
in the plane is removable for the bounded analytic functions if and only if it is 
purely unrectifiable. 

In 1996, P. Mattila, M. Melnikov and J. Verdera (see [6]) used the Menger 
curvature to prove that the conjecture holds under the additional assumption 
that the 1-set is Ahlfors-regular. 

Recall that a closed subset E of IRn is said to be Ahlfors-regular if there 
exists a constant C > 1 such that for any ball B centered on E, of diameter 
less than the diameter of E, 

(0.1) C-ldiamB < H1(E n B) < CdiamB. 

Their final argument is based on a condition very similar to the condition 

c2(E) < oo, although stronger, which is sufficient for a set to be rectifiable. At 
that time, this sufficient rectifiability condition was known to be valid only for 
Ahlfors-regular sets. 

Since then, G. David has proved that the Vitushkin conjecture in its full 
strength is true (see [1]; see also [2] as an intermediate step). The structure 
of his proof is almost the same as the one of [6] although the details are much 
more complicated due to the lack of the uniform estimate (0.1). His final 
argument is Theorem 0.1. 

Let us show why Theorem 0.1 is not void and why it gives a necessary 
and sufficient condition for a Borel subset of Rn to be rectifiable. Considering 
R2 = C, we have the very important relation which is the starting point of the 
work of Mattila, Melnikov and Verdera, 

(0.2) c2,z,3) E 1 
0ZeE3 (Za(l) - 

Zo(3)) (Z(2) - Zo(3)) 

where the sum ranges over the group 03 of permutations of three elements. 
This relation is not hard to check considering that the law of sines gives 

Area of the triangle(x, y, z) 
c(xY, Z) 4 

d(x,y)d(x,z)d(y,z) 
- 2 d(x, Ly,) 

d(x, y)d(x, z) 
where Ly,z is the line through y and z and d(.,.) is the Euclidean distance 
in In. 

The relation (0.2) implies that the L2 boundedness of the Cauchy kernel 
operator associated to an Ahlfors-regular subset E of C is equivalent to the 
fact that there exists a constant C > 1 such that for any ball B C C, 

c (E nB) < CdiamB. 

This property turns out to be equivalent to the fact that E is contained in 
a single Ahlfors-regular curve of the plane by a theorem of G. David and 
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MENGER CURVATURE AND RECTIFIABILITY 

S. Semmes. The same results are valid in Rn because in that case c2 is related to 
the vectorial kernel - for which we have the same L2 boundedness properties 
on Ahlfors regular curves in Rn. Theorem 0.1 is the non scale-invariant version 
of these results. 

Noticing that a finite collection of Lipschitzian images of [0, 1] is bounded 
and contained in an Ahlfors-regular curve, we deduce from Theorem 0.1 and 
the countable union feature of the definition of rectifiablity the following char- 
acterization: 

THEOREM 0.2. If E C Rn is Borel then E is rectifiable if and only if there 
exists a countable family of Borel subsets Fn such that UnFn = E, 7-t(Fn) < oo 
and c2(Fn) < o. 

I would like to end this introduction with a possible higher dimensional 

analogue of Theorem 0.1. Let d be a positive integer and, for a Borel subset 
E C Rn, set cd+l(E) to be 

S/, / */- f(d (x, < yo? " 
Yd 

>))d+l JxeE yoE JydE d(x, y) .. d(x, Yd) 
... d 

where R1d is the d-dimensional Hausdorff measure on RIn and d(x, 
< Yo, ., Yd >) is the distance between x and the d-plane going through the 
d + 1 points o,..., Yd. The quantity cd+ (E) equals c2(E) when d = 1. 

The interested reader may check that the method presented in this paper 
applies with only slight modifications to prove: 

THEOREM 0.3. If ld(E) < oo and cd+l(E) < 0 then, up to a set of Htd- 

measure zero, E is contained in a countable collection of Lipschitzian images 
of Rd (i.e. E is d-rectifiable). 

The main problem of this result is that we completely lost the connection 
with boundedness problems on singular integrals (Riesz kernels on surfaces for 

example) which are our central interest. 
I would like to thank G. David very much for the many conversations we 

had about this problem and his constant support, and Helen Joyce for kindly 
correcting many English language mistakes. 

1. First reduction 

Theorem 0.1 will follow from two propositions. The second and most 

important one states roughly that if we have some control on a set F and if 

c2(F) is very, very small then 99 percent of F has to be contained in the graph 
of some Lipschitz function. The first proposition only says that if E satisfies 
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the hypothesis of Theorem 0.1 then there is a nontrivial part of it, F, which 
satisfies the requirements of the second proposition. 

PROPOSITION 1.1. Let E be a set satisfying the hypotheses of Theo- 
rem 0.1, then for all r > 0, there exists a subset F of E such that 

(i) F is compact, 

(ii) c2(F) < r7diamF, 

(iii) -1(F) > dia40F 

(iv) for all x E F, for all t > O, 'H1(F n B(x, t)) < 3t. 

Proof. This is a standard uniformisation procedure as described in 

[4, p. 17]. As 0 < XTl(E) < oo, we know (see [4, Cor. 2.5]) that, for X1- 
almost all x E E, 

< im sup 1 (EnB(x, t)) < 1 (1.1) -<limsup <1. 
2- t-o 2t 

Set, for a positive integer m, 

Em x E E such that for all t E]0,-, 1, (E B(x,t)) < 3t . 

We have that Em C Em+i and from (1.1), (tl(E\ Um Em) = 0. Hence, there 
exists m such that 1(Em) > XI1(E) and C2(Em) < c2(E) < oo. 

Set, for r > 0, 

Z(T) -JJj c (x, Y, z)dHl (x)d-1 (y)d[l( (z) 

where A(r) = {(x, y, z) E El, d(x, y) < r and d(x,z) < r}. As C2(Em) < oo, 
2(r) -- 0 when r -4 0 so that we can find 0 < r0 < lm such that 

Io7H1 (Em) I(T0) 
<60 x 8 Z(TO)<760x8 ' 

Consider now the family of closed balls 

V= B(x,), xEEm, 0<<Em O< < , (Em n B(x, ) > 

From (1.1), V is a Vitali class for Em and because of Vitali's covering theorem, 
(see [4, Th 1.10]), there exists a countable subfamily of V of disjoint balls 
B(xi, ri) such that 

71(Em\ Ui B(xi, i)) = 

and 

'H1(Em) < 2 ri + T 11 (Em). 
2 
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To be complete, in order to get this conclusion, we should remark that by the 
definition of V, 

E Ti < 10 -OHl(B(xi, i) nEm) < oo. 
i i 

Moreover, we have that 

E c(B(xi,Ti) nE) (< z(0) <771 (Em) - - 8x60 

so by setting 

Ib= i: c2(B(xi, Ti) n Em) > ? 

we get 

ic2(S(xi, i)n Em) > 60 
ieIb 

(1l(EV(E7-(1(Em a) -H (Em) Hence, , ir < and E ri > since ri > 
iEIb ib i 

We can find a ball B(xi, Ti) such that 

* I1 (B(xi, ri)n Em) > i 

? C2(B(xi,i) n Em) < 7r60 

* for any ball B centered on B(xi, ,i), Hl (B(xi, ri) n Em n B) < 3diamB. 

We cannot take F to be B(xi, Ti) n Em because there is no reason for it to be 
compact. To fix this, we just use the interior regularity property of Hausdorff 
measure (see [4, Th. 1.6]) to find F, a compact subset of B(xi, ri) n Em such 
that X1(F) > 2 and remark that ri < 20 x 3 x diamF to get the conclusions 
of Proposition 1.1. a 

From now on, we will not need Hausdorff measure, the main proposition 
being in fact a general statement about some measures on R'n. To make this 
clearer, let us define the "total Menger curvature" of a Borel measure it on Rn 
to be the nonnegative number c(/p) such that 

c2 () = J c2(x, y,z)di(x)d(y)diz) 

It is clear that the total Menger curvature of a Borel set E is exactly the total 
Menger curvature of the measure 7H1 restricted to E. We will spend most of 
this article proving the following: 

PROPOSITION 1.2. For any Co > 10, there exists a number r > 0 such 
that if t is any compactly supported Borel measure on Wn verifying 
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* ,u(B(O, 2)) > 1, ,u(Rn\B(O, 2)) = 0, 

* for any ball B, I,(B) < CodiamB, 

* c2() < r, 

then there exists a Lipschitz graph F such that 

Po(r)> 
9 

hO(rn ) 100 

Proof of Theorem 0.1. Taking this proposition for granted, it is not hard 
to see that if E satisfies the hypotheses of Theorem 0.1 and if 7-l(Eirr) > 0 
then Eirr satisfies the same hypothesis as well, so that we can find F C Eirr 
using Proposition 1.1 and applying Proposition 1.2 to 40 x 'I1 restricted to a 
rescaled copy of F. We are then able to find a Lipschitz graph F intersecting 
Eirr in a set of positive measure. To be precise, we should remark that the 
c2 function of a set scales like a length and is invariant under isometries: this 
enables us to rescale the set F to a set of diameter 1 contained in the ball 

B(0, 2). We have a contradiction and Theorem 0.1 is proved. 1 

From now on, /u will be a measure satisfiying the hypothesis of Proposition 
1.2 and we will note its support F. Our duty is to find an adequate coordinate 

system of Rn and a Lipschitz function A: R -> RIn-1 whose graph will be the 
one we are looking for. 

