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Abstract. It is shown that product BMO of S.-Y. A. Chang and R. Fefferman, defined on the space
Rd1 ⊗ · · · ⊗ Rdt , can be characterized by the multiparameter commutators of Riesz transforms.
This extends a classical one-parameter result of R. Coifman, R. Rochberg, and G. Weiss, and at the
same time extends the work of M. Lacey and S. Ferguson and M. Lacey and E. Terwilleger, on
multiparameter commutators with Hilbert transforms.

1. Introduction. In one parameter, a classical result of Coifman, Rochberg
and Weiss [8], in turn an extension of the result of Nehari [26], shows that a
function in the Hardy space H1 on the ball can be weakly factored as a sum of
products of functions in H2 on the ball. Recently, Ferguson and Lacey [12] and
Lacey and Terwilleger [19] proved the corresponding weak factorization for H1

of the polydisc. In this paper, we prove the real variable generalization of these
two sets of results.

Let Mbϕ
def
= b · ϕ be the operator of pointwise multiplication by a function

b. For Schwartz functions f on Rd, let Rjf denote the jth Riesz transform of f ,
for 1 ≤ j ≤ d. From time to time, we will use the notation R0 for the identity
operator.

We are concerned with product spaces R�d = Rd1 ⊗ · · · ⊗ Rdt for vectors
�d = (d1, . . . , dt) ∈ Nt. For Schwartz functions b, f on R�d, and for a vector
� = ( j1, . . . , jt) with 1 ≤ js ≤ ds for s = 1, . . . , t we consider the family of
commutators

C�(b, f )
def
= [ · · · [[Mb, R1, j1 ], R2, j2 ], · · ·], Rt,jt ]f(1.1)

where Rs, j denotes the jth Riesz transform acting on Rds .

Manuscript received April 28, 2007.
Research of the first author supported in part by a National Science Foundation Grant. The author is a

Guggenheim Fellow; research of the second author supported in part by a National Science Foundation Grant;
research of the third author supported in part by a National Science Foundation Grant; research of the fourth
author supported in part by a National Science Foundation RTG Grant to Vanderbilt University.

American Journal of Mathematics 131 (2009), 731–769. c© 2009 by The Johns Hopkins University Press.

731



732 M. T. LACEY, S. PETERMICHL, J. C. PIPHER, AND B. D. WICK

MAIN THEOREM. We have the estimates below, valid for 1 < p <∞.

sup
�

∥∥C�(b, ·)
∥∥

p→p � ‖b‖BMO .(1.2)

By BMO, we mean Chang–Fefferman BMO.

To establish this result, we find it necessary to prove an extended version of
this Theorem, proving the equivalence of norms not only for the Riesz transforms,
but also a class of singular integral operators whose symbols are supported on
cones. In this, and other ways, our methods shed new light on issues related to
commutators even in the one parameter case.

It is well known that the result above has an equivalent formulation in terms
of weak factorization of Hardy space; indeed, this equivalence is important to the
proof of the Theorem. For � a vector with 1 ≤ js ≤ ds, and s = 1, . . . , t, let Π�

be the bilinear operator defined by the following equation

〈C�(b, f ), g〉 def
= 〈b, Π�( f , g)〉.

One can express Π� as a linear combination of products of iterates of Riesz
transforms, Rs,js , applied to the f and g. It follows immediately by duality from the

Main Theorem that for sequences f�k , g�k ∈ L2(R�d) with
∑
�

∑∞
k=1

∥∥∥f�k
∥∥∥

2

∥∥∥g�k
∥∥∥

2
<∞

we have ∑
�

∞∑
k=1

Π�( f�k , g�k) ∈ H1(R
�d).

With this observation, we define

L2(R
�d)
̂L2(R

�d)
def
=

f ∈ L1(R
�d): f =

∑
�

∞∑
k=1

Π�( f�k , g�k)

 .(1.3)

This is the projective product given by

‖f‖
L2(R

�d)�̂L2(R
�d)

def
= inf

∑
�

∑
k

∥∥∥f�k
∥∥∥

2

∥∥∥g�k
∥∥∥

2


where the infimum is taken over all decompositions of f as in (1.3). This definition
has an obvious extension to Lp
̂Lp′ , for 1 ≤ p, p′ < ∞. We have the following
corollary.

WEAK FACTORIZATION THEOREM. For any 1 < p <∞, let p′ = p/(p− 1) be the

conjugate index. We have H1(R�d) = Lp(R�d)
̂Lp′(R�d). Namely, for any f ∈ H1(R�d)
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there exist sequences f�k ∈ Lp(R�d) and g�k ∈ Lp′(R�d) such that

f =
∑
�

∞∑
k=1

Π�( f�k , g�k),

‖f‖H1 �
∑
�

∑
k

∥∥∥f�k
∥∥∥

p

∥∥∥g�k
∥∥∥

p′
.

The result of Coifman, Rochberg and Weiss [8] has found a number of further
applications. The original paper includes a weak factorization result for certain
Bergman spaces, and there is the striking application to the theory of compensated
compactness [7]. We anticipate that some of these applications persist into the
higher parameter setting of this paper, but we do not purse these points in this
paper.

The proofs given here are rather different from that of Coifman, Rochberg
and Weiss [8]. Their proof of the upper bound on commutator norms relies
upon a sharp function inequality, a method of proof that is quite powerful in the
one parameter setting. This method admits only a weak extension to the higher
parameter setting; instead, our proof of the upper bound, namely Theorem 5.3,
follows from the decomposition of the commutators into a sum of simpler terms.
These terms are paraproducts, composed on either side by Calderón–Zygmund
operators. This method has been used in different settings, such as Petermichl
[27], and Lacey [18]. Our formalization of this method in this paper could lead
to further applications of this method.

The paraproducts that arise are of multiparameter form. The specific result
needed is Theorem 4.4 below. This result is due to Journé [13]; more recent
discussions of paraproducts are in [17, 24, 25].

For the lower bound, namely Theorem 6.1, we use the strategy of Ferguson–
Lacey [12] and Lacey–Terwilleger [19]. One inducts on parameters, using a boot-
strapping argument, and the Journé Lemma [14]. However, to implement this
strategy, we have to prove a second version of the Main Theorem, one in which
the Riesz transforms are replaced by the a family of Calderón–Zygmund operators
whose symbols are adapted to cones. These kernels are described in the text
preceding (5.8), and Theorem 5.10 is the extended version of our Main Theorem.

To start the induction, in the case of Riesz transforms, we can of course use
the Coifman, Rochberg, and Weiss result. But for the cones, we appeal to the
results of Uchiyama [29] and Song-Ying Li [21] which are deep extensions of
the work of Coifman, Rochberg and Weiss.

In §2–4 we recall different aspects of the multiparameter theory in forms re-
quired for this investigation. §5 introduces the cone operators, and this establishes
the upper bound on commutator norms. The initial stages of the lower bound on
commutator norms is proved in §6. The more refined bootstrapping argument
occupies §7.
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2. Wavelets in several dimensions. This discussion is initially restricted
to a one parameter setting. We will use dilation and translation operators on Rd

Tryf (x)
def
= f (x − y), y ∈ Rd,(2.1)

Dil(p)
a f (x)

def
= a−d/pf (x/a), a > 0, 0 < p ≤ ∞.(2.2)

These will also be applied to sets, in an obvious fashion, in the case of p = ∞.
By the (d dimensional) dyadic grid in Rd we mean the collection of cubes

Dd
def
=
{

j2k + [0, 2k)d: j ∈ Zd, k ∈ Z
}

.

Wavelets arise from a scaling function or a father wavelet W. The principle
requirement is that the functions {Trc(I)Dil(2)

I w: I ∈ D1} form an orthonormal
basis for L2(R). Except for the fact that it is not smooth, h = −1(0,1/2) + 1(1/2,1)

is a scaling function, with father wavelet 1(0,1). This generates the Haar basis for
L2(R).

For ε ∈ {0, 1}, set w0 = w and w1 = W, the superscript 0 denoting that “the
function has mean 0,” while a superscript 1 denotes that “the function is an L2

normalized indicator function.” In one dimension, for an interval I, set

wεI
def
= Trc(I)Dil(2)

|I|w
ε.

The father wavelet is of some convenience to us, as we have the useful facts,
valid on the interval J. (Technically, these results are only true for multiresolution
analysis (MRA) wavelets; both the Haar and Meyer wavelets are MRA wavelets.)

∑
I�J

〈 f , wI〉wI = 〈 f , w1
J〉w1

J .(2.3)

We will use the Meyer wavelet in later sections of the paper. This wavelet,
found by Y. Meyer [22, 23], arises from a Schwartz wavelet w, with ŵ supported
on 1/3 ≤ |ξ| ≤ 8/3. Indeed, ŵ is identically equal to 1 on the intervals 1 ≤ |ξ| ≤
2. One of the reasons this is such a useful wavelet for us is the fact below which
is exploited several times:

8 |I| <
∣∣I′∣∣ implies ŵI · wI′ is supported on (4 |I|)−1 < |ξ| < 3 |I|−1.(2.4)
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Let Sigd
def
= {0, 1}d −{�1}, which we refer to as signatures. In d dimensions,

for a cube Q with side |I|, i.e., Q = I1 × · · · × Id, and a choice of ε ∈ Sigd, set

wεQ(x1, . . . , xd)
def
=

d∏
j=1

w
εj
Ij

(xj).

It is then the case that the collection of functions

WaveletDd

def
= {wεQ: Q ∈ Dd, ε ∈ Sigd}

form a wavelet basis for Lp(Rd) for any choice of d dimensional dyadic grid Dd.
Here, we are using the notation �1 = (1, . . . , 1). While we exclude the superscript
�1 here, it plays a role in the theory of paraproducts.

We will use these bases in the tensor product setting. Thus, for a vector
�d = (d1, . . . , dt), and 1 ≤ s ≤ t, let Dds be a choice of ds dimensional dyadic
grid, and let

D�d = ⊗t
s=1Dds .

Also, let Sig�d
def
= {�ε = (ε1, . . . , εt) : εs ∈ Sigds

}. Note that each εs is a vector, and
so �ε is a “vector of vectors”. For a rectangle R = Q1 × · · · ×Qt, being a product
of cubes of possibly different dimensions, and a choice of vectors �ε ∈ Sig�d set

w�εR(x1, . . . , xt) =
t∏

s=1

wεs
Qs

(xs).

