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THREE REVOLUTIONS IN THE KERNEL ARE
WORSE THAN ONE

BENJAMIN JAYE AND FEDOR NAZAROV

ABSTRACT. An example is constructed of a purely unrectifiable
measure p for which the singular integral associated to the kernel

z

K(z) = % is bounded in L?*(y). The singular integral fails to
exist in the sense of principal value p-almost everywhere. This
is in sharp contrast with the results known for the kernel % (the
Cauchy transform).

1. INTRODUCTION

Let B(z,r) denote the closed disc in C centred at z with radius r > 0.
A finite Borel measure y is said to be 1-dimensional if H!(supp(u)) <
oo, and there exists a constant C' > 0 such that u(B(z,7)) < Cr for
any z € C and r > 0.

For a kernel function K : C\{0} — C, and a finite measure pu, we
define the singular integral operator associated to K by

T,(f)(z) = / K(z — ) f(€)du(€), for = & supp(p).

A well-known problem in harmonic analysis is to determine geomet-
ric properties of p from regularity properties of the operator T, see
for instance the monograph of David and Semmes [DS|]. This paper
concerns the question of characterizing those functions K with the fol-
lowing property:

(*)

Let p be a 1-dimensional measure. Then

1T (1) oo (@ supp(u)) < 00 implies that i is rectifiable.

The property that ||7,,(1)||zec(c\supp(u)) < 0© is equivalent to the
boundedness of T, as an operator in L?(u), see for instance [NTV]. A
measure (4 is rectifiable if supp(u) can be covered (up to an exceptional
set of H! measure zero) by a countable union of rectifiable curves. A
measure p is purely unrectifiable if its support is purely unrectifiable,
that is, H' (T Nsupp(p)) = 0 for any rectifiable curve T
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David and Léger [Leg| proved that the Cauchy kernel % has property
(%). As is remarked in [CMPT], the proof in [Leg| extends to the case
when the Cauchy kernel is replaced by either its real or imaginary part,
9‘%2(;) or TZ(IZQ)' Recently in [CMPT], Chousionis, Mateu, Prat, and
Tolsa extended the result of [Leg] and showed that kernels of the form

‘ff‘(,fl)f have property () for any odd positive integer k. Both of these

results use the Melnikov-Menger curvature method.
On the other hand, Huovinen [Huo2] has shown that there is a purely
unrectifiable Ahlfors-David (AD)-regular set E for which the singular

integral associcated to the kernel i(lé) — %lizlf is bounded in L*(H/y).
In fact, an essentially stronger conclusion is proved that the principal
values of the associated singular integral operator exist H'-a.e. on
E. Huovinen takes advantage of several non-standard symmetries and
cancellation properties in this kernel to construct his very nice example.

The result of this paper is that a weakened version of Huovinen’s the-
orem holds for a very simple kernel function. Indeed, it is perhaps the
simplest example of a kernel for which the Menger curvature method
fails to be directly applicable. From now on, we shall fix

1.e.

(1.1) K(z) = gz e C\{0}.
We prove the following result.

Theorem 1.1. There exists a 1-dimensional purely unrectifiable prob-
ability measure p with the property that ||T,(1)|| Lo @\ supp(u)) < 0©-

In other words, the kernel K in fails to satisfy property (x).
At this point, we would also like to mention Huovinen’s thesis work
[Huol], regarding the kernel function K(z) from (1.1). It is proved
that if lim inf, g M € (0,00) p-a.e. (essentially the AD-regularity
of u1), then the p-almost everywhere existence of 7),(1) in the sense of
principal value implies that p is rectifiable. This result was proved by
building upon the theory of symmetric measures, developed by Mattila
[Mat2], and Mattila and Preiss [MP]. Unfortunately the measure in
Theorem does not satisfy the AD-regularity condition. In view of
Huovinen’s work it would be of interest to construct an AD-regular
measure supported on an unrectifiable set for which the conclusion of
Theorem [L.1] holds. We have not been able to construct such a measure
(vet).