These will be defined in Section 3 just after a first investigation on how to 
handle the geometry of the set F with the little information about F we start 
with. 

Before starting the real technicalities, I would like to point out that we 
assume that every ball appearing in the following construction is closed. This 

assumption is needed in order to apply Besicovitch's covering lemma. This is 
not a serious issue for our construction. 

2. P. Jones' / functions 

In this section, we define some functions used to measure how well the 

support of the measure u is approximated by straight lines at a given location 
and a given scale. We will see that these functions are related to the c2 number 

provided we are looking at points where the measure L does not degenerate 
too much. To quantify this notion of degeneracy, we need the following density 
functions. 

Definition 2.1. For a ball B with center x E Rn and radius t > 0, we set 

6 =(B(x, t)) 6(B) = (x, t) = t 
t 
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and, fixing a number ko > 1, 

6(B) =6(x, t) = sup 6(y, t). 
yEB(x,kot) 

Definition 2.2. Let k > 1 be some fixed number. For x E IRn, t > 0 and 
D a line in Rn, we set 

D (x t) = t JB( d (y, D) y t JB(x,kt) t 

3(x, t) = inf f(x,t), /1 (x, t) = inf OD 
(x, t). 

032(X,t) = inf D(t) 

,D (x, t) and 32D(x, t) are designed to measure the mean distance from the 
support of /t to the line D inside the ball B(x, kt). If 6(x, t) is too low, this 
interpretation is not valid so that these numbers make sense only if we keep 
a uniform lower control on the density function 6. (Recall that we supposed 
that there is an upper control on the function 6, namely 6(B) < 2Co.) For 
this purpose we introduce a density threshold, that is, a number 6 > 0, and 

analyze what happens in a ball B satisfying 6(B) > 6. 
We begin with a lemma depicting the basic geometrical situation in such 

balls. It will be of constant use throughout the rest of the construction. 

LEMMA 2.3. There exist constants C1 > 1 and C' > 1 depending only on 
Co and 6 such that given any ball B satisfying 6(B) > 6, there exist two balls 
B1 and B2 of radius diaB such that 

(i) their centers are at least 12diamB apart, 
2Ci 

(ii) /p(B n Bi) > f .C 

Proof. Without loss of generality we may suppose B = B(0, 1). Let C1 
and C' be two constants to be chosen at the end of the construction and 
suppose that any pair of closed balls of radius 1 centered on F n B(0, 1) 
satisfies that either their centers are less than 12 apart or one of them satisfies 

.(B n B(O, 1)) < _. 

We apply Besicovitch's covering lemma to the covering of F n B(0, 1) by 
the balls B(x, c ) with x c F n B(0, 1) to get N families Bm of disjoint balls, 
N depending only on the ambient dimension n , such that the union of these 
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families is still a covering of Fn B(0, 1). Considering volume, we see that each 

family contains no more than (2Cl)n balls. We have 
N 

- < E E (B n B(O, 1)). 
m=l BEBm 

Hence, there is at least one family Bm such that 

E .(B nB(0, ))> N 
BEB3m 

We set 

g = {B E 3m, /(B nB(0, 1)) > C 

By the hypothesis, any ball in g is contained in a single ball of radius 5-; hence 

(B nB(,))<30C0 
Beg 

because of the upper control on 6(B). 
Moreover, 

/ (B n B(o,1))< (2CI ) 

so that 
6 C2 + 3OC 

which gives the contradiction when C1 and C1 are well chosen. E 

A first consequence of Lemma 2.3 is a Carleson-like estimate on the /3 
which is a cousin of the estimates used in [3] to do the "corona construction." 
This is the construction we will follow in this paper with the numerous mod- 
ifications needed to handle the case of non-Ahlfors-regular sets. It should be 
noted that if the measure bu were the T-i-measure on an Ahlfors-regular set 
F then the corona construction of [3] would give the Lipschitz graph we are 
looking for directly. Our main problem here is when we do not have any lower 
control of the mass of a ball and we will have to show that such situations 
cannot happen too often. 

PROPOSITION 2.4. There exists a constant C depending on 6, Co, k, ko 
such that 

r f? r 0t dIt(x)dt / 
J0 (x, t)2l {,(Xt)}d t CC2(>). 

Proof. We need to define first some local version of c2. For a fixed number 
kl > 1, we set, for any ball B = B(x,t), 

c2 =J( (X t) 
c2 (u, V, w)du(u)dL(v)dp(W) 

kl( x,t) 
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with 

t3 t t t 
Ok (x,t) = {(u,v,w) E (B(x,kt))3d(u,v) > ,d(u, w) d(v,w) > 

and 
=c = J/ c2(, y, z)d[t(x)dg(y)d[t(z) 

with 

k d(x,y) < d(x,z) < kid(x,y) 
Okl= (x,y,z) E (RIn)3, and 

kil d(x,y) < d(y,z) < kid(x,y) 

A straightforward use of Fubini's Theorem gives 

fro 2?(x, t)d/u(x)dt J f c2l t)2 < C(kl)c k < C(kk)c2(). t2 _ < C(kl)c2 

Moreover, Holder's inequality (using the fact that 6(y, kt) < 2Co) gives, for 

any y E Rn, for any t > 0, 

31 (y,t)2 < C32(y,t)2 

so that in order to prove Proposition 2.4, we only have to prove, 

LEMMA 2.5. For all ko > 1, all k > 2, all 6 > 0, there exists kl > 1 and 
C > 1 such that if x E R5, t > 0 and 6(x, t) > 6, then for any y E B(x, kot), 

C2 ( xt) 2 
132(y, t)2< Ck < C < +k t 

t t 

We can apply Lemma 2.3 twice to find three balls B1, B2 and B3 enjoying 
the same properties as the two balls of Lemma 2.3 with perhaps different 
numbers C1 and C1. For each ball Bi, set 

Zi = {u FnBinB(x,t), 

j {(Iuw)EOkl (X,t)} (u. v ) dv, (v)d( w) < C'c (X, t) 

where C' is chosen using Chebichev's inequality, depending on 6, such that 

(Zi) > ) . 
For zl E Z1, we choose Z2 E Z2 such that 

? 
2 

(x, t) 

1{(Z1,Z2,W),o 
Ok (X,t)}c2 (Z1, Z2, dW)d(W) < C" klt , 

where C" depends on 6. 
Let L be the line going through zl and z2. 
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If w E (F n B(x, (k + ko)t))\(2Bl U 2B2), 

2( ) ) (w 2d(w,L) 2 

k\d (w, zi) d (w, Z2)} 

and 
t t 

- < < d (zi,w) < (k + ko)t < kit 
kl - C1 

if k1 is sufficiently large. Hence 

r 
(d (W, L)) dt(w) < Ccl2 (X, t). 

B(x,(k+ko)t)\(2BiU 2B2) d(wC (, t 
It remains to look at what happens in the ball 2Bi. Chebichev's inequality 

shows there exists Z3 G Z3 such that 

J ((Zl,W,Z3)Okl (X,t)}C2(Z1, , 3)d.(w) < C" 
k 

t) ,__ t2(,t) 

J {(W,Z2Z3)EO(xt)}C 2,Z 3))d(w) < C" kl (X, J]-{(w,z2,Z3)EOkl (X,t)' C" 
~2 

( ~,t) 

( d (Z3, L) < C " k (X, t) 
t t [ t - - t 

If L' is the line going through zl and Z3 we get, as before, 

LB (wt, L'))2 d(w) < Cc21 (X, t). 

Let w' be the projection of w on L' and w" the projection of w' on L. We have 

d(w,L)2 < d(w,w")2 
< 2(d (w, w')2 + d (w', w")2) 
< 2(d (w, L') + d (w', L)), 

and by Thales Theorem, d(w', L) = d (z3,L) zl w' Hence, as d(zl,w') < 
d(zl,Z3) 

(k + ko)t and d (zi, z3) > s-, 

d (w',L) < C (x, t) 
t t 

so that 

A ( t ) dt(w) < CC~ i(X, t). B2 (dk(w,L))2d(w) Cc(,t 
The same estimate on the ball 2B1 gives the lemma. D 

We end this section with a lemma which will be of constant use during 
the construction of the function A. It says roughly that at a given point and a 

840 
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given scale where we have a controlled density and a small 31, the lines almost 

realizing this 31 are very close to one another. 