These are the appropriate functions and bases to analyze multiparameter para-
products and commutators.

Let

WaveletD�d
def
=
{

w�εR: R ∈ D�d, �ε ∈ Sig�d

}
.

This is a basis in Lp(R�d), where we will use the notation

R
�d def

= Rd1 ⊗ · · · ⊗ Rdt

to emphasize that we are in a tensor product setting.

3. Chang–Fefferman BMO. We describe the elements of product Hardy
space theory, as developed by S.-Y. Chang and R. Fefferman [5, 6, 9–11] as well
as Journé [13, 14]. By this, we mean the Hardy spaces associated with domains
like ⊗t

s=1R
ds .
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Remark. The (real) Hardy space H1(Rd) typically denotes the class of func-
tions with the norm

d∑
j=0

‖Rjf‖1 ,

where Rj denotes the jth Riesz transform. Here and below we adopt the convention
that R0, the 0th Riesz transform, is the identity. This space is invariant under
the one parameter family of isotropic dilations, while H1(R�d) is invariant under
dilations of each coordinate separately. That is, it is invariant under a t parameter
family of dilations, hence the terminology “multiparameter” theory.

As before, the space H1(R�d) has a variety of equivalent norms, in terms of
square functions, maximal functions and Riesz transforms. For our discussion
of paraproducts, it is appropriate to make some definitions of translation and
dilation operators which extend the definitions in (2.1)–(2.2). (Indeed, here we
are adopting broader notation than we really need, in anticipation of a discussion
of multiparameter paraproducts.) Define

Tryf (x)
def
= f (x − y), y ∈ R�d,(3.1)

Dilpa1,...,at f (x1, . . . , xt)
def
=

t∏
s=1

a−ds/p
s f (x1/a1, . . . , xt/at),(3.2)

a1, . . . , at > 0,

DilpR
def
= Trc(R)Dilp|Q1|,...,|Qd|

.(3.3)

In the last definition R = Q1 × · · · ×Qt is a rectangle, each Qs is a cube and the
dilation incorporates the locations and scales associated with R. c(R) is the center
of R.

For a nonnegative smooth bump function ϕ1 in R�d with
∫
ϕ1 dx = 1, define

the (strong) maximal function by

Mf (x)
def
= sup

R∈D�d
Dil2Rϕ

1(x)〈 f , Dil2Rϕ
1〉.

For s = 1, . . . , t, choose radial bump functions ϕ0
s on Rds with

∫
Rds ϕ

0
s dxs = 0

and

sup
ξ

∫ ∞
0

∣∣∣ϕ̂0
s (tξ)

∣∣∣2 dt
t
<∞.
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Then, fix ϕ0 so that

ϕ0(x1, . . . , xt)
def
=

t∏
s=1

ϕ0
s (xs).

As an analog of the Littlewood–Paley square function, set

Sf (x)
def
=

 ∑
R∈D�d

[Dil2Rϕ
0(x)]2

∣∣∣〈 f , Dil2Rϕ
0〉
∣∣∣2
1/2

.

THEOREM 3.4. (Equivalent forms of H1 norm) All of the norms below are
equivalent, and can be used as a definition of H1(R�d).

‖Mf‖1 � ‖f‖1 + ‖Sf‖1 �
∑

�0≤�≤�d

∥∥∥∥∥
t∏

s=1

Rs,js f

∥∥∥∥∥
1

.

Rs,js is the Riesz transform computed in the jsth direction of the sth variable, and
the 0th Riesz transform is the identity operator.

3.1. BMO(R�d). The dual of the real Hardy space is H1(R�d)∗ = BMO(R�d),
the t-fold product BMO space. It is a Theorem of S.-Y. Chang and R. Fefferman
[6] that this space has a characterization in terms of a product Carleson measure.

Define

‖b‖
BMO(R

�d)

def
= sup

U⊂R�d

|U|−1
∑
R⊂U

∑
�ε∈Sig�d

∣∣∣〈b, w�εR〉
∣∣∣2


1/2

.(3.5)

Here the supremum is taken over all open subsets U ⊂ R�d with finite measure,
and we use a wavelet basis w�εR.

THEOREM 3.6. (Chang–Fefferman BMO) We have the equivalence of norms

‖f‖
(H1(R

�d))∗
≈ ‖f‖

BMO(R
�d)

.

That is, BMO(R�d) is the dual to H1(R�d).

3.2. Journé’s Lemma. The explicit definition of BMO in (3.5) is quite
difficult to work with. In the first place, it is not an intrinsic definition, in that one
needs some notion of wavelet to define it. Secondly, the supremum is over a very
broad class of objects: All open subsets of R�d of finite measure. There are simpler
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definitions (also unfortunately not intrinsic) that in particular circumstances are
sufficient.

Say that a collection of rectangles U ⊂ D�d has t − 1 parameters if and only
if there is a choice of coordinate s so that for all R, R′ ∈ U we have Qs = Q′s,
that is the sth coordinate of the rectangles are all one fixed ds dimensional cube.

We then define

‖f‖
BMO−1(R

�d)

def
= sup
U has t−1
parameters

|sh(U)|−1
∑
R∈U

∑
�ε∈Sig�d

∣∣∣〈 f , w�εR〉
∣∣∣2


1/2

.(3.7)

A collection of rectangles has a shadow given by sh(U)
def
=
⋃{R: R ∈ U}.

We use the “−1” subscript to indicate that we have “lost one parameter” in the
definition. (In the two parameter case, our definition of BMO−1 is actually a
slightly larger space than the more familiar rectangular BMO space.) Motivation
for this definition comes from our use of induction on parameters in the proof of
the lower bound for the commutators. See §6.1.

L. Carleson [4] produced examples of functions which acted as linear func-
tionals on H1(R�d) with norm one, yet had arbitrarily small BMO−1 norm. This
example is recounted at the beginning of R. Fefferman’s article [9].

Journé’s Lemma permits us, with certain restrictions, to dominate the BMO
norm by the BMO−1 norm. We need a version of this statement with an addi-
tional refinement, see (3.10) that first appeared in [12], and is important to our
“bootstrapping” argument in §7.

LEMMA 3.8. (Journé’s Lemma) Let U be a collection of rectangles whose
shadow has finite measure. For any η > 0, we can construct V ⊃ sh(U) and a
function Emb: U −→ [1,∞) so that

Emb(R) · R ⊂ V , R ∈ U ,(3.9)

|V| < (1 + η) |sh(U)| ,(3.10) ∥∥∥∥∥∥∥
∑
R∈U

∑
�ε∈Sig�d

Emb(R)−C〈 f , w�εR〉w�εR

∥∥∥∥∥∥∥
BMO(R

�d)

≤ Kη ‖f‖
BMO−1(R

�d)
.(3.11)

The constant Kη depending only on η and �d, and the constant C, appearing in the
last display, upon the vector �d.

Notice that the power on the embeddedness term in (3.11) is allowed to be
quite big, a function of the parameters �d that we do not specify. Also, concerning
the conclusions, if we were to take Emb(R) ≡ 1, then certainly the first conclusion
(3.9) would be true. But, the last conclusion would be false for the Carleson
examples in particular. This choice is obviously not permitted in general.
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The formulations of Journé’s Lemma given here are not the typical ones found
in Journé’s original Lemma, or J. Pipher’s extension to the three dimensional case
[28]. These papers give the more geometric formulation of these Lemmas, and
J. Pipher’s article implicitly contains the geometric formulation needed to prove
the Lemma above (provided one is satisfied with the estimate |V| � |sh(U)|). See
Pipher [28]. Lemma 3.8, as formulated above, was found in Lacey and Terwilleger
[19]; the two dimensional variant (which is much easier) appeared in Lacey and
Ferguson [12]. The paper of Cabrelli, Lacey, Molter and Pipher [3] surveys some
issues related to Journé’s Lemma. See in particular Sections 2 and 4. We refer
the reader to these references for more information on this subject.

4. Paraproducts. The paraproducts that arise are of a somewhat general
nature, and so we make some definitions which will permit a reasonably general
definition of a paraproduct.

Let χ(x) = (1 + |x|2)−1. Let χ(2)
Q = Dil(2)

Q χ. Say that ϕ is adapted to Q iff

|Dmϕ(x)| � |Q|−m/d [χ(2)
Q (x)]N , x ∈ Rd.(4.1)

This inequality should hold for all derivatives Dm, where m ≤ d + 1, where d is
the ambient dimension. The inequality should hold for all integers N. The implied
constant can depend upon these parameters. Say that ϕ has a zero iff

∫
ϕ dx = 0.

We extend these definitions to functions ϕ on R�d. Say that ϕ is adapted to
R =

∏
Qs if and only if

ϕ(x1, . . . , xt) =
t∏

s=1

ϕs(xs), where ϕs is adapted to Qs.(4.2)

Say that ϕ has zeros in the sth coordinate if and only if∫
Rds

ϕ(x1, . . . , xs, . . . xt) dxs = 0, for all x1, . . . xs−1, xs+1 . . . xt.(4.3)

The main Theorem on paraproducts that we will need concerns bilinear op-
erators formed in this way. For j = 1, 2, 3 let {ϕj,R: R ∈ D�d} be three families of
functions adapted to the dyadic rectangles in D�d. Then define

B( f1, f2)
def
=
∑

R∈D�d

〈 f1,ϕ1,R〉
|R|1/2

〈 f2,ϕ2,R〉ϕ3,R.

The following result is due to Journé [13, 15]. Also see [17, 24, 25].

THEOREM 4.4. Assume that the family {ϕ1,R} has zeros in all coordinates. For
every other coordinate s, assume that there is a choice of j = 2, 3 for which the
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the family {ϕj,R} has zeros in the sth coordinate. Then the operator B enjoys the
property

B: BMO × Lp −→ Lp, 1 < p <∞.

We will refer to the function ϕ1 as the symbol of the paraproduct. This func-
tion plays the same role for paraproducts as does the symbol of the commutator.
Particularly relevant for us is the following reformulation of this theorem: If B1

and B2 are bounded paraproducts, then the tensor product B1 ⊗ B2 is a bounded
paraproduct for symbols on the corresponding product BMO space.

In many applications of this result, the functions ϕ1,R, acting on the symbol
of the paraproduct, will be product wavelets.