For the measure p constructed in Theorem [1.1| we show that 7),(1)
fails to exist in the sense of principal value p-almost everywhere. Thus

the two properties of L?(u) boundedness of the operator 7),, and the
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existence of T),(1) in the sense of principal value, are quite distinct for
this singular integral operator.

2. NOTATION

e Let my denote the 2-dimensional Lebesgue measure normalized
so that mo(B(0,1)) = 1. We let m; denote the 1-dimensional
Lebesgue measure.

e A collection of squares are essentially pairwise disjoint if the
interiors of any two squares in the collection do not intersect.
Throughout the paper, all squares are closed.

e We shall denote by C' and ¢ large and small absolute positive
constants. The constant C' should be thought of as large (at
least 1), while ¢ is to be thought of as small (smaller than 1).

e For a > 1, the disc aB denotes the concentric enlargement of a
disc B by a factor of a.

e We define the H!-measure of a set £ by
HY(E) = sup;soinf{}>,r; : EC U, B(x;,r;) with r; <§}.

e For z € Cand r > 0, we define the annulus A(z,r) = B(z,7)\B(z

e The set supp(u) denotes the closed support of .

3. A REFLECTIONLESS MEASURE

Let us make the key observation that allows us to prove Theorem

L1

Lemma 3.1. Let z € C, r > 0. For any w € B(z,7),

/ K
B(z,r)

Proof. Without loss of generality, we may set 2z = 0 and r = 1. If
lw| < |£], then

—~

w—&)dmy (&) = 0.

w oo
K(w - (¢+1
=0 ( )
So whenever ¢ > |w|, we have faB K(w—¢&)dmy (&) = 0. (This follows

merely from the fact that faB §kdm1(§) = 0 whenever k,¢ € Z
satisfy k # £.) On the other hand if |€] < |w]|, then

Ko-9 =25 wen(E)’

=0

,5)-
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7

0

FI1GURE 1. The set-up for the proof of Lemma

Therefore, if ¢t < |w]|, then

w 2T

3
/63(o,t) K(w = &)dma(§) = 2m [tﬁ - 2@] = E(Tf|w|2 — 2t3).

Since folw'(t]wP — 2t3)dt = 0, the desired conclusion follows. O

The next lemma will form the basis of the proof of the non-existence
of T),(1) in the sense of principal value.

Lemma 3.2. There exists a constant ¢ > 0 such that for any disc
B(z,r), and w € 0B(z,1),

‘/ K(w —5)dm2(€) ‘2 5
A(w,r)NB(z,r) r

Proof. By an appropriate translation and rescaling, we may assume
that B(z,r) = B(i, 1), and w = 0. Making reference to Figure 1 above,
we split the domain of integration into three regions, I = {£ € A(0,1) :
arg(§) € [%,%’T]}, IT = {¢ € A(0,1) N B(i,1) : arg(&) € [O, %}} and
111 = {¢ € A(0,1) N B(i,1) : arg(§) € [2F,7|}. The regions I and
II1 are respectively the right and left grey shaded regions in Figure
1. Note that SK(—¢) < 0 if arg(¢) € [5,%], and SK (=) > 0 if

arg(¢) € [0, 2]U[%, ]. Furthermore, note that

/ SK(—€)dms(& / / e ) tdodt = 0.
I Lt

But [, SK(=&)dmy(§) = 2 [, SK(=£)dmy(§) > 0. Therefore, by
setting ¢ = 2 [, SK(—¢§)dmy(§), the lemma follows. O
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4. PACKING SQUARES IN A DISC

Fix 7, R € (0,00) such that r < £ and £ € N.

Lemma 4.1. One can pack pairwise essentially disjoint squares of
side length v/7rR into a disc of radius R(1 + 4\/; .