LEMMA 2.6. For all 6 > 0, there exist eo > 0 and C > 1 such that if 
x F, t > O, E < so and 6(x,t) > 6, 6(y,t) > 6, d(x,y) < kt, then for every 
pair of lines D1 and D2 satisfying 

I d (z, Di) 1 f d(z,D2) ^ , I- d(, D 1 ) d,u(z) < 104, and - d,(z) < 104, 
t (x,kt) t t JB(y,kt) t 

(i) for all w E Di, d(w,D2) < Ce(t + d(w,x)) and for all w E D2, 
d (w, Di) < Ce(t + d (w, x)), 

(ii) angle(D1, D2) < C. 

Proof. By Lemma 2.3, we may find two balls B1 and B2 of radius L 
contained in B(x, kt) and B(y, kt) such that ,/(Bi) > 4. These balls are at 

least t apart. 

Because of the hypothesis and Chebichev's inequality, there exist zl E B1 
and Z2 E B2 such that d(zi, Dj) < Cet for i = 1,2 and j = 1,2. Let Zll be 
the projection of z1 on D1 and z21 the projection of z2 on D1. If w E D1, then 
w = zl11 + (1 - a)z21; therefore 

d(w,D2) < lal(d(zl, D2)+d(z2,D2))+ d(z2i,D2) 

whereas d (zll D2) < d (zll, Z12) < d (zll, Z1) + d (i1, z12) < Cet and the same 
is true for for d (z21, D2). Hence 

d (w, D2) < C(lal + l)Ct. 

Moreover, d (w, 21) = laId (zli, z21) and d (zll, z21) > z and this gives 

d (w, Z21) CC d(w,x) 
d (zi, z21) t t 

Hence 
d (w, D2) < C(d (w, x) + t)e. 

The same argument is valid when w E D2 and this gives the estimate on the 

angle between D1 and D2. E 

3. Construction of the Lipschitz graph 

The construction of the function A will be done by a stopping time argu- 
ment similar to the one used in [3]. The main difference here is that we are not 

allowed to use the "dyadic cube" family of partitions which is a central tool 
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of the construction of [3]. Such a family, enjoying so many nice measure and 
size features, cannot be expected to exist on a set which is not Ahlfors-regular. 
This will be fixed by consideration of possibly overlapping balls and use of 
Besicovitch's covering lemma many times. 

3.1. Construction of the stopping time region. The main parameter of 
the construction is the density threshold 6 which we already alluded to. It 
will be fixed to a value depending only on the ambient dimension n. To be 
precise, we take 6 = 10-10/N where N is the overlap constant appearing 
in Besicovitch's covering lemma. The other parameters of the construction, 
namely the numbers k > 10 and ko > 10 appearing in the definitions of P1 and 
6, a /,l-threshold e > 0, a small angle a > 0 and the number r > 0 will have 
to be tuned during the construction. Roughly speaking, the k's will be chosen 
depending only on 6 and 77 <s E5 < ac25 < 1. We should recall that ja is a 
Borel measure satisfying the hypotheses of Proposition 1.2 and that F is the 
compact support of /. 

Let us choose a point xo E F and then fix a line Do such that /DO (xo, 1) 
< e which will be the domain of the function A. (This is possible because of 
Lemma 2.5.) Consider now 

(i) 6(x,t)>16 
(ii) 3l(x,t) < 2e 

Stotal = (, t) F x (0, 5), f3 (x, t) < 2 
(iii) 3D,t s.t. and 

angle(D,t, Do) < a 

We have that F x [1, 5) C Stotal and Stotal is not a stopping time region in the 
sense of [3] because it is not coherent. This means that if a ball B is in Stotal 
we do not know if larger balls with the same center are also in Stotal. This 
property will appear to be crucial in the construction. To correct this, we set, 
for x E F, 

t t 
h(x) = sup t > 0, 3y E F, 3r, J > r > , x E B(y, ) and (y, ) Stotal 

and we set 
S = {(, t) E Sotal,t > h(x)}. 

Remark 3.1. If (x, t) E S and t > t then (x, t) E S. 

This feature of David-Semmes' stopping time regions is called coherence 
and will be used in the following without much warning. We will often consider 
S as a set of balls and we will say that B E S if B = B(x, t) and (x, t) E S. 
The balls B(x, h(x)) belong to S. They are called the minimal balls of S. We 
are now ready to cut F in four pieces, one of which will appear to be very 
nice for what we expect to construct and three others where bad events occur. 
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Our goal will be to prove that these bad pieces carry only a small part of the 
measure /a. 

Definition 3.2 (A partition of F). Let 

z = {x E F, h(x)= 0o, 

f 3y E F, 3r [E E ], E 
B(y,j) 2 

F1= j xe F\Z,) and 

[ t6l~5(y, r)< < 

f r i ~ E F\(Z U ) 3y E F, 3Tr E [h( ,T ]7 E B(y,) 
7 

F2= x E F\(Z U F1), and , 

t [P31(y,7)> )J 

f f 3y E F, 3re[ 5 , 2 ]x ,B(y,) 
F3 = z x E F\(Z U F1 U F2), and 

angle(Dy,,, Do) > a J 

Remark 3.3. If x E F3 then for h(x) < t < 100h(x), angle(Dx,t, Do) 
> la. To see this, apply Lemma 2.6 to get that angle(Dx,h(x), D,t) < Ce for 
each of these t and remember that e < a. 

LEMMA 3.4. 

F = Z U Fl U F2 U F3 

and this union is disjointed. 

Proof. Suppose x E F\Z so that h(x) > 0; then there are sequences 
tn, 0 < tn < h(x), t -+ h(x), y, E F and r, t ? < r < t, such that 
x E B(yn, 2) and yn 0 Stotal which means that 

(1) either 6(yn, rn) < 2 , 

(2) or 6(Yn,rn) > ?6 and 1 3(yn, n) > 2e, 

(3) or 6(Yn, rn) > 16, 3i(yn, rn) < 2e and for any line A such that ,^(Yn, rn) 
< 2e, we have angle(A, Do) > a. 

Because F is compact, we may suppose that Yn -- y E F, rn -+ r and (Yn, 7n) 
is in case (1) for any n or in case (2) for any n or in case (3) for any n. We 
have that x E B(y, j) and 4 < T < .( 

* If (yn, n) satisfies (1) for any n, then x e F1. 
Indeed, if a > 0 is small, for any sufficiently large n, B(y, - a) is 
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contained in the balls B(yn, Tn). Hence 

/~(B(y, 7r - a)) < p(B(yn, -n)) 

< - 6n 

< 6(r-a), 

which gives that &(y, r- a) < 6 so that x C F1. 

* If (Yn, Tn) satisfies (2) for any n and x 0 F1 then x E F2. 
Indeed, let A be a line and let a > 0 be such that a + - < ( The ball 

B(y, 7 + a) contains B(yn, Tn) for any sufficiently large n. Hence 

2 /3 "(y,T+a) > () A(Yn,Tn) 

> 2 ( -n )2 
~-+O 

> e, 

which shows that x E F2. 

* If (Yn, Tn) satisfies (3) for any n and x f F1 U F2 then x E F3. 
Indeed, let A be a line such that 31 (y, T) < ?; if a > 0 is sufficiently 
small, 

13 (yn,,- rn -) < (-)2 

3 
< -E. 
- 2 

As there is enough /u-measure of F in B(yn, rn - a), we can conclude that 

angle(Ao, D) > -a which implies that x E F3 provided E <K a. C1 

As indicated before, we are going to construct a Lipschitz function 
A : Do - DDL such that the set Z is contained in the graph of A. Our 
goal will be to show that ,u(Z) > 9-0/(F) for an adequate set of parameters. 
It will then be enough to show that /,(Fi) < 10-6 for each i, which will be 
done in Propositions 3.19, 3.5 and 5.9. We can handle the case of F2 now. 

PROPOSITION 3.5. 

(F2) < 10-6. 

Proof. We should remember that 77 < e5 and that 6 has been chosen once 
and for all. Now, we remark that if x E F2, then for any t E (h(x), 2h(x)), 

1(x t) > i (Y,7T) 
b 

844 

This content downloaded from 128.61.116.253 on Fri, 3 Jan 2014 09:30:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MENGER CURVATURE AND RECTIFIABILITY 

where (y, r) appears in the definition of the fact that x E F2. We have for 
such t's, 

3i(X,t) > . 
10 

Now, we have, by Proposition 2.4, 

c2(F)? ff00 >(,_, d(x)dt 

1 J 2h(x) ( d()dt CIFF]h() 3(xAt) 

1 2h(x) \2 dc(x)dt 

C F2 h(x) -\1/ t 

> i2t(F2)' -c 
which implies 

C6 0_6 
~/(F2) < 7 < 106. ' 

In order to construct the function A, it is natural to introduce I, the 

orthogonal projection onto Do and rl1, the orthogonal projection onto D-. 
We do not have any control of the function h whereas our goal is obviously 
to control the size of the sets where h is positive and that is why we need to 
work with some smoothed version of h (see the definition of the function d just 
below). The second thing we need is some way to associate to each point of Do 
some "good" point of F; this is the meaning of the function D defined below. 