A more particular form of the upper bound on commutators plays a role in
both the upper and lower bounds for our Main Theorem. We state this variant
of Theorem 4.4 for our use below. In particular, the estimate (4.11) is used in
the lower bound. It holds when the symbol and the function the paraproduct is
applied to have “separated wavelet support” in the sense of (4.10).

For a subset of coordinates J ⊂ {1, . . . , t} set

F�l,J
def
=

∑
�ε∈Sig�d

∑
�k∈Zt

ks=ls , s∈J
ks≥ls ,s�∈J

∆F�k,(4.5)

∆F�k
def
=

∑
�ε∈Sig�d

∑
R∈D�d
|Qs|=2ks

w�εR ⊗ w�εR.(4.6)

For those coordinates s ∈ J, we take the wavelet projection onto that scale, while
for those coordinates s �∈ J, we sum larger scales. That means that we lose the
zero in the coordinates not in J.

Write R′ �J R if and only if |Q′s| ≤ |Qs| for s �∈ J and |Q′s| = |Qs| for s ∈ J.

THEOREM 4.7. Let T be a product Calderón–Zygmund kernel as in Theorem 5.2.
For all J ⊂ {1, . . . , t}, and �k ∈ Zt with

3 ≤ ks ≤ 8, s �∈ J, −8 ≤ ks ≤ 8, s ∈ J.(4.8)

We have ∥∥∥∥∥∥
∑
�l∈Zt

(∆F�l b) · TF�l+�k,Jϕ

∥∥∥∥∥∥
2

� ‖b‖
BMO(R

�d)
‖ϕ‖2 .(4.9)

Moreover, suppose we have the following separation condition: Fix an integer
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A > 0. Suppose that

if for �ε and �ε′, 〈b, w
�ε′
R′〉 �= 0, 〈ϕ, w�εR〉 �= 0 with R′ �J R, then AR ∩ R′ = ∅.(4.10)

We then have the estimate∥∥∥∥∥∥
∑
�l∈Zt

(∆F�lb) · TF�l+�k,Jϕ

∥∥∥∥∥∥
2

� A−100t ‖b‖
BMO(R

�d)
‖ϕ‖2 .(4.11)

Implied constants are independent of the choice of �k.

The operator in (4.9), though it fits into the category of paraproducts, it does
not fit the precise definition we have given of a paraproduct above, and so we
will postpone the proof of this Theorem until the end of this section.

Shift operators. There are different types of “shifts” on wavelets that also
enter into our considerations. These are shifts of signature, scale and location.
We discuss each of these.

Define a “signature shift” operator by a map ε: Sig�d × D�d −→ Sig�d, where
ε(·, R) is one to one for each rectangle R. Then the operator is defined first on
wavelets by

XSig,ε(w
�ε
R) = wε(�ε,R)

R

and then extended linearly. The boundedness properties of these operators are
straightforward.

PROPOSITION 4.12. We have the estimate

∥∥XSig,ε
∥∥

p→p � Cp, 1 < p <∞.

The proof follows immediately from the Littlewood–Paley inequalities. We
omit the details.

Define a “scale shift” operator by a one to one map σρ: D�d −→ D�d that sends
each dyadic rectangle R into a unique σ(R) ⊂ R, so that the ratio ρ = |σ(R)| / |R|
is independent of R. The parameter of this operator is ρ. Define a corresponding
linear operator Xscale,ρ by

Xscale,ρ(w�εR)
def
=
√
ρ · w�εσ(R)

and the operator is then uniquely defined by linearity. Our observation is that this
shift is a uniformly bounded operator on product BMO.
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THEOREM 4.13. The operators Xscale,ρ map BMO(R�d) to itself. Moreover for
all κ > 0 we have the estimate

‖Xscale,ρ‖BMO→BMO � ρ−κ.

Proof. Given f ∈ BMO, and open set U ⊂ R�d, consider the set

V
def
= {M1U > cρ}

where M is the strong t parameter maximal function appropriate to this setting,
namely

Mf
def
= sup

R∈D�d

12R

|2R|

∫
2R
|f (y)| dy.

Observe that for appropriate c if σ(R) ⊂ U then we have R ⊂ V .
We can estimate

∑
�ε∈Sig�d

∑
R⊂U

∣∣∣〈Xscale,ρf , w�εR〉
∣∣∣2 = ρ

∑
�ε∈Sig�d

∑
R⊂U

∣∣∣〈 f , w�εσ−1(R)〉
∣∣∣2

≤ ρ
∑
�ε∈Sig�d

∑
R⊂V

∣∣∣〈 f , w�εR〉
∣∣∣2

≤ ρ ‖b‖2
BMO |V| .

It remains to estimate |V| in terms of |U|.
Using the Lp mapping properties of the maximal function, we can estimate

|V| � ρ−p |U| .

Taking p = 1 + κ proves our theorem.

Remark. When the number of parameters t = 1, the operators Xscale,ρ are
in fact uniformly bounded on BMO as follows from the weak L1 bound for the
maximal function. For t > 1, there is a logarithmic estimate:

‖Xscale,ρ‖BMO→BMO � (1 + log 1/ρ)t.

The strong maximal function we are using satisfies ‖M‖p→p � (p − 1)−t, aside

from dimensional considerations from the individual components of �d. Using this
estimate, and taking p − 1 � |log ρ|−1, the estimate above follows.
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We define “location shift” operators. Let λn: D�d −→ D�d be a one to one
map such that for all rectangles R ∈ D�d, the image rectangle λn(R) has the same
dimensions in each coordinate, namely

|Qs| = |λn(Q)s| , 1 ≤ s ≤ t.

Moreover, λ(R) ⊂ nR. The shift operator is then defined on wavelets by

Xloc,nw�εR = w�ελn(R),(4.14)

and is then extended linearly. The parameter of this operator is said to be n.
The estimate we need concerns the Lp norms of this operator.

PROPOSITION 4.15. We have the estimates below, valid for all integers n.

‖Xloc,n‖p→p � n|�d|

where
∣∣∣�d∣∣∣ = d1 + d2 + · · · + dt depends only on �d.

Proof. Since λn is one to one, it is clear that Xloc is bounded with norm
one on L2. For p �= 2 we use the Littlewood–Paley inequalities, together with the
obvious fact that

1λn(R) � n|�d|M1R

for all rectangles R. Then, using the Fefferman–Stein Maximal inequality, we
have

‖Xloc,nf‖p �

∥∥∥∥∥∥∥∥
 ∑
�ε∈Sig�d

∑
R∈D�d

∣∣∣〈 f , w�εR〉
∣∣∣2

|R| 1λn(R)


1/2
∥∥∥∥∥∥∥∥

p

� n|�d|

∥∥∥∥∥∥∥∥
 ∑
�ε∈Sig�d

∑
R∈D�d

∣∣∣〈 f , w�εR〉
∣∣∣2

|R| (M1R)2


1/2
∥∥∥∥∥∥∥∥

p

� n|�d|

∥∥∥∥∥∥∥∥
 ∑
�ε∈Sig�d

∑
R∈D�d

∣∣∣〈 f , w�εR〉
∣∣∣2

|R| 1R


1/2
∥∥∥∥∥∥∥∥

p

� n|�d| ‖f‖p .
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Generalized paraproducts. Experience shows that paraproducts arise in a
variety of ways. They do in this paper, and in this section, we adopt a notation
to formalize the different ways that the paraproducts arise.

Given an operator P acting on Lp(R�d), we set

‖P‖Para = inf

{∑
ε

∑
ρ

∑
n

n|�d|ρ−1/|�d| |c(ε, ρ, n)|
}

(4.16)

where the infimum is taken over all representations

Pf =
∑
ε

∑
ρ

∑
n

c(ε, ρ, n) · Bε,ρ,n(Xscale,ρb,XSig,εXloc,nf ).

In this display, the operators Bε,ρ,n are paraproducts as in Theorem 4.4, with norm
at most one. The operators Xscale,ρ are scale shift operators, with parameter ρ;
the XSig,ε are signature shift operators; and Xloc,n are location shift operators
of parameter n.

We may combine the different results of this section into the estimate

‖P‖p→p � ‖P‖Para , 1 < p <∞.(4.17)

Examples of how to use this norm are in the next proof.

Proof of Theorem 4.7. We will assume that the Calderón–Zygmund operator
T is the identity. It is straightforward to supply the necessary additional details
to accommodate the general case.

The “father wavelet” W permits us to rewrite the operator in (4.5). For a
subset of coordinates J ⊂ {1, . . . , t} we set

WR,J(x1, . . . , xt)
def
=
∏
s∈J

wεs
Qs

(xs) ·
∏
s�∈J

WQs(xs).

Thus, in the coordinates in J we take the Meyer wavelet, and for those coordinates
not in J we take a father wavelet. In particular, F�l,J as defined in (4.5) is

F�l,J =
∑
�ε∈Sig�d

∑
R∈D�d
|Rs|=2ls

WR,J ⊗ WR,J .

Let �k ∈ Z�t be as in (4.8). Let R, R′ be dyadic rectangles with

|Qs| = 2ksds
∣∣Q′s∣∣ , 1 ≤ s ≤ t, A � M1R(c(R′)).(4.18)
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The function

ζR,R′,J
def
= A−N

√
|R|wR · WR′,J

is adapted to R, in the sense of (4.2). Here N is a fixed large constant depending
upon �d.

The assumption (4.8) plays an essential role in describing the zeros of the
function ζR,R′,J . WR′,J has zeros for s ∈ J, but certainly does not have zeros for
s �∈ J. The properties of the Meyer wavelet, and in particular (2.4), along with
the assumption on �k then imply that ζR,R′,J has zeros for s �∈ J.

Now, consider a map πA: D�d −→ D�d such that the pairs R,π(R) satisfy
(4.18). Set µ(π) = A where A is as in (4.18). The operator

Bπ(b,ϕ)
def
=
∑

R∈D�d

〈b, wR〉√
|R|

〈ϕ, Wπ(R),J〉 ζR,π(R),J

is a paraproduct, composed with a change of location operator. Note that the
function that falls on b has zeros in all coordinates; the function that falls on ϕ
has zeros for s ∈ J, and ζR,π(R) has zeros for s �∈ J. It is then clear that

‖Bπ‖Para � µ(π)N .(4.19)

Now, a moments thought reveals that we can write, for appropriate choices
of πv , ∑

�l∈Zt

(∆F�l b) · F�l+�k,Jϕ =
∞∑
v=1

Bπv (b,ϕ).(4.20)

Moreover, for all 0 < A < 1, the number of πv occurring in the sum above with
µ(πv) � A is at most A−C where C depends upon �d. But then from (4.19), it is
clear that (4.9) holds.