Proof. We may assume that the disc is centred at the origin. Con-
sider the square lattice with mesh size v7wrR. Label those squares
that intersect B(0, R) as Q1,...,Qy. These squares are contained in
B(0, R(1+4,/F)). Since MrR = 321 ma(Q;) > ma(B(0, R)) = R?,
we have that M > %. By throwing away M — % of the least desirable
squares, we arrive at the desired collection. O

Lemma 4.2. Consider a disc B(z,R). Let Q1,...,Qr/y be the collec-
tion of squares contained in B(z, R(1+ 4/F)) found in Lemma .

Then mo(B(z, R)A UR/T Q;) < Cri2R32,

Proof. Since my(B(z, R)) = my (UR/T Q;) = R?, the property follows
from the fact that both sets are contained in B(z, R(1+4,/F)). O

5. THE CONSTRUCTION OF THE SPARSE CANTOR SET F

Let 7o = 1, and choose 7;, j € N, to be a sequence which tends to
zero quickly. Assume that r; < 42, 1 -
Several additional requirements will be 1mposed on the decay of T
over the course of the following analysis, and we make no attempt to

optimize the conditions.

It will be convenient to let s,,1 =4 M forn e Z,.

First define E{O) = B(0,1). Given the n-th level collection of + discs

Ej(n) of radius r,, we construct the (n + 1)-st generation aecordlng to
the following procedure
Fix a disc B Apply Lemma with R =r, and r = r,, to find

- gquares Q ) Y of side length /77,17, that are pairwise essentially

Tn+1

disjoint, and contained in (1 + 8,.1) - EJ(") Let 2" be the centre of
QE”H), and set Eénﬂ) =B (zénﬂ), Tny1). This procedure is carried out
for each disc EJ(”) from the n-th level collection. There are a total of
—— discs B in the (n + 1)-st level.

The above construction is executed for each n € Z, .

Now, set ngn) = (1+ sn+1)§§-n). Define E™ = U, BJ(-n). We shall
repeatedly use the following properties of the construction:
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FIGURE 2. The picture shows a single disc Bj(-n) of radius (1+ sp+1)7rn. The
grey shaded squares are the squares Qénﬂ) of sidelength /77, 7,+1 formed
by applying Lemma to the disc EJ(-”) of radius r,,. The boundary of the

disc Ej(n) is the dashed circle. Deep inside each square Qénﬂ) is the disc

B of radius (1 4 $p42)rni1-

(a) U, anﬂ) c E™, for all n > 0.

(b) BJ(,”) C Qgﬁ) for each n > 1. Moreover, dist(B](n),ann)) >

N

(c) dist(B§"),B,£")) > L1\ /Fn_iry, whenever j # k, n > 0.

Property (a) is immediate. To see property (b), merely note that
dist(Bj(n),ﬁan)) = Y — (14 Spi1)rn > 5+/Tno1Tn. For property
(c), we shall use induction. If n = 0, then the claim is trivial. Using
(b), the claimed estimate is clear if Qén) and Q,(Cn) have been created
by an application of Lemma in a common disc Eg”‘”. Otherwise,
the squares are born out of applying Lemma to different discs at
the (n — 1)-st level, and those parent discs are already separated by

1
2V Tn—2Tn—1-
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Courtesy of properties (a) and (b), we see that E™+1) ¢ E™ for each
n>0. Set £ = ﬂnZO E™_ Each z € E™ is contained in a unique disc

(n) (n) : n :
B™ (or square ;") which we shall denote by B™(z) (respectively

Q™ (2)).
If m >n >0, then EN BJ(.n) is covered by the I discs Bém) that

are contained in B](-"), each of which has radius (1 + sp,11)7m < 27,.

Therefore H'(E N B](”)) < 2r,. Taking n = 0 yields H'(E) < 2.

6. THE MEASURE [

n _ ixéj(n)mz- Set M(n) = Zj ’ug'n)'

E® and u™(C) =1 for all n. Therefore, there exists a subsequence
of the sequence of measures ;™ that converges weakly to a measure
w, with ¢4(C) =1 and supp(p) C E.

The following three properties hold:

(i) supp(u™) C U, BJ(-n) whenever m > n,

(ii) u(m)(B](")) =r, for m > n, and

(iii) there exists Cy > 0 such that u™ (B(z,7)) < Cor for any z € C,
r>0andn > 0.