Definition 3.6 (The functions d and D). For x E Rn, we set 

d(x)= inf (d(X,x)+ t) 
(X,t)E'S 

and for p E Do, we set 

D(p)= inf d(x)= inf (d(r(X),p) +t). 
xer-1(p) (x,t)es 

The following two remarks are easily seen: 

Remark 3.7. d and D are 1-Lipschitz functions. 

Remark 3.8. h(x) > d(x) and Z = {x E F, d(x) = 0} because F is closed. 

3.2. Construction of A. We start with a fundamental lemma which is a 
first attempt at inverting the projection 7r : F -D Do. 

LEMMA 3.9. There exists a constant C2 such that whenever x, y E F and 
t > 0 are such that d (7r(x), 7r(y)) < t, d(x) < t, d(y) < t then d (x, y) < C2t. 
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Proof. If t > 1, there is nothing to prove; otherwise, as d(x) < t and 

d(y) t, there exist X and Y such that x E B(X, 2t) E S and y E B(Y, 2t) E S. 
If d (x, y) > Lt where L is some fixed big number, then d (X, Y) > Lt, 

d (7r(X), 7r(Y)) < 5t, B1 = B(X, 2d (X, Y)) E S and B2 = B(Y, 2d (X, Y)) E S. 
Let D1 and D2 be lines associated to B1 and B2 by the definition of S. 

These lines satisfy the hypothesis of Lemma 2.6. Let B' = B(X, 2e2d (X, Y) 

+2t) E S and B' = B(Y, 2Ed (X, Y) + 2t) E S. We have 

d (X', D1) d(X, Y) 1 d(X', D1) 
d(X .Y) < 

d(Xy)2d(X ,Y),B, d(X, Y) 

< CeK 

and 

? d(YDd (Y,') CE% TB! d(X', a,(d(X,'Y) 

Now, by Chebichev, there exist X' E B' and Y' E B' such that d (X', Di) < 

ce d (X, Y) and d (Y', D2) < Ce'd (X, Y). 
Considering XI the projection of X' on D1, Y2 the projection of Y' on D2 

and Yl' the projection of Y2 on D1, we have 

d (X, X') < (25 + 2)d(X,Y), 

d (Y,Y') < (2! + Z)d(X,Y), 

d(X,Xl) < CE2d(X,Y), 

d (Y,Y) < C2d (X,Y), 

d(Y',Y2) = d (Y2,D1) < Cd(X,Y) 

by Lemma 2.6. So, 

d( r'(X), rl(Y)) < d (7r(X), i7r(X')) +d (7(X'), 7r(XI)) 

+ d (7r'(Y2),I 7r(Y')) + d (7 (Y'), ir(Y)) 

+d(74 (X), 7r7(Yl)) 

< C(52 + 1)d (X, Y) + 2ad (7r(XI), 7r(Y)) 

< (62 + )d(X,Y) +2ad (r(X), 7(Y)), 

by the same decomposition. 
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Now if E is sufficiently small and L sufficiently large, 

d (l(X)17(Y)) <Cd ((X), 7r(Y)) < Ct. 

Hence d (X, Y) < Ct, which ends the proof. a 

Lemma 3.9 applied with t = 0 shows that 7r: Z -> Do is injective and we 
can define the function A on 7r(Z) by setting A(7r(x)) = 7rl(x) for x E Z. We 
should note that a technique similar to the one used in the above proof shows 
that the function A : r(Z) -, DlJ is 2a-Lipschitz, namely 

d (7r(), 7rL(y)) 
< 2ad (7r(x), 7r(y)) 

What remains to do is to extend A to the whole of Do. To that end, we 
use strictly the same method as in [3] which is a variant of Whitney's extension 
theorem. Let us choose once and for all a family of dyadic intervals on Do. For 

p E Do such that p is not on the boundary of one of the dyadic intervals and 

D(p) > 0, we call Rp the largest dyadic interval containing p and satisfying 

diamRp < - inf D(u). 
- 20 UERp 

The interval Rp does exist because D(p) > 0. We can now consider the col- 
lection of these intervals Rp and relabel it {Ri, i E I}. The intervals Ri have 
disjoint interiors and the family of the 2R/'s (here 2R is the interval having 
the same center as R and twice the diameter) is a covering of Do\0r(Z). This 
last fact is due to the fact that D is a 1-Lipschitz function. Using this idea we 
note: 

Remark 3.10. If p E 10Ri, 10diamRi < D(p) < 60diamRi. 

Indeed, on the one hand, if u is a point in Ri, as D is 1-Lipschitz, we have 
D(p) > D(u) - 10diamRi > 10diamRi; on the other hand, if u is a point of 
Ri, the father of Ri which satisfies D(u) < 20diamRi < 40diamRi, we have 
D(p) < D(u) + 10diamRi < 60diamRi. 

This gives immediately the following lemma which we will use below. 

LEMMA 3.11. (i) There exists a constant C such that whenever 
1ORi n lORj 7 0 then 

CldiamRj < diamRi < CdiamRj. 

(ii) For each i E I, there are at most N intervals Rj such that 

10Ri n 10lOR 0. 

Notice that we use the same letter N as the one used for Besicovitch's 
overlap constant: both of them are used in much the same way so that it will 
not be a problem. 
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Let us set Uo = D n B(O, 10) and Io = {i E I, Ri n Uo $ 0}. We claim 
that there exists a constant C > 1 such that for any i E Io, there exists a ball 
Bi E S such that 

(i) diamRi < diamBi < CdiamRi, 

(ii) d(7r(Bi),Ri) < CdiamRi. 

Indeed, if p E Ri, then there exists (Xi, t) E S such that d (p, 7r(Xi)) + t < 

2D(p) < 120diamRi. Now if diamBi = 2t is too small to satisfy (i), we can 
always go up in S to get diamBi = diamRi because of Remark 3.1. We let Ai be 
the affine function Do -- D1 whose graph is Di = DBi. Also, Ai is Lipschitz of 
constant < 2a (in fact the best constant is less than tan a) because of property 
(iii) in the definition of Stotal. We have the following estimates. 

LEMMA 3.12. There exists a constant C such that whenever 1ORi n 

10Rj 7 0 then 

(i) d (Bi, Bj) < CdiamRj, 

(ii) d (Ai(q), Aj(q)) < CediamRj for any q E 100Rj, 

(iii) I0(Ai - Aj) < Ce. 

Proof. For (i), it is enough to apply Lemma 3.9 to the centers of Bi and 

Bj and to t = CdiamRj. For (ii) and (iii), once we know (i), we can apply 
Lemma 2.6 provided k is chosen large enough. O 

We are now ready to finish the definition of A on Uo\Z using a partition 
of unity. For each-i, we can find a function -i E C??(Do) such that 0 < Xi < 1, 
Qi = 1 on 2Ri, i - 0 outside 3Ri, 

C C 
lil < ---- and 12il < c 

dia < 
diamRi (diamRj)2' 

There is then a partition of unity for V = Uie0 2Ri defined by 

q(p) = qi(p) )i(P) E ) 

Also, 
C C 

1a^1i < and 2il < 
c 

diamRi (diamRi)2. 

Set, for p EV, 

(3.1) A(p) = E qi(p)Ai(p). 
iEIo 
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Since V n r(Z) = 0 and Uo\w(Z) C V, we have just defined A on the whole 
Uo. It remains to show that both definitions glue together to show that A is a 
Ca-Lipschitz function. 

We show first that A restricted to 2Rj is 3a-Lipschitz. If p and q are two 

points in 2Rj, 

d (A(p), A(q)) < ii(p)d (Ai(p),Ai(q)) 
i 

(3.2) + 1 i(P) - i(q)ld (At(q), Aj(q)) 
i 

(3.3) < 2ad (p,q) + C d (p, q) ediamRj 
diamRtj 

< 3ad(p, q). 

To go from (3.2) to (3.3), note that if $i(p) - (i(q) 5 0 then 3Ri n 3Rj Z 0 
and Lemmas 3.11 and 3.12 apply. 

It remains to show that if P1 E UjEIo 2Rj and po E 7r(Z) then 

d (A(pi), A(po)) < Cad (pl,Po). 

Let j E Io be such that pi E 2Rj, pick p E Rj and let Bj be the corresponding 
ball, Dj the associated line and Xj a point in Bj n F such that d (Xj, Dj) < 

CediamRj (found by Chebichev). 

d (A(pi),A(po)) < d(A(pi),A(p)) 
+ d (A(p), Aj(p)) + d (Aj(p), Aj (r(X))) 

+d(Aj(7r(Xj)), X?(Xj)) +d (7l (Xj),A(po)) . 