The second conclusion of the Lemma, (4.11), is quite important to the proof
of our lower bounds on commutator norms. (Estimates of this type are also
important to detailed information about norm bounds for paraproducts. See [17,
§4.3].) But with the assumption (4.10), note that we can again have the equality
(4.20), but with this additional property: For all v, we have µ(πv) � A. It is then
clear that (4.11) holds.

5. The upper bound. Let K be a standard Calderón–Zygmund convolution
kernel on Rd × Rd. This means that the kernel is a distribution that satisfies the
estimates below for x �= y∣∣∣∇jK(y)

∣∣∣ ≤ N |y|−d−j , j = 0, 1, 2, . . . , d + 1.(5.1) ∥∥∥K̂
∥∥∥

L∞(R
�d)
≤ N.
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The first estimate combines the standard size and smoothness estimate. (Our proof
requires a large number of derivatives on the kernel, due to an argument in §5.1.)
The last, and critical, assumption is equivalent to assuming that the operator
defined on Schwartz functions by

TKf (x)
def
=
∫

K(x − y)f (y) dy

extends to a bounded operator on L2(Rd). The least constant N satisfying the
inequalities (5.1) and ‖TK‖2→2 ≤ N is some times referred to as the Calderón–
Zygmund norm of K.

Now let K1, . . . , Kt be a collection of Calderón–Zygmund kernels, with Ks

defined on Rds × Rds . It is not obvious that the corresponding tensor product
operator

TK1 ⊗ · · · ⊗ TKt

is a bounded operator on Lp(R�d). This is a consequence of the multiparameter
Calderón–Zygmund theory. This is a basic fact for us, so we state it here.

PRODUCT CALDERÓN–ZYGMUND KERNELS 5.2. Let K1, . . . , Kt be a collection of
Calderón–Zygmund convolution kernels, with Ks defined on Rds × Rds . Then

TK1 ⊗ · · · ⊗ TKt

extends to a bounded linear operator from Lp(R�d) to itself for all 1 < p <∞.

It is also not at all clear that the multiparameter commutators are bounded
operators, even in the case of the Riesz transforms. Thus, this is one of the
principal results of this paper.

THEOREM 5.3. We have the estimates below, valid for 1 < p <∞.

‖[TK1 , · · · [TKt , Mb] · · ·]‖p→p � ‖b‖BMO .(5.4)

By BMO, we mean Chang–Fefferman BMO. The implied constant depends upon
the vector �d, and the Calderón–Zygmund norm of the TKs.

There are two corollaries of this that we will use below. For a symbol b on
R
�d, define

‖b‖Riesz,p
def
= sup ‖[Rj1 , · · · [Rjt , Mb] · · ·]‖p→p , 1 < p <∞.(5.5)

where the supremum is formed over all choices of Riesz transforms Rjs for
1 ≤ js ≤ ds. (In the case that ds = 1, the Riesz transforms reduce to the Hilbert
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transform.) The Riesz transforms of course fall under the purview of the Theorem
above, so we see that ‖b‖Riesz,p � ‖b‖BMO. This is half of our Main Theorem,
and the other half is the reverse inequality.

We will have need of another class of singular integral operators besides the
Riesz transforms, with the Fourier transform of these kernels—the symbol of the
kernel—being well adapted to a cone in Rd.

Suppose that the dimension d ≥ 2. A cone C ⊂ Rd is specified by the data
(ξC, Q) where ξC ∈ Rd is a unit vector referred to as the direction of the cone
and Q ⊂ Rd−1 is a cube centered at the origin. The cone consists of all vectors
θ given in orthogonal coordinates (θξξ, θ⊥) with θξ = θ · ξ, and θ⊥ ∈ θξQ. For
0 < λ by λC we mean the cone with data (ξC,λQ). By the aperture of C we
mean |Q|.

The Fourier restriction operator specified by C should be bounded on all Lp

spaces, Namely the operator defined by

P̂Cf
def
= 1Cf̂(5.6)

should admit a uniform bound on all Lp(Rd) spaces. By taking the boundary of the
cone to be a cube this is certainly the case: Compositions of Fourier projections
onto half spaces yields PC, so it will not be given by composition with respect
to a (one parameter) Calderón–Zygmund kernel as in (5.1).

For a cone in C ⊂ Rd, we fix a Calderón–Zygmund kernel KC which satisfies
the size and smoothness assumptions above, and in addition,

1C ≤ K̂C ≤ 1(1+κ)C.(5.7)

Here, we introduce a small parameter κ which will depend upon dimension �d.
Moreover, we choose the cone operator to make a sufficiently smooth transition
from 0 to 1 that the operator TC with symbol given by KC defines a Calderón–
Zygmund operator, bounded on all Lp, 1 < p <∞.

There is however an essential point to observe: That the kernel KC satisfies
the Calderón–Zygmund estimates (5.1), but with constants that tend to infinity as
the aperture of the cone tends to infinity. In the limit, the kernels KC tend to a
projection of a one dimensional Calderón–Zygmund kernel. (The operators admit
uniform Lp bound in the aperture, but we need to apply a Theorem of Song-Ying
Li [21] which only applies if the kernels are Calderón–Zygmund on Rd.)

But, with the aperture fixed, in each dimension, we can choose these kernels
to be rotations of one another, so that they admit uniform bounds in Lp(Rd). We
will refer to the operator TC given by convolution with KC as a Cone transform.

As a matter of convention, in the case of d = 1, there are two cones, R±. The
Cone transforms are the corresponding projections onto the positive and negative
frequency axes. These are of course linear combinations of the identity and the
Hilbert transform, which coincide with the Riesz transforms.
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We now define a third norm on a symbol b on R�d

‖b‖Cone,p
def
= sup ‖[TC1 , · · · [TCt , Mb] · · ·]‖p→p , 1 < p <∞.(5.8)

where the supremum is formed over all choices of Cone transforms TCs with
Cs ⊂ Rds in which the aperture of the cone is fixed. Later in the proof, we will
specify an aperture. It follows that we also have ‖b‖Cone,p � ‖b‖BMO. This is an
important observation for us, so let us formalize it in the following Corollary of
Theorem 5.3, which includes half of our Main Theorem.

COROLLARY 5.9. We have the inequalities

‖b‖Riesz,p , ‖b‖Cone,p � ‖b‖BMO , 1 < p <∞.

For the inequality concerning Cone operators, the implied constant depends upon
the aperture of the cones.

Remark. In the one dimensional case, a “cone” is just a projection onto the
positive axis, say, and most of the considerations of this section are not needed.
For the sake of exposition, in this section we will assume that all the coordinates
of �d = (d1, . . . , dt) are at least two. The case when some coordinates are one
is technically easier, but more difficult in terms of accommodating the general
argument into the notation.

Let us formalize the extended version of our Main Theorem.

EXTENSION OF MAIN THEOREM 5.10. For all t ≥ 1 and choices of �d we have

‖b‖Riesz,p � ‖b‖Cone,p � ‖b‖BMO , 1 < p <∞.

The implied constants depend upon the vector �d and the aperture of the cone.

We find it necessary to prove the equivalence between the BMO and Cone
norms in order to deduce the equivalence with the Riesz norm.

5.1. A one parameter result. A commutator is a special form of a paraprod-
uct. Our approach to Theorem 5.3 is obtain a decomposition of a one parameter
commutator into a sum of paraproducts. The tensor product of the elements of
our decomposition are themselves bounded operators, so we can then pass to the
multiparameter statement of the Theorem.

Remark. The multiparameter setting is related to the tensor products of dila-
tion groups. An essential difficulty is that the tensor product of bounded operators
need not be bounded. See [16]. And so it will be incumbent upon us to describe
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sufficient conditions on the operators for the tensor products to be bounded, and
reduce the commutators above to these settings.

A result of this type, expressing a commutator as a sum of paraproducts, is
known to experts, and has been used in [1], and may well have been formulated
in this way before.

PROPOSITION 5.11. For any Calderón–Zygmund kernel satisfying (5.1), and
symbol b we can write the commutator [TK , Mb] as an absolutely convergent sum
of paraproducts composed with signature, scale and location shifts. That is, using
the notation in (4.16),

‖[TK , Mb]‖Para � 1.

Proof of Theorem 5.3. The Proposition above shows that a commutator is
the absolutely convergent sum of bounded paraproducts. The result of Journé,
Theorem 4.4, is that the tensor product of bounded paraproducts is bounded. As
the commutators in our Theorem act on a tensor product space, we see that the
commutators can be written as an absolutely convergent sum of tensor products
of bounded paraproducts. Hence, the Theorem follows.

Proof. A basic fact here is that if φ is adapted to a cube Q, then so is TKφ.
Clearly, TKφ has a zero. This in particular shows that for a paraproduct operator
B, we have

‖TK ◦ B‖Para + ‖B ◦ TK‖Para � ‖B‖Para .

As we are working with convolution operators, we could use a classical
Littlewood–Paley decomposition method to prove this result. We have however
already introduced wavelets (which are essential later in this paper) so we prefer
that method here.

We recall that the Meyer wavelet w in one dimension has Fourier transform
identically equal to zero on a neighborhood of the origin. It follows from the
rapid decrease of the wavelet that we then have

∫
R

xkw(x) dx = 0, k > 0.(5.12)

That is, the wavelet is orthogonal to all polynomials in x. This property extends
to the multidimensional Meyer wavelet.

Let

Fj
def
=

∑
ε∈Sigd

∑
|Q|≥2jd

wεQ ⊗ wεQ(5.13)
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be the Father wavelet projection. And let

∆Fj
def
= Fj − Fj+1 =

∑
ε∈Sigd

∑
|Q|=2jd

wεQ ⊗ wεQ

be the projection onto the wavelets of scale 2j.
The property (2.4) is relevant to us. In particular, it follows from this that we

have the Fourier transform of the product ∆jFjb · Fj+3f is localized to 2−j−3 ≤
|ξ| ≤ 2−j+3.

We expand the commutator in these wavelet projections. Thus,

[TK , Mb]f =
∑
j,j′

[TK , M∆Fjb]∆Fj′ f .