Properties (i) and (ii) follow immediately from the construction of
E™ . To see the third property, note that since u(™ is a probability
measure, the property is clear if r > 1. If » < 1, then r € (r41,7m)
for some m € Z,. If m > n, then B(z,r) intersects at most one disc
BJ(.n). Then p™(B(z,7)) = %mg(B(z,r) N Ej(n)) < % < r. Otherwise

m < n. In this case, note that since the discs B;mﬂ) are %./rmrmﬂ

separated, B(z,r) intersects at most 1 + C’(\/T:_H)2 discs B§m+1).

Define /L§~ Then supp(u™) C

Hence, by property (ii), we see that

2
W (B(z,r)) = ; u™(B(z,r)n B < [1+C<\/m+7mﬂ) [,

which is at most C'r.

The weak convergence of a subsequence of ;™ to the measure i,
along with property (iii), yields that u(B(z,r)) < Cor for any disc
B(z,r). We shall henceforth refer to this property by saying that p is
Co-nice. We have now shown that p is 1-dimensional.

Notice that we also have H!(E) > C%)/L(E) > 0.
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7. THE BOUNDEDNESS OF 7),(1) OFF THE SUPPORT OF

As a simple consequence of the weak convergence of u™ to yu, the
property that [|7},(1)|| zee(c\ supp(n)) < 00 will follow from the following
proposition.

Proposition 7.1. Provided that 2@1 \/Sn < 00, there exists a con-
stant C' > 0 so that the following holds:

Suppose that dist(z,supp(u)) = e > 0. Then for any m € Z, with
T < =
m 47

| /C K(z — )du™(¢)|< C.

£

To begin the proof, fix 7, with r,, < £. Let z* € supp(p) with
dist(z,2*) = e. For any ¢ € supp(u), B™ (&) Nsupp(u™) # @, so
dist(z, supp(u™)) > & — (1 + Spy1)rm > £.

Now, let ¢ be the least integer with r, < e (so m > ¢). Then by
property (ii) of the previous section,

2r,

2
@ [ RGO < 2B = 2 <2
B(a) (2*) £ g
The crux of the matter is the following lemma.

Lemma 7.2. There exists C' > 0 such that for any n € Z, with
1<n<g,

Kz—gdwn)g‘go St O =
| o K Q@< O 0y [

For the proof of Lemma [7.2] we shall require the following simple
comparison estimate.

Lemma 7.3. Let zg € C, and A\ > 0. Fiz r,R € (0,1] with 100r <
R. Suppose that v1 and vy are Borel measures, such that supp(vy) C

Q(Z()? VTrRT) = Q7 Supp(VQ) - B(Z(),QT) = B; and V1<C) = VQ((C)'
Then, for any z € C with dist(z,Q) > AWrR, we have

| K gan© - [ k6o

1 CvVRr 1 Cr
< ﬁ/@mdm(f)+ﬁ Bmdi/z(f)-

Proof. Note that the left hand side of the inequality can be written as

LLU“Z_Q"JaZ—%HﬂM—Vﬁ@w
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But, under the hypothesis on z, we have that |K(z —&) — K(z — 2p)| <

/glé__?"Q for any ¢ € ). Plugging this estimate into the integral and

taking into account the supports of v and v5, the inequality follows. [
Proof of Lemma[7.2 Write
A={j:B" # B™(z*) and B/" ¢ B"(2*)}.