We remark that D(pi) < d (pl,po) because D is 1-Lipschitz and D(po) = 0 so 
that diamRj < d(p, po). Now 

d (A(p),A(p)) < 3adiamRj 
< 3ad (pl,po), 

and 

d (A(p), Aj(p)) < cki(p)d (Ai(p), Aj(p)) 

(3.4) < CediamRj by Lemma 3.12, 
< ad (p, po) because e < a, 

and 

d (Aj(p),Aj(7r(Xj))) < 2ad (p,7r(Xj)) because Aj is 2a-Lipschitz, 
< CadiamRj by construction of Bj, 
< Cad(pl,po), 
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and 

d (Aj(7r(Xj)), r'(Xj)) < 2d(Xj, Dj) because a is small, 
< CediamRj by the choice of Xj, 
< ad(pi,po), 

and, as in the proof of Lemma 3.9 and the proof of the 2a-Lipschitzness of A 
on 7r(Z), because xo = po + A(po) E Z, 

d (7r'(Xj), r(xo)) < 3ad (Xj, xo) because e2 << a 

< 10ad (Tr(Xj),po) because a is very small 
< 10a(d (r(Xj),p) + d(pi,po)) 
< Cad(pi,po). 

This shows that A is Ca-Lipschitz. 

We end this construction by a last estimate on A. 

LEMMA 3.13. There exists a constant C such that if p E 2Rj then 

Cs 
102A(p) < diamR 

diamRj 

Proof. We have 

o9A = 8O( c iAi) 
i 

= ,(9<a i)Ai + 2E 0a9 Ai 
i i 

because Ai is affine. Moreover ui 9oi = 0 so that , for u E 2Rj, 

aOAlI(u) ?< l\iilJAi - Ajl + 2 IO>ill9(Ai - Aj)l. 
i i 

In each of these sums, there are at most N terms; moreover, if u is in the 
support of qi so that we have 3Ri n 3Rj 4 0, then C-ldiamRi < diamRj < 
CdiamRi. Finally, 

C 
I ?- (diamRi)2' 

diamRi' 
IAi - Aj < CediamRi and 

\I(Ai - Aj)l < Ce by Lemma3.12 

and summing up gives the desired result. 

850 

This content downloaded from 128.61.116.253 on Fri, 3 Jan 2014 09:30:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MENGER CURVATURE AND RECTIFIABILITY 

3.3. Most of F lies near the graph of A. The aim of this section is to show 
1 

that most points of F are at distance less than e2d(x) from the graph of A, 
which is the thesis of Proposition 3.18. 

We set, for K > 1, 

G = {x E F\Z,Vi, r(x) E 3Ri == x KBi} U {x E F\Z,7r(x) E 7(Z)}. 
We may remark that if x E F\(G U Z) then there exists i E I such that r(x) E 

3Ri and x E KBi. Now, if 7r(x) E 3Rj for j Z i, Lemma 3.11 and construction 
of the balls Bi guarantee that diamRi, diamRj, diamBi and diamBj are of 
the same order of magnitude. Lemma 3.12 implies that x E K'Bj for a K' 

depending on K and on the other constants appearing in Lemmas 3.11 and 
3.12. This shows we could have used "there exists" instead of "for all" in the 
definition of G. 

LEMMA 3.14. If K is large enough, p((G) < Cr. 

Proof. If x E G\1r-1(Z) then 7r(x) E 3Ri for some i and x ~ KBi. Letting 
Xi be the center of Bi, we have 

d (7r(x),7r(Xi)) < CdiamRi and 

d(Xi) < CdiamRi; 

hence, by Lemma 3.9 applied to x, Xi and CdiamRi, provided K is large 
enough, d(x) > diamBi. We can apply the same lemma with t = d(x) to 

get that Xi E B(x,C'd(x)). Moreover, d(Xi,x) + diamBi > d(x) so that 

d(Xi,x) > d( because diamBi < d2. (See Figure 1.) 

x 

d(x)/2 < I < 

C-Figure 1. x,z) Figure 1. c2(x, y, z d(x) 2 d(Tx7' 
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Now, d (((x), 7r(Xi)) < d() The ball B(X, d()) belongs to S because -0 , 20 
it has the same center as Bi and is larger. Using Lemmas 2.3 and 2.6, we 
find two balls B1 and B2 contained in B(Xi, 1d() of radius 2()-, containing 

d(x) more than o-- of mass. By Chebichev's inequality, there exist B1 C B1 and 

B2 C B2 such that 2/u(Bi) > p/(B1) and 2[t(B2) > ,(B2) and for any y E BI, 
any z E B2, the line Lyz going through y and z makes an angle less than Ce 

with the line associated with B(Xi, d0) Hence, provided e < a, such a line 
has an angle less than 2ac with Do. Hence, if ac is small enough, for any y E B1 
and any z E B2, we have d (x, Ly,z) > d so that 

2(x,Y,z) > ( d(,Ly ) 
2 

c2 
(x,y,z)_>d (x, y) d (x, z) 

C-1 
- d(x)2' 

Hence, 

c2 (x, y, z)dti(y)d(z) > 
d (x)2 J /, d(y)d (z) 

> C-l 

If x E G n 7r-1(Z) we can get the same inequality by reasoning the same way 
with the point X = 7r(x) + A(Tr(x)) E Z. 

By integrating the inequality over all points x E G, we get 

-(G) < Cc2(). 0 

LEMMA 3.15. There exists a constant C3 > 1 such that for any x E F\G, 
CT-ld(x) < D(7r(x)) < d(x). 

Proof. If d(x) = 0, the lemma is obvious; if not, 7r(x) E 3Ri and x E KBi 
for a given i so that D(7r(x)) > C-ldiamBi; now, x E KBi so that d(x) < 

CdiamBi. O 

LEMMA 3.16. For any x E F, ift > d(x) 

JBt)\/ d (u, 7r(u) + A(7r(u))) dl (u) < Cet2. 

(xProof. Suppose that t> , and set 

Proof. Suppose that t > 0, and set 

I(x, t) = {i E I; (2Ri x Do1) n B(x, t) n (F\G) L 0} . 
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We have 

JB \G 
d (u, r(u) + A(7r(u))) d/(u) 

< 
xDnK 

d (7r'(u), A( w{(u))) d a(u) 
ici(x,t)\c 

< Ed ( (U), Aj ( ,( r (u)) d) d(u). 
iE(x,t) 3 

Using the facts that 

* d (rl (u), Aj(7r(u))) < 2d (u, Dj) because a is small, 

* qfj(7r(u)) 4 0 implies, by Lemma 3.11, that K'Bi C kBj provided k is 
large enough, 

* PDj (Bj) <ediamBj, 

* diamBj, diamRj, diamRi are of the same order of magnitude, 

* there are at most N indices j (see Lemma 3.11 (ii)) such that Oj(7r(u)) 
70, 

we get 

J(t d (u, 7r(u) + A(7r(u))) d/(u) < Ce 3 (diamRi)2. 
B(x,t)\G ^iEI(,t) 

Moreover, if i E I(x, t) then there exists y E B(x, t) n (F\G) such that 
7r(y) E 2Ri so that, because of Remark 3.10 and Lemma 3.15, 

diamRi < CD(7(y)) < Cd(y) < C(d(x) + t)) < Ct. 

Finally, we have 

JB d (u, 7r(u) + A(7r(u))) () < Cet E diamRi 
B(x,t)\G iEI(x,t) 

< Cet2 

because the cubes Ri are essentially disjoint and are contained in the ball 
B(7r(x), C't). C 

As we said in the introduction of this section, we want to prove that most 
points of F are near F, the graph of A, which is why we introduce the following 
definition. 

Definition 3.17 (A good part of F). 

F = x F\G, d (x, r(x) + A(7r(x))) < e2d(x) . 
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We have the following very important proposition. 

PROPOSITION 3.18. u(F\F) < CE2. 

Proof. We have that ,u(G) < Cr < Ce2. As 

F\(FUG)c U B(x, (x) 
10 )' 

xEF\(FUG) 

we may use Besicovitch's covering lemma to extract N subfamilies Bn of dis- 
joint balls from this covering of F\(F U G) such that the union of these sub- 
families is still a covering of F\(F U G). Then 

p(F\(FUG)) ? [ d (u, 7r(u) + A(7r(u))) 2i,(F\(PUG)) < 
d . 

dj;u JF\(FuG) d(u) 

N d (u, 7r(u) + A(r(u)))d( 

(3.6) < 
= B d() B\G d (u, 7(u) + A(7r(u))) dI(u) 

N 

(3.7) < CE y y. diamB 
n=O BEBn 

(3.8) < Ce. 

Let us justify these computations. 

* To go from (3.5) to (3.6), we note that if u E B = B(x, d)) then 

d(u) > L9d(x) because d is 1-Lipschitz. 

* To go from (3.6) to (3.7), we apply Lemma 3.16 to the ball B = B(x, d). 

* To go from (3.7) to (3.8), if B = B(x, d() and B' = B(y, d()) are two 
balls appearing in the sum, then, provided C is very large (depending 
on 6), 

- either 1B and 1B' have disjoint projections on D, 
- or if 2d(x) > d(y), B' C 4C2B and diamB' > (2C3)-ldiamB. 