The principal term arises from j + 3 < j′, where we do not have any cancellation
in the commutator, and we write∑

j+3<j′
[TK , M∆Fjb]∆Fj′ f = TK ◦ B1(b, f ) − B2(b, f ),

B1(b,φ)
def
=
∑

j

∆Fj b · Fj+3φ,

B2(b,φ)
def
=
∑

j

∆Fj b · TK ◦ Fj+3φ.

It is important that the product ∆Fj b · Fj+3f have no Fourier support in a neigh-
borhood of the origin that has diameter proportional to 2−j. Certainly, B1 is a
paraproduct. It follows that TK◦B1 is as well. Upon inspection, one sees that B2 is
a paraproduct. It is also straightforward to verify that ‖TK ◦ B1‖Para+‖B2‖Para � 1.

In the remaining cases we expect terms which are substantially smaller. The
principal point is this estimate. For ε, ε′ ∈ Sigd,

∣∣∣[TK , MwεQ
]wε

′
Q′(x)

∣∣∣ �
[ |Q|
|Q′|

]1+1/2d
(

1 +
dist (Q, Q′)

|Q|1/d

)−N

(5.14)

× |Q|−1/2 [χ(2)
Q′ (x)]N , 23d |Q| ≥

∣∣Q′∣∣ .
Here, χ(2)

Q′ is as in (4.1). In the language of the section on paraproducts, this shows
that a large constant times this function is adapted to the cube Q′. The power
−N on the term involving distance holds for all large N; a power of N > d is
required; The power 1 + 1/2d on the ratio |Q| / |Q′| follows from the number
of derivatives we have on the kernel in (5.1); some power larger than one is
required.
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With the inequality (5.14), it is easy to verify that

‖[Mb, TK] · −TKB1(b, ·) + B2(b, ·)‖Para � 1.

The proof of (5.14) is taken in two steps. We have

∣∣∣[TK , MwεQ
]wε

′
Q′(x)

∣∣∣ �
(

1 +
dist (Q, Q′)

|Q|1/d

)−N

× |Q|−1/2 [χ(2)
Q′ (x)]N , 23d |Q| ≥

∣∣Q′∣∣ .
That is, we do not have the term involving |Q| / |Q′| appearing on the right. This
estimate is easy to obtain, and we omit the details.

The second estimate is

∣∣∣[TK , MwεQ
]wε

′
Q′(x)

∣∣∣ � [ |Q|
|Q′|

]1+1/d

|Q|−1/2 [χ(2)
Q′ (x)]N , 23d |Q| ≥

∣∣Q′∣∣ .(5.15)

That is, we have a slightly larger power of |Q| / |Q′| than is claimed in (5.14).
Taking a geometric mean of these two estimates will prove (5.14).

To see (5.15), let us assume that |Q| = 1, which we can do as a dilation of K
has the same Calderón–Zygmund norm as K. Observe that the commutator above
is ∫

{wεQ(x) − wεQ(y)}K(x − y) · wε
′

Q′(y) dy.

Write the leading term in the integral as

{wεQ(x) − wεQ(y)}K(x − y) = T(x − y) + E(x, y),

where T(x − y) is the dth degree Taylor polynomial of the left-hand side, and
the error term E(x, y) satisfies |E(x, y)| � |x − y|d+1. That we have this estimate
follows from our assumptions (5.1) on the kernel K. The wavelet wε

′
Q′ , by choice

of wavelet, is orthogonal to the Taylor polynomial, see (5.12). Thus, as claimed,

∣∣∣∣∫ {wεQ(x) − wεQ(y)}K(x − y) · wε
′

Q′(y) dy
∣∣∣∣ ≤ ∣∣∣∣∫ E(x, y)wε

′
Q′(y) dy

∣∣∣∣
�
∫
|x − y|d+1

∣∣∣wε′Q′(y)
∣∣∣ dy

�
[ |Q|
|Q′|

]1+1/d

χ(2)
Q′ (x).
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An estimate for Riesz transforms. For our use at the end of the proof
of the lower bound on operator norms on Riesz commutators, we will need a
more quantitative estimate on upper bounds of such commutators. This estimate
is most convenient to state here.

PROPOSITION 5.16. For all integers a ≥ 1, consider the operator

Ua ( f , g)
def
=

∑
|Q′|=2a|Q|

∑
ε′,ε∈Sigd

〈 f , wε
′

Q′〉〈g, wεQ〉 [Mwε
′

Q′
, Rs]w

ε
Q

where Rs is the sth Riesz transform on Rd. We have the estimate

‖Ua‖Para � 2−Ma.(5.17)

This estimate holds for all a, M > 1, and all Riesz transforms, with implied constant
only being a function of M, and the dimension d.

The proof is a simple variant on the previous proof. Clearly the role of the
signatures is unimportant, and we will ignore the sum on the signatures in the
argument below. Note that Ua is a paraproduct, with zeros falling on f , and zeros
falling on g. Now, Q and Q′ have different scales, which means that wQ and wQ′

are not adapted to cubes of the same scale.
This was exactly the problem addressed with the inequality (5.14) above.

However, the Riesz transform has an infinitely smooth kernel. Therefore, a
stronger form of (5.14) holds. Namely, for all m > 1, we have

∣∣∣[[Mwε
Q′

, Rs]w
ε
Q(x)

∣∣∣ �
[ |Q|
|Q′|

]m
(

1 +
dist (Q, Q′)

|Q′|1/d

)−N

×
∣∣Q′∣∣−1/2 [χ(2)

Q (x)]N ,
∣∣Q′∣∣ = 2a |Q| .

The implied constant depends only upon m, through the growth of the constants
in the relevant estimates of the Riesz transform kernels.

The proof of the estimate proceeds just as the proof of (5.14), so we omit
the details. The derivation of the proposition from this last estimate is routine.

6. The lower bound. We turn to the converse to Corollary 5.9, namely the
Theorem below, which includes half of our Main Theorem.

THEOREM 6.1. We have the inequalities below, valid for all choices of �d:

‖b‖BMO � ‖b‖Riesz,p , ‖b‖Cone,p , 1 < p <∞,

where the two norms are defined in (5.5) and (5.8). For the inequality involving the
cone norm, the implied constant depends upon the aperture of the cone.
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Remark. It is enough to prove this inequality with the L2 operator norm on
the right-hand side. If a commutator is bounded from Lp to itself, then it is also
bounded on the conjugate space Lp′ , and so by interpolation bounded on L2. That
is, we have the inequality ‖b‖Riesz,2 � ‖b‖Riesz,p, valid for all 1 < p < ∞. The
same inequality holds for the Cone norm.

For the rest of this paper, we will denote ‖b‖Riesz,2 by ‖b‖Riesz and similarly
for the Cone norms.

We use induction on parameters, namely the number of coordinates in �d. The
base case is t = 1. Coifman, Rochberg and Weiss [8] proved that ‖b‖BMO �
‖b‖Riesz. This is a well-known result, with a concise proof. We find it necessary
to prove the same inequality for the cones as an aid to proving the result about
Riesz transforms. Indeed, it was this part of the proof that motivated the definition
of the cone norm.

In the case t = 1, we indeed have the inequality ‖b‖BMO � ‖b‖Cone. This is
a consequence of a deep line of investigation begun by Uchiyama [29], in which
both directions of the Coifman, Rochberg, and Weiss result were extended to
more general Calderón–Zygmund operators. In particular, a result of Song-Ying
Li gives us as a Corollary to his Theorem, this essential result, which completes
our discussion of the base case t = 1 in our induction on parameters.

THEOREM 6.2. (Li [21]) In the case of t = 1, for all d ≥ 1 and symbols b on
Rd we have

‖b‖BMO � ‖b‖Cone .

In the inductive stage of the proof, we use the induction hypothesis to derive
a lower bound on the commutator norms in terms of the BMO−1 norm. In so
doing, it is very useful to use the equivalent Weak Factorization Theorem.

We then “bootstrap” from this weaker inequality to the full inequality. Namely,
we can work with a symbol b with BMO norm one, but with BMO−1 norm small.
(That is, the function b is of the type found in Carleson’s examples [4].) With b
fixed, we select an appropriate commutator which will admit a lower bound on
its operator norm. We select a test function which will show that the commutator
has a large operator norm. Verification of this fact will depend critically on the
assumption that the symbol has small BMO−1 norm, and the Journé Lemma.

6.1. The initial BMO−1 lower bound. We assume that t ≥ 2 and use the
induction hypothesis to establish a lower bound on the Riesz and Cone norms of
a symbol. This norm is in terms of our BMO norm with t − 1 parameters.

LEMMA 6.3. For t ≥ 2, assume Theorem 6.1 in the case of t − 1 parameters.
Then we have the estimate

‖b‖BMO−1
� ‖b‖Cone , ‖b‖Riesz ,(6.4)
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where it is to be emphasized that the BMO−1 norm on the left is the BMO norm of
t − 1 parameters.

Proof. We only give the proof of ‖b‖BMO−1
� ‖b‖Riesz explicitly. This proof

uses an equivalent form of the induction hypothesis, namely a weak factorization
result on H1 in t − 1 parameters. The same weak factorization result holds for
Cone transforms. See Li [21] for the one parameter formulation of this result.

Using the notation of (1.3), it is a straightforward exercise in duality to
demonstrate that

sup
�j

∥∥∥C�j(b, ·)
∥∥∥

2→2
≈ ‖b‖

(L2(R
�d)�̂L2(R

�d))∗
.(6.5)

Therefore to show (6.4), it is sufficient to demonstrate that the following inequality
holds,

‖b‖(L2�̂L2)∗ � ‖b‖BMO−1
,(6.6)

and this will be established by relying upon the truth of the Theorem in t − 1
parameters.

Given a smooth symbol b(x1, . . . xt) = b(x1, x′) of t parameters, we assume
that ‖b‖BMO−1

= 1. As the symbol is smooth, the supremum in the norm is
achieved by a collection of rectangles U of D�d of t − 1 parameters. We can
assume that the rectangles in U agree in the first coordinate, to a cube Q ⊂ Rd1 .
As there are free dilations in each coordinate, we can assume that |Q| = 1 and
|sh(U)| ≈ 1. Then define

ψ =
∑
R∈U

∑
�ε∈Sig�d

〈b, w�εR〉w�εR.