First suppose that dist(z, Q;n)) > %, /Tn_1Ty for 7 € A. Then the hy-
pothesis of Lemmaare satisfied with 11 = Xom Tm—Ql, vy = XBW)M(m),
g " J

R=r,_1,r=r,, and 2y = Zom- Thus
J

| R o) o K ©)|
(7.2) _ / C'\/Trn—1T7 dmy(€) +/ Crndﬂ(m)(f).
~ Jom |z—§|2 Tn—1 g™ |z —¢J?
Now suppose that j € A and dist(z, ) < 3\/Tn_1Ty. Since dist(z Q§”)) >

dist(z*,Qg-”)) — dist(z, 2*) > %,/rn,lrn — &, we must have that ¢ >

%,/rn,lrn. But as dist(z, supp(u™)) > 5, and u(m)(Bj(-n)) = r,, We
have the following crude bound

’/wK gl K= a6

Trn—1 (n)
(7.3) Bi

Tnl

(Here it is used that [, |K(£)|dms (&) < C/ma(A) for any Borel mea-

surable set A C C of finite mq-measure.)

n 2 n
ma(QS") + ~ut(B]") < Cs,.

At most 4 of the essentially pairwise disjoint squares Qg-n), j € A,

can satisfy dist(z,ng)) < %,/rn_lrn (and it can only happen at all
if n = ¢). Therefore by summing (7.2) and (7.3) over j € A in the

cases when dist(z,Qg-n)) > /a1y, and dist(@@ﬁ")) < Vit

respectively, we see that the quantity

dm
[ K- o2 / K (= = §)du™ (©)|.
Ujea Q)" T'n—1 BO=1) (z)\B(m) (%)

is no greater than a constant multiple of

/ o dmy(§) n / radpt™ (€)
B2ra \B(e vV Tn1 12 =€ Josed mm 12— €1

+ Sn.
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The first term here is bounded by C', /- log(r’;—;l)g Cs, log(i) <

n—1 -

C\/3,. Since p(™ is Cy-nice, we bound the second term by

C /OO o L ¢
T — S Ur,— Snp-
" %Jrnr,l,l 712 n\/ 'nTn—1 "

We now wish to estimate fU o K(z — f)drm—Q(l) With a slight
iea@Q; n-
abuse of notation, write B™~Y(2*) = Bj(n_l) if 2* € BJ("_I). Then

Véww(z*) K9 d:f—(f - /UJEA o e d:z?—(f) ‘

~ 1
is bounded by % (m2 (B (z9)A Ujea an))) 2. By Lemma , this

quantity is no greater than %\/7“71/27"2/_21 + rprp—1 < C\/s,.
It remains to employ the reflectionless property (Lemma |3.1)). Since
ze (1+ ﬁ)B(”_l)(z*), we use Lemma [3.1[to infer that

d d
‘/~ K(+—¢) ms(§) ’: ’/ ~ K(2—¢) ms(§) ‘
Bn=1)(z%) Tn—1 (1+rn5_1)B(nfl)(z*)\Bwfl)(z*) Tn—1
~ 1
This quantity is bounded by = (ma((14+-5=)B" D (z*)\B" D (2))) 2 <
C, /s, + —=—. The lemma follows. ]

rn—1"

With Lemma in hand, we may complete the proof of Proposition
[Z1l First write

/ K(z — €)du™(€) = / K(= — &)du™ (€)
(74) " poe
Y / K(z — €)du™©).

(n=1) (z*)\ B (%)

n=1

Next note that that —

n < q. As Zn21 /Sn < 00, it follows from Lemma that the sum
appearing in the right hand side of ([7.4]) is bounded in absolute value

independently of ¢, m and €. The remaining term on the right hand
side of ([7.4]) has already been shown to be bounded in absolute value,

see .

Tn—1

<1lifn=g¢q, and ,/—=— < s, for 1 <



THREE REVOLUTIONS 11

8. T,,(1) FAILS TO EXIST IN THE SENSE OF PRINCIPAL VALUE
p-ALMOST EVERYWHERE

We now turn to consider the operator in the sense of principal value.
The primary part of the argument will be the following lemma.

Lemma 8.1. Provided that n is sufficiently large, there exists a con-
stant co > 0 such that for any disc B](n), and z € C satisfying

dist(z, 833(”)) < T,

‘/A(zm K(z = £)du(€)|> co.

Before proving the lemma, we deduce from it that 7),(1) fails to exist
in the sense of principal value for p-almost every z € C. To this end,
weset ' = {2z € E: 2 € (1—cy)B™(2) for all but finitely many n}.
It suffices to show that p(F) = 0.