Indeed, if the projections of 1B and hB' on D are not disjoint and 
d(x) > d(y), then, applying Lemma 3.9 to x, y and t = d(x), we get 
d (x, y) < C2d(x) and, by Lemma 3.15, C31d(x) < D(ir(x)) < D(7r(y)) + 
d() < d(y) + d) so that d(y) > (2C3)-d(x). 

Now, we estimate ZBEB, diamB. Let B1 be a ball in Bn whose radius 
is at least half of the maximum radius and let B3 be the family of all 
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the balls B' E Bn which satisfy 7r(-Bi) n lr(1B') - 0. We can do this 
operation again with B2, a ball in BnB\lB whose radius is at least half 
of the maximum radius and let 13n be the family of all the balls B' in 
Bn\BXl which satisfy 7r(hB2) n 7r(- B') 7 0. We construct in this way a 
sequence of balls Bk and a sequence of families Bk. Considering volume, 
we see that each family contains at most M balls where M depends 
only on S because the radii of the balls of each family are of the same 
order ~ diamBk and are contained in a ball which has the same radius. 

Moreover, we note that 

k 

because by construction, Zk diamBk < oo so that diamBk -O 0 when 
k -oo. Now 

diamB = 5 5 diamB 
BEBn k B Bnk 

< M 5 diamBk 
k 

< MC diam7r(CBk) 
k 

< C 

because the projections of the balls are disjoint and are contained in 
B(0, 10) n Do. 

We can now estimate ,u(Fi), where, as we recall, 

h(x) h(x) 7' 
FI= xEF\Z,3yEF, 3r E [ 5 ) 2 ),xEB(y, ) and6(y,r) < 6}. 

PROPOSITION 3.19. ,(F1) < 10-6. 

Proof. Since 

F n/ c U B(x, (x), 
xeFl nP 

by Besicovitch's covering lemma, we may extract from this covering N sub- 
families Bn of disjoint balls such that their union is still a covering of F1 n F. 
Notice that, by the construction of F, these balls are almost aligned on the 
graph r. (See Figure 2.) We have then 
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(3.9) ,t(Fi n F) 

(3.10) 

(3.11) 

N 
< E E t(B) 

n=O BE3Bn 
N 

< 106 E diamB 
n=O BE3Bn 

< 1000N6. 

We now justify these computations. 

* To go from (3.9) to (3.10), we use the definition of F1, 

* To go from (3.10) to (3.11), we note that for a ball B appearing in the 
sum, we have, provided E and a are small enough, 7lI (r n B) > diamB 

so that EBCE3n diamB < 10T1(Fr n B(0, 2)) < 40. 

Having chosen 6 < N10- (so that ,/(Fi n F) < 10-7) 
that ,(F\F) < 10-7), we obtain the control we sought. 

and e very small (so 
O 

Figure 2. The balls are aligned on r, the graph of A. 

4. The y function of A 

For p E Do n B(0, 10) and t > 0, set 

y(p,t) = inf - 
a t B(p,t)nDo 

IA(u) - a(u) d 
t 

where the inf is taken over all affine functions a: Do -- Do and 

d(u + A(u),M)d 
t 
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where the infimum is taken over all lines M. As the Lipschitz constant of A 
may be chosen small enough, 

7(p(, t) < 7(P, t) < 27(p, t). 

These y functions measure the approximation of the function A by affine func- 
tions and the approximation of the graph of the function A by lines. They are 
very similar to the p/ function and the goal of this part is to get a control on 
- similar to the one we got on P/ in Proposition 2.4, namely 

PROPOSITION 4.1. 

J 7(p,t)2 
ddt < Ce2+Cc2(() oJ OUo t 

< Ce2 

where C does not depend on a. 

We will use this estimate in the next part to show that the function A 
cannot oscillate too much which would be the case if F3 were too large. 

LEMMA 4.2. 

E jdamRj 7(P, t)2 t < Ce. 
iEIo t 

Proof. By Taylor's formula, y(p,t) < Ct supEB(p,t) I02A(u) so that by 
Lemma 3.13 (because u E 2Ri), 

f JR y(p, t) t < Ce (diamRi)2 Jod IRid 

i Io iERi iEiI 

< Ce2 

To complete our comparison program, it remains to estimate 

A2 (p t)2dpdt 
Jo0 J(Z)Pt) t 

and 

~E A Xf(P, t)2 . 
iEIo diamRi Ri t 

Therefore we need an estimate of -y(p,t) when t > 60. We fix p and t 

satisfying this relation. Hence, there exists (X, T) E S, X not depending on t 
such that 
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* d (r(X),p) <Ct, 

T = Ct. 

If X E B(X, t) n F, we have d(X) < t + T < Ct. Let Dp,t be a line such that 

3Dp,t (X, t) < 2 ,1 (X, t). 

Now, I(p, t) = i E Io, Ri nB(p, t) $ 0}. Then, 

"V(n t < 21 f d (u + A(u), Dp,t) d,, ; V) J - ' IJ t JB(p,t) 

< 2-1 
t JB(p,t)n7r(z) 

t 

d(u + A(u),Dp,t)d 
t 

+2 zE 1 d (u + A(u), Dp,t)du 
iEI(pt)t B(p,t)nRi t 

= a+ - ai. 
iEI(p,t) 

We estimate a first. On one end, if x = u + A(u) E Z then d(x) = 0; on 
the other end d(7r(x),7r(X)) < Ct and d(X) < Ct so that d(x,X) < Ct 

by Lemma 3.9. Hence, as we may push the integral on 7r(Z) on Z by the 
parametrization A, 

a < C-? IZfd( (X, d(,p,,) )dHU'(x) 2 JznB(X,Ct) 
< Co, (X,t). 

It is worth noticing that to go from the integral against d71 to the integral 
against d,/, we use the fact that for any ball B centered on Z, 2/4(B) > 6diamB. 
The definition of 7/1 and some covering argument implies then that for any 
function f continuous on F, 

fd1l < C fddi. 

Next, estimating the ai's, we have 

ai < | d (u + A(u),Di) du 
t JB(v.tnR,. t 

(4.2) 

- in- -J- .. . 

+ diamRi supw Di, d (w, Dp,Bi) e Di,d(w,B)< CdiamRi t t J 

because d (u + A(u), Dp,t) < d (u + A(u), Di) + d (w, Dp,t) where w is the or- 
thogonal projection of u + A(u) on Di. 

Moreover, as Di is the graph of Ai, we have, by Lemma 3.12 (see inequality 
(3.4) as well), 

(4.3) 
1 d (u + A(u), Di) d (diamRi 

2 

t B(p,t)nRi t - t 

(4.1) 
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LEMMA 4.3. 

sup {d (w Dpt 
, w E Di, d (w, Bi) < CdiamRi 

diamRj 1 (1 I 3 
Ce +diam C- I d (z, Dt) (z) t t diamRi 2Bi 

Proof. Let B1 and B2 be two balls given by Lemma 2.3 applied to the 
ball Bi and set, for k = 1, 2, 

Zk = {Zk Bk n F, d (zk, Di) < C'ediamRi}, 

diamRl where C' is chosen in order to have U(Zk) > 2000C'. 

If zl E Z1 and z2 E Z2 and if z4 and z2 are their projections on Di, we 

have, provided e is very small, that d (zl, z2) > C-ldiamRi. If w E Di is such 
that d (w, Bi) < CdiamRi, we have w = azl + (1 - c)z2 for some a such that 
c ? d (w, z )d (z, z)1)' < C". If wvI, zi, Z2 are the projections of w, z4 and 

z2 on Dp,t, we have then 

d(w, w) < lald(z(, zi) + (1 + Ia)d (z4, 2) 
< C"(d (zi, Dp,t) + d (z2, Dp,t)) + C'"ediamRi. 

Hence, after some cube and cubic root manipulations, by integrating on 
B U B2, we get 

A((B1UB2)nF)3 (d(w, Dp,t) - C"ediamRi) < C( d(z, Dp,t)3 d(z)) 

so that 

d (w, Dp,t) < 
diamRJ C ( 1 ,d(z,Dpt) d(z) 

t C t -t diamR B / 

LEMMA 4.4. 

diamRi 1 I 3 

ip,) t t diam 2B (Dpt)3 z) 

t2 U 2B 
d ( Dp,) dC(z) 

< C,l3(X,t). 

Proof. For i E I(p, t), we set 

J(i) = {j I(p, t), diamBj < diamBi and 2Bi n 2Bj L 0}, 

Ni(x) = Z 12B (X). 
jeJ(i) 

859 

This content downloaded from 128.61.116.253 on Fri, 3 Jan 2014 09:30:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


J. C. LEGER 

For x E F and k an integer, let Bi be a ball of maximal diameter such that 
x E 2Bi and Ni(x) = k. If Bj is another ball satisfying these properties, save 
for the maximality, we have diamBi = diamBj because if this were not the 
case, we would have Nj(x) < Ni(x). Now, Rj C CRi, these dyadic cubes are 
disjoint and their sizes are comparable; hence, there are at most C of such 
balls Bj, C not depending on k. Hence, 

E Bi(x)()-2 = E k2 E 2B.a(x) 
iElo iEIo k \ieIo,Ni(x)=k 

< C E k2 
k 

< C 

and 

Bf Ni(x)d ?(x) < E (2Bin F) 
2BinF jEJ(i) 

< C 5 diamRj 
jEJ(i) 

< CdiamRi 

because the dyadic cubes Rj are disjoint, of comparable sizes and are within 
distance CdiamRi from Ri. 