One notes that 〈b,ψ〉 = 1. To prove the claim, it is then enough to demonstrate that
‖ψ‖

L2(R
�d)�̂L2(R

�d)
� 1. Next observe that ψ(x) = ψ1(x1)ψ′(x′) and ψ1 ∈ H1(Rd1 )

with

‖ψ1‖H1(Rd1 ) = 1.

For the function ψ1, we use the one parameter weak factorization of H1(Rd1 ) of
Coifman, Rochberg and Weiss [8]: There exists functions f j

n, gj
n ∈ L2(Rd1 ), n ∈ N,

1 ≤ j1 ≤ d1, such that

ψ1 =
∞∑

n=1

d1∑
j1=1

Π1,j1 ( f j1
n , gj1

n ),

where Π1,j1 (p, q) := R1, j1 (p)q + pR1, j1 (q). One next sees that ψ′ ∈ H1( ⊗t
l=2 R

dl)
with norm controlled by a constant. This follows from the choice of U and
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the square function characterization of the space H1( ⊗t−1
l=1 R

dl). By the induc-
tion hypothesis in t − 1 parameters, in particular that H1( ⊗t

l=2 R
dl) = L2( ⊗t

s=2

Rds)
̂L2( ⊗t
s=2 R

ds), we have f
�j
m, g

�j
m ∈ L2( ⊗t

s=2 R
ns) with m ∈ N and �j a vector

with 1 ≤ js ≤ ds for s = 2, . . . , t such that

ψ′ =
∞∑

m=1

∑
�j

Π�j( f
�j
m, g

�j
m),

∞∑
m=1

∑
�j

∥∥∥f
�j
m

∥∥∥
2

∥∥∥g
�j
m

∥∥∥
2

� 1.

This immediately implies (6.4) since ψ = ψ1ψ
′, and we have a weak factor-

ization of ψ with ‖ψ‖
L2(R

�d)�̂L2(R
�d)

� 1.

7. The bootstrapping argument. In this section, we assume that ‖b‖BMO−1

< δ−1, is very small, for a constant 0 < δ−1 < 1 to be chosen. Under this
additional assumption, we conclude the proof of Theorem 6.1.

This proof is intricate, and indeed at this stage we find it essential to first
prove the result for cones, namely we first prove ‖b‖BMO � ‖b‖Cone. Elements
of this proof in this case are essential to address the Riesz norm case.

7.1. The lower bound on the cone norm. This case follows the lines of
the argument of Lacey and Terwilleger [20]. (The current argument is however
somewhat simpler.) We make a remark about the cone norms with different aper-
tures. Given a cone C with data (ξ, Q) where ξ is a unit vector in Rd and Q is
a cube, consider a second cone C′ with data (ξ′, C′). We can map one cone into
the other with an orthogonal rotation and a dilation in d − 1 variables. Thus, the
corresponding Calderón–Zygmund kernels KC and KC′ can be mapped one into
the other by way of these same transformations.

A rotation preserves the Calderón–Zygmund norm of the kernel, but the
dilation does not since it is not uniform in all coordinates. Nevertheless, this
observation shows that the Cone norms associated to distinct apertures are com-
parable. Thus, to prove our result, it suffices to demonstrate the existence of some
aperture for which the Theorem is true. This we will do by taking a somewhat
large aperture, that approximates a half space.

For a choice of symbol b with ‖b‖BMO = 1 and ‖b‖BMO−1
< δ−1, there is an

associated open set U for which we achieve the supremum in the BMO norm.
After an appropriate dilation, we can assume 1

2 < |sh(U)| ≤ 1. Let U = {R ∈
D�d: R ⊂ U}.

For a collection of rectangles T define the wavelet projection onto T as

PT b
def
=
∑
R∈T

∑
�ε∈Sig�d

〈b, w�εR〉w�εR.

Define β = PUb. We use this function to build a test function to demonstrate a
lower bound on the Cone norm.
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The purpose of the next steps is to select the cones we will use. This issue
involves some subtleties motivated by subsequent steps in the proof. Of particular
importance is that the selection of the cones be dependent only on dimension,
as well as satisfy some particular estimates. It turns out to be a useful device to
select two distinct cones: One will be used for the selection of the test function
for the commutator, and the other for the cones we use to define the commutator.

Given a cone C with data (ξ, Q), let HC be the convolution operator with
symbol 1(0,∞)(ξ · θ), which is to say that HC is the Fourier projection onto a half
space associated with C.

LEMMA 7.1. Given �d and κ > 0 we can select cones

Ds ⊂ Cs ⊂ Rds , 1 ≤ s ≤ t.

These cones have data (ξs, Qs) and (ξs, Q′s) respectively. They are, up to a rotation,
only a function of �d and κ > 0, and they satisfy these properties. Defining

γ
def
= TD1 · · ·TDtβ(7.2)

we have

‖γ‖2 ≥ 4−t.(7.3)

‖HD1 · · ·HDtβ − γ‖4 ≤ κ.(7.4) ∥∥∥(HC1 · · ·HCt − PC1 · · ·PCt ) |γ|2
∥∥∥

2
≤ κ.(7.5)

Notice that (7.4) estimates an L4 norm; and that (7.5) concerns the function |γ|2,
and we are estimating the difference between the projections onto the half spaces
defined by the cones, and the projection onto the larger cones.

Proof. We begin with the selection of the cones Ds, which is a randomized
procedure. Fix a small constant 0 < η < 1

10 . In each dimension Rds , fix an
aperture Qs so that the cone Ds with this aperture satisfies

P(Ds ∩ Sds−1 | Sds−1) ≥ 1
2 − η.

Here, Sds−1 denotes the sphere in Rds endowed with the canonical normalized
surface measure. The notation above is the standard way to denote conditional
probability.

Now, let D′s denote a random rotation of the cone Ds. Taking expectations of
L2 norms below, we have access to the Plancherel identity to see that

E
∥∥∥PD′1

· · ·PD′t
β
∥∥∥2

2
= c�d E

∫
D′1⊗···⊗D′t

∣∣∣β̂(�ξ)
∣∣∣2 d�ξ ≥ ( 1

2 − η)t.
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But also, we must have

E
∥∥∥(HD′1

· · ·HD′t
− PD′1

· · ·PD′t
)β
∥∥∥2

2
≤ ηt.

View these statements about the L2 norm of nonnegative random variables. As
concerns the first inequality, note that

sup
D′1,...,D′t

∥∥∥PD′1
· · ·PD′t

β
∥∥∥2

2
≤ 1.

Hence, we see that

P(
∥∥∥PD′1

· · ·PD′t
β
∥∥∥2

2
≥ ( 1

4 )t) ≥ ( 1
2 − η)t,

P(
∥∥∥(HD′1

· · ·HD′t
− PD′1

· · ·PD′t
)β
∥∥∥2

2
≥ ηt/2) ≤ ηt/2.

Therefore, for η sufficiently small, we can select cones D′1, . . . , D′t so that

∥∥∥PD′1
· · ·PD′t

β
∥∥∥2

2
≥ ( 1

4 )t

∥∥∥(HD′1
· · ·HD′t

− PD′1
· · ·PD′t

)β
∥∥∥2

2
≤ ηt/2.

On the other hand, we automatically have∥∥∥(HD′1
· · ·HD′t

− TD′1
· · ·TD′t

)β
∥∥∥

8
≤ C ‖β‖8 ≤ K

for an absolute constant K. Keeping in mind the fact that the symbol of a cone
operator TC is identically one on the cone C, we see that we have proved (7.3)
and (7.4).

We use proof by contradiction to find the cones Cs. Fix the cones Ds as
above, and let us suppose that (7.5) fails for some κ > 0. Then, we can find a
sequence of cones

Ck
s � Ck+1

s , 1 ≤ s ≤ t, k ≥ 1

with data (ξk, Q′s,k), where the apertures Q′s,k increase to all of Rds−1.
We can also find functions βk satisfying

‖βk‖2 = 1, ‖βk‖8 ≤ K8,∥∥∥(HCk
1
· · ·HCk

t
− PCk

1
· · ·PCk

t
) |γk|2

∥∥∥
2
≥ κ.
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where γk is defined as in (7.2). The constant K8 depends only on �d, and the John
Nirenberg inequality for BMO.

In particular, as we can assume an upper bound on the L8 norm of the βk,
the sequence of functions {βk} are precompact in the L2 topology. Letting β∞
be a limit point of the sequence of functions, and defining γ∞ as in (7.2), we see
that for all large k,

∥∥∥(HCk
1
· · ·HCk

t
− PCk

1
· · ·PCk

t
) |γ∞|2

∥∥∥
2
≥ κ.

But this is an absurdity, as in the limit, the symbol of this difference is supported
on a subspace of codimension t. Therefore, (7.5) holds.

The cones we form the commutator of are the Cs of the previous Lemma.
We will test the commutator against the function γ, where γ is as in (7.2).

By Journé’s Lemma, in particular Lemma 3.8, there will exist an open set V
which satisfies the conditions of that Lemma. Set

V def
= {R : R ⊂ V , R �⊂ sh(U)}.(7.6)

Finally, let W def
= D�d − U − V .

The function γ enjoys these properties of Lemma 7.1, as well as the ones
below, which will conclude the proof.

‖[TC1 , · · · [TCt , MPUb] · · ·]γ‖2 � 1,(7.7)

‖[TC1 , · · · [TCt , MPVb] · · ·]γ‖2 � δ
1/4
J ,(7.8)

‖[TC1 , · · · [TCt , MPWb] · · ·]γ‖2 ≤ KJδ−1.(7.9)

Here 0 < δJ < 1 is the constant associated with Journé’s Lemma (called η in
Lemma 3.8), that is to be specified. KJ is a function of δJ . These estimates will
lead to an absolute lower bound and prove Theorem 6.1. Namely, the implied
constants in each of the inequalities depend only on �d, while δJ and δ−1 are free
to choose. Certainly we can choose δJ first, and then with KJ specified in (7.9),
select δ−1 to prove our Theorem.

Estimate (7.8) is straightforward. It is easy to see that

‖[TC1 , · · · [TCt , MPVb] · · ·]γ‖2 � ‖PVb‖4 ‖γ‖4 � ‖PVb‖4 ,

where the implied constant depends upon the the L4 norms of the Cone transforms.
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But, by Journé’s Lemma 3.8 and construction, we have that

‖PVb‖2 ≤ δ
1/2
J , ‖PVb‖BMO ≤ 1,

which implies that

‖PVb‖4 ≤ δ
1/4
J .