First note that, with Fj, = {z € £ : z € (1 — ¢g) B"™(z) for all m >
n}, we have F' C |J,sq Fn, so it suffices to show that u(F,) = 0 for all
n.

To do this, note that for each m > 0, at most (1 —¢y) L2 +C', /-T2

Tm-+1 Tm+1

(m—+1)
l

squares can intersect (1 — cO)B](.m). Thus

m m m Tm
N(U{Bé Bt - CO)BJ( ) # @}>§ (1 —co)rm + C| [ Tms1
m+1

¢
m C m
=(1- co)u(Bj( )) + Cspmi1Tm < (1 — EO)M(B](. ),

where the last inequality holds provided that m is sufficiently large.
But then, as long as n is large enough, this inequality may be iterated
to yield

u({z€E:2€(1—c)B™M(2) for k=1,....,m})< (1 —2)™

2
Hence u(F,) = 0.
In preparation for proving Lemma [8.1, we make the following claim.

Claim 8.2. Let n € Z,. For any disc BJ(-")7 and z € C, we have
m
’/ K(z—§)d(u——2)(§)’§ Cspyr.
A(z,rn)ﬂBJ(.") Tn

Proof. To derive this claim, first suppose that a square Q§"+1) C A(z,rn)-
Then from a crude application of Lemma (see (7.2))), we infer that

’/ngl) K(z—&)d(pn — T—j)(ﬁ)‘ﬁ C@ﬁﬁ—l < C(rnﬂ)%

Tn
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If it instead holds that anﬂ) NOA(z,r,) # @, then we have the blunt
estimate

(n+1)
mo 2 n mQ(Q )
\/ o KGO = O] (@) + TR,
Qp " ﬁA (z,rn T'n Tn
which is bounded by Cln“ There are most ”1 - squares (n+1) con-

)

tained in A(z,7,), and no more than C, [ +r— squares Q can in-

tersect the boundary of A(z,7,).

On the other hand, the set A consisting of the points in A(z,7,) N
BJ(.”) not covered by any square QE"H) has ms-measure no greater than

C’r}ﬁlrf’lm (see Lemma . Thus [;|K(z — ¢)|4mle) < 2’”:2(’1) <

Tn -

Sn+1-
Bringing these estimates together establishes Claim [8.2] O

Let us now complete the proof of Lemma
Proof of Lemma[8.1 Note that fA B K(z {)dm—i(f) is a Lips-

chitz continuous function in C, with Llpschltz norm at most <. Thus,
we infer from Lemma [3.2] that there is a constant ¢y > 0 such that

‘/A(wn ﬂB<") (2= g)dmr_i(f)‘z g’

whenever dist(z, 8Bj" ) < ¢orp. But now we apply Claim [8.2to deduce
that for all such z, K(z —&)d ’> ¢ — Cspy1 (the only part

of the support of p that A(z rn) intersects is contained in B ) The

right hand side here is at least C for all sufficiently large n. U

9. THE SET F IS PURELY UNRECTIFIABLE

We now show that E is purely unrectifiable, that is, H{(ENT) =0
for any rectifiable curve I'. The proof that follows is a simple special
case of the well known fact that any set with zero lower H!-density is
unrectifiable (one can in fact say much more, see for instance [Mat1]).

First notice that for each 2 € C and n > 1, B(z, \/m) can

intersect at most one of the discs B(

HY(E N B(z, 2/ 1)) < 2,

A rectifiable curve I' can be covered by discs B(z;, i,/rnrn_l), Jj =
1,..., N, the sum of whose radii is at most ¢(I).

. Hence
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Thus HY(ENT) < Y8 HYEN Bz, 3y/farmo1)) < 230 . But
Zj.vzl }p /Tnrn1 < £(T'), and so H}(T N E) < 8, /-=-¢(T"), which tends

Tn—1

to zero as n — oo (the sequence /s, is summable).
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