By Holder's inequality, we get 

(diaR /Bi d(z, Dp,t) i(z) D3 Ni(z) d/(z)) 

< (diaXRi B d(z,Wp,t)Ni(z)-2d~(z)) diR| 

diamRi B d (, D) N(2d(). 

Therefore 

iI diamRi m 1 RJ ,Bd(Z)) 

< 
t2 E 1( d(fD,^N2)d, 

iEl(p,t) 2B 

- t2 iU(, 2Bi d(Z, Dp,t) dl(Z). 

We estimate this last quantity. If i E I(p, t), RinB(p, t) $ 0. If now u E B(p, t), 
D(u) < D(p) + t < Ct so that there exists u E Ri such that D(u) < Ct; hence 
diamRi < Ct, which implies d (r(Bi), 7r(X)) < Ct. (We recall that X is any 
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point in B(X, t) nF.) Hence, by Lemma 3.9 applied to a point x in 2Bi (which 
satisfies d(x) < 3diamBi < Ct ) and to the point X which satisfies d(X) < Ct, 
we get 2Bi C B(X, Ct) so that, provided k is large enough, 

ct U 2[, d (z, D,,t) d(z) < 
iEI(P,t), 

< Cp3i(X,t). 

Now, from estimates (4.1), (4.2), (4.3) and Lemmas 4.3 and 4.4 and because 
of the facts that X is any point in B(X, t) n F and that u(B(X, t) n F) > St, 

-y(p,t)2 ? cf l(X, t)2ad(X) t B(?,t)nF 
2 

+C E 
iEI(p,t) 

We have then 

fo y(p, t)2 t J 60 t 
2 IB(( )) 

JU,oJ60^ t JB(X(p,t),t)nF 

60 

^z /(diamRi 2 dtdp 

iEI(p,t) t t 

< C(a+ b). 

We first look at the integral a. For any triple (X,p, t) appearing in the compu- 
tation, 17r(X)- Pl < Ct and 6(X, t) > ~ (recall that the function 6 appears in 
Definition 2.1) because Lemma 2.3 guarantees the existence of balls containing 
enough mass of F in the ball B(X, Ct). Hence 

a < Idp' i1(X,wt)2d/(X)y a F 2 {(X,t)>-} E(B(r(X),Ct) dp) 
dt 

-- 
0 rY t 

ff2 dt 
< A l{S(x, t)> 331 (X, t)2dl(X) 

< Cc2(,t) by Corollary 2.4. 

To estimate b, we remark that if i E I(p, t) then diamRJ < Ct (because D(u) < 

D(p) +t < Ct on B(p, t)) so that 

diamR < Ct Z 2diamRi C. 
iEI(p,t) iel(p,t) 
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Hence, noticing that d (p, Ri) < t when i E I(p, t) and that t > diaR when 

t > D~, we obtain 

b ? 021 
JD( 

2 ( diamRi )2 dtd 
iEI(p,t) 

2 dtdp < CE2 E (dioamRi)2 J- i Jd(p,Ri)<t 
iEIo c 

Therefore 2 d 

b < CE2 (diamRi)2 i (diamRi + t) 
iEIo c 

< Ce2 1 diamRi 
iEIo 

< Ce2. 

Hence using these estimates, we get 

J / 7(p,t)2dpdt < Ce2 + Cc2(a) < Ce2, Jo JUo t 
because r ?< 62, which ends the proof of Proposition 4.1. O 

5. Calder6n's formula and the size of F3 

From now on, we will extend A to the whole line Do in a Ca-Lipschitz 
function of compact support. Let Do be the line parallel to Do going through 
0. Let v : Do -* R be an even, nonzero, C?? function supported in B(0, 1) 
such that fDo Pv = 0 for any affine function P on Do. 

We set vt(po) = l' (P). When f is a function defined on Do, we write 

(vt * f)(p) = t(P - q)f (q)dq. 
Do 

Calder6n's formula (see [7, p.16,(5.9),(5.10)]) gives that, up to a normalization 
of V, 