These together give (7.8).
We turn to the verification of (7.7) and provide a lower bound for the L2

norm below

‖[TC1 , · · · [TCt , Mβ] · · ·]γ‖2 .

Recall that β = PUb and the definition of γ in (7.2). The commutator is a linear
combination of terms T[β · T′γ], where T and T′ are either the identity, or a
product in TCs , 1 ≤ s ≤ t. (Each TCs must occur in either T or T′.) In each case
that T′ is a nontrivial product, we have T′γ = 0. It then remains to consider the
only term not of this type, namely

TC1 · · ·TCt [β · γ].

Write β = γ + β′ + β′′, where the smaller cones from Lemma 7.1 enter again
below.

β′ = (HC1 · · ·HCt − TD1 · · ·TDt )β,(7.10)

β′′ = (I − HC1 · · ·HCt )β.

Note that (7.3) provides information about β′. We need to consider TC1 · · ·TCt [β ·
γ], which is now divided into three terms. They are

TC1 · · ·TCt [β · γ] = TC1 · · ·TCt [β
′′ · γ] + TC1 · · ·TCt [β

′ · γ]

+TC1 · · ·TCt [γ · γ].

Now, γ and β′′ are supported on the same product of halfspaces, which are
complementary to the cones, thus

TC1 · · ·TCt [β
′′ · γ] = 0.(7.11)

For β′ we do not attempt to find any cancellation, just relying on the favorable
estimate from (7.4).∥∥TC1 · · ·TCt [β

′ · γ]
∥∥

2 ≤
∥∥β′∥∥4 · ‖γ‖4 � κ.(7.12)
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The last term holds the essence of this component of the argument. By (7.5),

‖TC1 · · ·TCt [γ · γ]‖2 − κ ≥ ‖HC1 · · ·HCt [γ · γ]‖2(7.13)

� ‖γ · γ‖2

= ‖γ‖2
4

�

∥∥∥∥∥∥∥∥
 ∑
�ε∈Sig�d

∑
R∈U

∣∣∣〈γ, w�εR〉
∣∣∣2

|R| 1R


1/2
∥∥∥∥∥∥∥∥

2

4

�

∥∥∥∥∥∥∥∥
 ∑
�ε∈Sig�d

∑
R∈U

∣∣∣〈γ, w�εR〉
∣∣∣2

|R| 1R


1/2
∥∥∥∥∥∥∥∥

2

2

� 1.

The second line follows as the Fourier transform of γ ·γ is symmetric with respect
to the half planes determined by the cones; the third line is obvious; the fourth
line uses the Littlewood–Paley inequalities; and the fifth line uses the fact that
the rectangles in U are in a set of measure at most one. This completes the proof
of (7.7).

The remainder of the paper is devoted to proving (7.9) which is taken up in
the next section.

The Proof of (7.9). Theorem 4.7 will let us conclude estimate (7.9), and
the proof of Theorem 6.1.

We have observed that the commutator we are considering simplifies consider-
ably when applied to the function γ. Letting T = TC1 · · ·TCt , and T′ = TD1 · · ·TDt

the estimate we are to prove is

‖T(PWb · γ)‖2 =
∥∥∥T(PWb · T′β)

∥∥∥
2

� KJδ−1.

It is critical to observe that the outermost T imposes a cancellation condition
similar to the one defining paraproducts. For R ∈ U and R′ ∈ W , and choices of
signatures �ε, �ε′ ∈ Sig�d, we have

T(w�ε
′

R′ · T′w�εR) = 0 if for any 1 ≤ s ≤ t,
∣∣Q′s∣∣ > 64 |Qs| .

Recall that we defined γ = T′β. T and T′ are a convolution operators, so the
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Fourier support of Tw�εR is contained in the Fourier support of w�εR. Therefore, this
property follows immediately from the properties of the Meyer wavelet.

Using this observation, we see the estimate to be proved is∥∥∥∥∥∥∥
∑

�ε,�ε∈Sig�d

∑
(R,R′)∈A

〈b, w�εR〉 〈b, w�ε
′

R′〉T(w�εR′ · T′w�εR)

∥∥∥∥∥∥∥
2

� δ−1,(7.14)

A def
= {(R, R′): R ⊂ U, R′ �⊂ V ,

∣∣Q′s∣∣ ≤ 64 |Qs| , 1 ≤ s ≤ t}.

Notice that in the L2 norm, we are free to remove the operator T, as it is a
bounded operator on L2(R�d).

It is essential to observe that this last sum can be written as a sum of paraprod-
ucts, as in Theorem 4.7. The purpose of these next definitions is to decompose
the collection A into appropriate parts to which Theorem 4.7 applies. For an
integer n ≥ 1, take

Un
def
= {R ∈ U : 2n−1 ≤ Emb(R) ≤ 2n},

An
def
= {(R, R′): R ∈ Un, R′ �⊂ V ,

∣∣Q′s∣∣ ≤ 64 |Qs| , 1 ≤ s ≤ t}.

Here, Emb is the function supplied to us by Journé’s Lemma, Lemma 3.8. Hence,
as a consequence we have

‖PUnb‖BMO � 2Cnδ−1,

where C is a large constant depending only on �d. Observe that for (R, R′) ∈ An

we necessarily have 2n−1R∩R′ = ∅. In particular, the assumption (4.10) will hold
with A � 2n. From this separation, and the rapid decay of the Meyer wavelet, we
will gain an arbitrarily large power of 2−n. Thus the presence of the term 2Cn in
this last estimate turns out not to be a concern for us.

Our estimate below is a consequence of (4.11), after a further decomposition
of the sum to account for the role of the location of the zeros, controlled by the
set J in (4.11).∥∥∥∥∥∥∥

∑
�ε,�ε′∈Sig�d

∑
(R,R′)∈An

〈b, w�εR〉 〈b, w�ε
′

R′〉 (w�εR′ · T′w�εR)

∥∥∥∥∥∥∥
2

� 2−nδ−1, n ≥ 1.(7.15)

Summation in n ≥ 1 will then prove (7.14).
Specifically, let J ⊂ {1, . . . , t}, and let integer �k ∈ Zt satisfy

ks = 8, s �∈ J, −8 ≤ ks ≤ 8, s ∈ J.
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Let An,J,�k be a subset of An given by

An,J,�k
def
= {(R, R′) ∈ An:

∣∣Q′s∣∣ ≤ 2−8 |Qs| , s �∈ J,
∣∣Q′s∣∣ = 2ks |Qs| , s ∈ J}.

For this collection, the estimate∥∥∥∥∥∥∥
∑

�ε,�ε′∈Sig�d

∑
(R,R′)∈An,J,�k

〈b, w�εR〉 〈b, w�ε
′

R′〉 (w�εR′ · T′w�εR)

∥∥∥∥∥∥∥
2

� 2−nδ−1

is then a consequence of (4.11). This estimate is summed over J ⊂ {1, . . . , n}
and �k to prove (7.15).

7.2. The lower bound on the Riesz transforms.

Properties of Riesz transforms. We need some special properties of Riesz
transforms. Variants are in the paper of Coifman, Rochberg and Weiss [8].

PROPOSITION 7.16. For each s, let Ts be a polynomial in the Riesz transforms
on Rds . Then, we have the inequality

‖[ · · · [Mb, T1], · · ·], Tt]‖2→2 � sup
�

∥∥C�(b, ·)
∥∥

2→2 .

The implied constant depends upon the choice of polynomials Ts.

This in fact follows from the elementary identity

[Mb, RjRk] = [Mb, Rj]Rk + Rj[Mb, Rk].

An operator T which is a polynomial in Riesz transforms is a convolution
operator, with radial symbol. Below, we will only describe the symbols that we
are interested in.

The selection of the operators which are polynomials in Riesz transforms is
hardly obvious, and we identify their properties in the following Lemma.

LEMMA 7.17. Given any 0 < η < 1 and any cone C inRd, there is an operator
UC, a linear combination of the identity and a polynomial in Riesz transforms on
Rd, with symbols υC such that

{
|υC(ξ) − 1| < η ξ ∈ C
|υC(ξ)| < η ξ ∈ −C.

(7.18)
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Finally, we have the estimate

‖UC‖p � Cp, 1 < p <∞.(7.19)

The constant Cp is independent of the choice of the cone C and dimension d.

Proof. This depends upon particular properties of spherical harmonics and
zonal polynomials. We were aided by [2] in our search for this proof.

It suffices to prove the following. For a choice of cone C in Rd, with direction
ξC, and 0 < η < 1, we can choose operator U with symbol υ which is odd with
respect to ξC, ‖υ‖∞ ≤ 2, and

{
|υ(ξ) + 1| < η ξ ∈ −C,
|υ(ξ) − 1| < η ξ ∈ C.

(7.20)

Finally, υ restricted to the unit sphere is a polynomial in ξj for (ξ1, ξ2, . . . , ξd) ∈
Sd−1. We will see that the degree is at most � η−1 log 1/η.

Then, U is in fact a polynomial in Riesz transforms. Since υ is odd, the
method of rotations applies to provide us with an estimate of ‖U‖p ≤ Cp, where
Cp is absolute for 1 < p <∞. To get an operator with symbol as in our Lemma,
we add the identity operator to U.

We obtain the symbol υ by employing the Poisson kernel in the ball in Rd,
and as well an expansion of this kernel into zonal harmonics. Let us recall the
properties we need. The Poisson kernel in Rd is

P(x, ζ) =
1 − |x|2

|x − ζ|d
, |x| < 1, |ζ| = 1.

A homogeneous harmonic polynomial p of degree m on Rd has the repro-
ducing formula [2, p. 97]

p(x) = |x|m
∫

Sd−1
p(ζ)Zm(x, ζ) σ(dζ).

Here, σ denotes normalized Lebesgue measure on the unit sphere Sd−1 in Rd.
The polynomial Zm(x, ζ) is a zonal polynomial of degree m. It follows that the
Poisson kernel admits an expansion in terms of these polynomials

P(x, ξ) =
∞∑

m=0

Zm(x, ζ).
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This series is absolutely convergent sum in the interior of the unit ball, thanks to
the elementary estimate

|Zm(x, ζ)| � md−2 |x|m .(7.21)

It is a basic property of the zonal polynomials that they are only a function
of |x| and x · ζ. Indeed, they can be expanded as

Zm(x, ζ) =
[m/2]∑
k=0

ck,m(x · ζ)m−2k |x|2k .

Here, ck,m are known real coefficients. In particular, for a function υ̃ on the unit
sphere that is odd, the new function

∫
υ̃(ζ)Zm(x, ζ) dσ(ζ)

is also odd, for |x| held fixed.
To construct our operator U, via its symbol υ, recall that the operator U is

associated to a cone C with direction ξC. On the cone C and the opposite cone
−C we require rather precise information about the symbol υ. Outside of these
cones we only require an absolute upper bound on υ. Hence, we have some
freedom in taking an initial approximate to the symbol υ. In what follows, we
concentrate on defining the symbol on the sphere Sd−1.

Take as an initial approximate ˜̃υ(ξ) = sign (ξ · ξC). For a small constant c,
consider the function

υ̃(θ)
def
=
∫ ˜̃υ(ζ)P((1 − cη)θ, ζ) dσ(ζ).

This function will be nonnegative, odd, bounded in absolute value by 1, and
satisfy (7.20). It is not however a polynomial in spherical harmonics.

But each function

υm(θ)
def
=
∫ ˜̃υ(ζ)Zm((1 − cη)θ, ζ) dσ(ζ)

is also odd, as we have already noted. By (7.21), we have the estimate

∥∥∥∥∥
∞∑

m=m0

υm

∥∥∥∥∥
L∞(Sd−1)

≤ η/4, m0 = C( log 1/η)/η
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where C depends upon the dimension d. Therefore, the function υ we need can
be taken to be

m0∑
m=0

υm.

Our proof is complete.

The selection of a test function. We continue to assume that the symbol b
satisfies ‖b‖BMO = 1 while ‖b‖BMO−1

< δ−1. We follow many of the initial stages
of the proof of the lower bound on the Cone norm. We choose cones Ds ⊂ Cs,
and cone operators TDs , TCs , for 1 ≤ s ≤ t just as in Lemma 7.1.

We continue to use the notations U , V and W , thus |sh(U)| � 1 and∑
R∈U

|〈b, wR〉|2 � |sh(U)| .

V and W are defined as in (7.6), and β = PUb. As before, we set γ = TD1 · · ·TDtβ.
For 0 < η < 1 to be chosen, apply Lemma 7.17, obtaining operators Ts which

are a linear combinations of the identity and polynomials in Riesz transforms on
Rds which approximate the projection operator PCs in the sense of that Lemma.
Let us see that we have the estimate

‖[T1, · · · [Tt, Mβ] · · ·]γ‖2 � 1.(7.22)

The commutator is a linear combination of 2t terms of the form

T[βT′γ]

where T and T′ are either the identity or a composition of the operators Ts. If T′

is not the identity, it follows that the symbol of T′ is at most η on the Fourier
support of γ. Therefore, we can estimate∥∥T[βT′γ]

∥∥
2 �

∥∥βT′γ
∥∥

2 � ‖β‖4

∥∥T′γ
∥∥

4 � η1/3.

This last estimate follows from ‖T′γ‖2 � η, while ‖T′γ‖8 � 1. This point is
imperative, and follows from the uniform Lp bounds we obtain from Lemma 7.17.

This leaves the term T1 · · ·Ttβγ. But, for a sufficiently small choice of η, we
are free to use the same argument as in (7.13). This proves (7.22).

It then follows from Proposition 7.16 that for some choice of Riesz transforms
Rjs on Rds we have

‖C(β, γ)‖2 � 1, where(7.23)

C( f , g)
def
= [Rj1 , · · · [Rjt , Mf ] · · ·]g.
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Now, it also follows that

‖C(PVb, γ)‖2 � δ
1/4
J .(7.24)

Indeed, we can appeal to the same argument as used to prove (7.8).
Finally, we claim that

‖C(PWb, γ)‖2 � δ−1.(7.25)

This estimate requires the same argument as for (7.9), plus an additional estimate;
the details are below. The three inequalities (7.23), (7.24) and (7.25) are then
combined in in the same manner as in the proof of the lower bound on the Cone
norm to complete the proof.

Proof of (7.25). The different quantitative estimates we have for para-
products are brought to bear on this estimate. First, we expand the expression
C(PWb, γ) into the sum of commutators on different pairs of wavelets. This sum
is further written as D1 + D2, where we define D1 explicitly here.

D1
def
=

∑
�ε,�ε∈Sig�d

∑
(R,R′)∈A

〈γ, w�εR〉 〈b, w�εR′〉C(w�εR′ , w�ε′R )(7.26)

A def
= {(R, R′): R ∈ U , R′ �⊂ V ,

∣∣Q′s∣∣ ≤ 64 |Qs| , 1 ≤ s ≤ t}.

This is the part of the commutator that most closely resembles the part arising
from the commutator arising from the Cone operators.

It is essential to observe that this last sum can be written as a finite sum of
compositions of Riesz transforms and the “paraproducts” in Theorem 4.7, and in
particular the more technical estimate (4.11), applied to the functions PUb and
PWb. We also comment that the Riesz transforms applied to the wavelet element
w�εR do not substantially change the localization properties of the wavelet, and
thus the Riesz transforms do not spoil the estimates that appear in Theorem 4.7.
This sum varies of choices of �k with

∥∥∥�k∥∥∥
∞
≤ 8, and arbitrary J ⊂ {1, . . . , t}.

(The subset J consists of those coordinates s for which |Qs| = 2ks |Q′s|.)
We will need to decompose the collection A into appropriate parts to which

this estimate applies. That is the purpose of this definition. For an integer n ≥ 1,
take

γn
def
=

∑
�ε∈Sig�d

∑
R⊂U

2n−1≤Emb(R)≤2n

〈γ, w�εR〉w�εR

We claim that

‖C(PWb, γn)‖2 � 2−nδ−1.(7.27)
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It follows from Lemma 3.8 that we have the estimate

‖γn‖BMO(R
�d)

� 22tnδ−1,(7.28)

indeed, this is the point of this definition. From other parts of the expansion of
the Riesz commutator we need to find some decay in n.

Nevertheless, from this estimate and the upper bound on Riesz commutator
norms, we have the estimate

‖C(PWb, γn)‖2 � ‖b‖
BMO(R

�d)
‖γn‖2 � 22tnδ−1.

We use this estimate for n < 20, say.
For n ≥ 20, R ∈ U with 2n−1 ≤ Emb(R) ≤ 2n, and rectangle R′ with

(R, R′) ∈ A, it follows that we must have 2n−9R ∩ R′ = ∅. That is, (4.10) is
satisfied with the value of A in that display being A � 2n for n ≥ 20. Thus, we
conclude that

‖C(PWb, γn)‖2 � 2−50nδ−1, n ≥ 20.

This completes our proof of (7.27), and the proof estimate (7.9) .
It remains to estimate the term D2. The principal tool here is the estimate

for Riesz commutators given in Lemma 5.16, and in order to apply this lemma,
as well as take advantage of our remaining freedom to select the δ−1 norm, we
need a sophisticated decomposition of the sum that controls D2. That is the point
of these next definitions.

Let m be an integer. For a non empty subset J ⊂ {1, . . . , t}, and choices of
integers �a = (aj)j∈J with aj ≥ 7, we define

D(m, J,�a)
def
=

∑
�ε,�ε′∈Sig�d

∑
(R,R′)∈A(m,J,�a)

〈γ, w�εR〉 〈b, w�ε
′

R′〉C(w�ε
′

R′ , w�εR)(7.29)

A(m, J,�a)
def
= {(R, R′): R ∈ U , R′ �⊂ V;

∣∣Q′s∣∣ ≤ 64 |Qs| , s �∈ J;∣∣Q′s∣∣ = 2a |Qs| , s ∈ J; 2m ≤ Emb(R) ≤ 2m+1}.

With this definitions, we will have

D2 =
∑
m,J,�a

D(m, J,�a).

The estimate below holds.

‖D(m, J,�a)‖2 � 2−m−
∑

s asδ−1.(7.30)
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This is summable over the parameters m, J,�a, and so completes the proof of the
estimate for D2.

Recall that we have the essential consequence of Journé’s Lemma.∥∥∥∥∥∥∥∥
∑
R∈U

2m≤Emb(R)≤2m+1

∑
ε∈Sig�d

〈γ, wεR〉wεR

∥∥∥∥∥∥∥∥
BMO

� 2C�d mδ−1.(7.31)

The first subcase occurs when we have

max
s∈J

as ≤
m
4

.(7.32)

It follows from the definition of embeddedness that Qs′ ∩ 2m/4Qs = ∅ for all
(R, R′) ∈ A(m, J,�a). Therefore, the function

2−Nm
√
|Qs′ |C (w�ε

′
R′ , w�εR)(7.33)

is adapted to Qs, where N ≥ 1 can be taken arbitrarily. This sum can be under-
stood as a paraproduct, with symbol given by PWb, applied to γ. Zeros fall on
γ for those coordinates s ∈ J. Using (7.31) and the estimate (7.32), we see that
(7.30) holds in this case.

The second case is when (7.32) fails in any coordinate, say s0 ∈ J. In this
instance, we see that the sum we are considering in that coordinate is of the type
considered in Lemma 5.16. That is, the sum is an operator whose paraproduct
norm, as defined in (4.16) is at most 2−Nas0 , for arbitrarily large N. In all other
coordinates, the sum is an operator with paraproduct norm at most a constant.
The tensor product of paraproducts is a bounded operator, therefore in this case,
we have

‖D(m, J,�a)‖2 � 2−N
∑

as2C�dmδ−1 � 2−2
∑

asδ−1.

Here of course, we again rely upon (7.31). This completes the proof of (7.30). This
in turn completes the proof of the lower bound on the norm of multiparameter
Riesz commutators.
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[23] , Ondelettes et opérateurs. I, Actualités Mathématiques. [Current Mathematical Topics], Her-

mann, Paris, 1990.
[24] C. Mucalu, J. Pipher, T. Tao, and C. Thiele, Bi-parameter paraproducts, Acta Math. 193 (2004), no. 2,

269–296.
[25] , Multi-parameter paraproducts, Rev. Mat. Iberoamicana 22 (2006), no. 3, 963–976.
[26] Z. Nehari, On bounded bilinear forms, Ann. of Math. (2) 65 (1957), 153–162.
[27] S. Petermichl, Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, C. R.

Acad. Sci. Paris Sér. I Math. 330 (2000), no. 6, 455–460 (English, with English and French
summaries).
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