~00 dt 
A(p) = (t * t * A)(p)-. 

~~~~~JO t 
We set A = A1 + A2 with 

?? dt 

dt 
2 dt 

A1 = / ("t * t * A)(p)t 

+ (vt*(lDo\Uo(Vt * A)))(p) t t 
2 dt 

A2 = (t *(lo(Yt *A)))(p)dt J 1 a i d j 
where Uo = Do F B(0, 10) as is defined just after Lemma 3.11. 
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LEMMA 5.1. 

ID 0A212(p)dp < C j 7(p t)2 dPdt 

Proof. 
I ~ /~2 dt 

OA2(p) = ((Ov)t * (ILUo(Vt * A)))(p).2 

We prove the L2 estimate by a duality argument. For F E L2(D), 

D FoA2 = 1 D F(p)( pv)t(P- q)(luo (t * A))(q) dqdt 
foo 0 o t2 

2 
= 

D(tF * 
(*()t)(q)(luo(Vt * A))(q) t3 

< (2 uoD nlvt * A)i2(q) 
dqdt 

x O ID (q)t 

By Plancherel's formula, using the fact that v is radial, we have 

fO2 Dqdt 2,, "I 2 I (-- t 12 dqdt 
1J2 o IF* (OV)t12(q) dt I, iD) 2( 

12 I (- t 12(> dt < I \F\\() F I(ov)tI2(Td~ Do O t 

< C(v) D IF12(p)dp' 

so that 

D I9A212(p)dp <C(v) 21 llUOI t*AI (q) dqdt 
0 J J t0 

Moreover, as the first moments of v are zero, if a is an affine function, 
vt* A vt * (A - a) 

t P 

< i/1 B v.(-)(A(q)-a(q)) dq 
t (p,t)nDo t 

C M(v) f A(q)-a(q) dq 
t B(p,t)nDo t 

so that, taking the infimum over all affine functions a, we get 
v * 

(A (p) < C(v)y(p, t). t 
Hence we have 

fDo l0A212(p)dp < C(v) fo2 fo (P, t)2 dt 
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We set 

U1 = B(0,7)nDo, 

U2 = B(0,4)nDo. 

LEMMA 5.2. On U1, 

IOAlI < Ca, 

lI2All < Ca. 

Proof. We set 

A1 = All + A2 with 

A11(p) = (t * vt * A)(p) -and 

A12(p) = (vt * (lD\u (t * A)))(p) t 

Note that on U1, A12 is zero for support reasons. 
It remains to estimate All. We set 

-?? f Jdt j= Vtt t-. 

Then 

All = A, 
All = , A, Ali =0 * 9A, 

02All = ~,*OA, 

so that 

I[0Al1lloo < |laAllooJlI and 

II2 Allo < II< AIIAoo/lOl. 

As it is known that |11AlAoo < Ca, we only have to evaluate f |1[ and f 1?901. 

1 q - p)( 
d dt 

I\(p)ldp _< j -v() -) ( t J\p\<10 J2 \p\<10t t t t t 

dt 
< 

(I\vf\) [l"o / p1o dp-2 

< C(>). 

Moreover, 
2 dt 

=60- Vt * Vt- t 
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because of Calder6n's formula so that, as v is zero outside B(O, 1), b(p) = 0 if 

lpl > 10 (supp(vt * Vt) C B(0, 2t) c B(O, 4) for 0 < t < 2). 
We can do the same for f 1 19l and this ends the proof of Lemma 5.2. O 

Define the maximal function 

N(A2) (p) = sup { 1 A - mBA2 } 
B {BI BI| } 

where the supremum is over all balls B containing p of radius < 2. Now we 

may state: 

LEMMA 5.3. 

/D N(A2)2 
< C 

10 A212. 

Proof. By Poincare's inequality, 

mB(IA2 - mBA2 ) CmB(A2) 

r 

so that 

N(A2)(p) < CsupmB(I|A2 ); 
pEB 

hence, by the Hardy-Littlewood maximal inequality, 

/ N(A2)2(p)dp 
< C I AA212(p)dp. 0 0 

LEMMA 5.4. Set OSCB A2 = suppeB A2(p)-mBA21 and let r be the radius 

ofB. Then, if B C U1, 

osc A2 < Cr { mB(IA2-mBA2) } 2 
B r 

Proof. Let B C U1 and set A = osCg A2 = A2(q) - mBA21 for a point 

q E B. As II0A2llLOO(B) < Ca, IA2(p) - mBA2l > when p E B and d(p,q) 
< X 

2C- 

* If 2-i <r, *'If a<f 

JB A2(p)-mBA2|dp > 2C 2 ; 

hence 

A2 < Cr2amB(IA2(P) - mBA2) 
r 
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* If -a A > r, IA2(p) - mBA2 > A on more than half of the ball B so that 

mB(|A2 - mBA2I) > -. C 
Moreover, by Poincare's inequality, 

mB(IA2 - mBA2) < CmB(1A21) 

< C\Q0A2 11L?(B) 
< Ca, 

so that, summarizing these inequalities, we get the result. E 

LEMMA 5.5. For a number O > 0, set Ho = {p E U2, N(A2)(p) < 2a}. 
If B = B(po, r) intersects Ho and r < 0, then 

sup |A(p) - (A(po) + A1 (po)(p - Po)} < CrOa. 
pEB 

Proof. Ifp E B, 

[A(p) - {A(po) + Ai(po)(p - po)}| 
< IA2(p) - A2(po))I + A1 (p) - {A (po) + 9A1 (po)(p - po)} 
< 2 osc A2 + Car2 (by Taylor and Lemma 5.2) B 

<C i {mB(IA2 - mBA21) }2 2 +C 2 ? Cr { mB(A2 a- + Car2 

< Cr(N(A2)(pl)) a + Car2 (where pi E B) 
< CrOa by taking p1 E Ho n B. O 

If AB is the line which is the graph of the function p F- A(po)+ 
OA1(po)(p - Po), 

d(x, A)B) 
sup < COa. 

xErn-l(1B) r 

LEMMA 5.6. If > 0 is given, there exists ?o > 0 such that if e < Co then 
angle(Dx,t, Do) < a for any (x, t) E S, 100t > 0. 

Proof. Let (x, t) be such a couple and let k be such that 2(k+1) < t < 2k. 
We have, by Lemma 2.6, 

angle(Dx,t, Dx,2t) < Ce, 

so that 
k 

angle(Dx,t,D) < E angle(Dx,2jt Dx,2j+lt) 
j=o 
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so that 

angle(Dx,t, D) < (k + 1)Ce < 
100' 

provided t > 1 and e is chosen after 0. D 

We set 

F= x EF, Vt E(0,2),p(FnB(x,t))> 10(F nB(x,t)). 

LEMMA 5.7. F(F\F) < Ce2. 

Proof. It is enough to evaluate ,u(F\F) because we already know how to 
evaluate ,u(F\F). Now 

F\FC U B(x, t) n F, 
xEF\F 

where B(x, t) satisfies ,u(B(x, tx) n F) < 100/,(B(x, tx) n (F\F)). Hence, by 
Besicovitch's covering lemma, we get families Bn, n = 1,... , N, of disjoint 
balls B(x, tx), whose union is still a covering of F\F so that 

N 

A/(F\F) < E E /(B nF) 
n=l BEBn 

N 

< 100 E ~(B n (F\F)) 
n=l BEL3n 

< 100Nb(F\F) 

< Ce2. D 

LEMMA 5.8. If x E F3 n F, d ((x), H) > h(x) and h(x) < o10 

Proof. Let us recall first that d(x) < h(x) (because of Remark 3.8) and 
that h(x) < 10 because of Remark 3.3. Suppose that d (Ir(x), Ho) < h(x). 
Setting B = B(x, 2h(x)), we would have 7r(B) n Ho 0, if x' E B n F (which 
is the case for 99 percent of x in B n F), 

d (x',7r(x') +A(7r(x'))) < 62d(x') 

< 2(d(x)+ 2h(x)) 

< 32h(x), 
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so that 

d (x', AB) < d (x', 7r(x') + A(7(x'))) + d (r(x') + A(7r(x')),AB) 
< (3e? + COa)h(x) 
< COcxh(x). 

Hence angle(D,h(x)AB) < l. 
We may apply the same argument with the ball B' = B(x, 100) and get 

that 

angle(Dx0 a, /) < X) TO-0 0 100 

But AB = ABR because these lines only depend on the projection of the center 
of the ball; hence 

angle(Dx,h(x), Dx,o) < 
'100 50 

Moreover, by Lemma 5.6, 

angle(Do, DX o ) 5 
'- 50 

so that 

angle(Do, Dx,h(x)) < 2 

which is impossible because of Remark 3.3. O 

PROPOSITION 5.9. Provided the parameters 0, a and e are well chosen, 

/(F3) < 10-6. 

Proof. We only have to evaluate /i(F3 n F), as follows: 

F3n Fc U B(x,2h(x))nF. 
F3nF 

Now by Besicovitch's covering lemma and the upper control on /u, we get 
N 

[t(F3nF) < E (B nF) 
n=O BE3Bn 

N 

< Co E E diamB, 
n=O BE3Bn 

where the balls B are of the type B(x, 2h(x)) for a point x E F3 nF and where 
two balls of the same family Bn are disjoint. 

If B and B' are two balls of the same family Bn, provided e2 is very small 
compared to a, the line going through the centers of B and B' has slope < Ca. 
This is because the center of B is at distance less than E 2 diamB from the graph 
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of A (see Fig. 2, above) which is a Ca-Lipschitz function and the same is true 
for B'. Hence, provided a is very small, the projections of -B and ?B' on D 
are disjoint. We know that the projections of these balls do not meet Ho and 
are contained in U2, so that 

S diamB < 2((U2\Ho), 
BEB3n 

which implies 
b(F3 n F) < 2CoNt(U2\Ho). 

Now, by Lemma 5.3, Lemma 5.1 and Proposition 4.1, 

ID N(A2)2 < Ce, 

so that, from the definition of Ho, 
2 

AL(U2\HO) < C . 
04a2' 

Hence, choosing e after 0 and a, we will get 

/t(F3 F) < 10-7 and 

A(F\F) < 10l-7, 

which gives the proposition. 

UNIVERSITE PARIS XI, ORSAY, FRANCE 
E-mail address: Jean-Christophe.LEGER@math.u-psud.fr 

REFERENCES 

[1] G. DAVID, Unrectifiable sets have vanishing analytic capacity, Revista Mat. Iberoameri- 
cana 14 (1998), 369-479. 

[2] G. DAVID and P. MATTILA, Removable sets for Lipschitz harmonic functions in the plane, 
Preprint, Universite Paris-Sud, 1997. 

[3] G. DAVID and S. SEMMES, Singular Integrals and Rectifiable Sets in Itn: Au dela des 
Graphes Lipschitziens, No. 193 in Asterisque, SMF, 1991. 

[4] K. J. FALCONER, Geometry of Fractals Sets, Cambridge University Press, 1984. 

[5] P. W. JONES, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 

(1990), 1-15. 
[6] M. S. MELNIKOV, P. MATTILA, and J. VERDERA, The Cauchy integral, analytic capacity, 

and uniform rectifiablity, Ann. of Math. 144 (1996), 127-136. 

[71 Y. MEYER, Ondelettes et Operateurs I: Ondelettes (French), Actualites Math. Paris: Her- 
man, Editeurs des Sciences et des Arts, 1990. 

[8] A. G. VITHUSHKIN, The analytic capacity of sets in problems of approximation theory, 
Uspekhi Mat. Nauk 22 (1967), 141-199; English translation in Russian Math. Surveys 
22 (1967), 139-200. 

(Received June 9, 1997) 

869 

This content downloaded from 128.61.116.253 on Fri, 3 Jan 2014 09:30:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. [831]
	p. 832
	p. 833
	p. 834
	p. 835
	p. 836
	p. 837
	p. 838
	p. 839
	p. 840
	p. 841
	p. 842
	p. 843
	p. 844
	p. 845
	p. 846
	p. 847
	p. 848
	p. 849
	p. 850
	p. 851
	p. 852
	p. 853
	p. 854
	p. 855
	p. 856
	p. 857
	p. 858
	p. 859
	p. 860
	p. 861
	p. 862
	p. 863
	p. 864
	p. 865
	p. 866
	p. 867
	p. 868
	p. 869

	Issue Table of Contents
	Annals of Mathematics, Second Series, Vol. 149, No. 3 (May, 1999), pp. 707-1111
	Volume Information [pp. 1109-1111]
	Front Matter
	Surgery and Duality [pp. 707-754]
	Dimension and Product Structure of Hyperbolic Measures [pp. 755-783]
	Gradient Estimates and Blow-Up Analysis for Stationary Harmonic Maps [pp. 785-829]
	Menger Curvature and Rectifiability [pp. 831-869]
	Entropy of Convolutions on the Circle [pp. 871-904]
	Companion Forms and Weight One Forms [pp. 905-919]
	The Spectrum of Coupled Random Matrices [pp. 921-976]
	Continuous Rotation Invariant Valuations on Convex Sets [pp. 977-1005]
	Structures Riemanniennes L et K-Homologie [pp. 1007-1022]
	Stable Laws and Domains of Attraction in Free Probability Theory [pp. 1023-1060]
	Mapping Tori of Free Group Automorphisms are Coherent [pp. 1061-1077]
	Modularity of Fibres in Rigid Local Systems [pp. 1079-1086]
	Solving Moment Problems by Dimensional Extension [pp. 1087-1107]
	Back Matter



