THREE REVOLUTIONS IN THE KERNEL ARE WORSE THAN ONE

BENJAMIN JAYE AND FEDOR NAZAROV

Abstract

An example is constructed of a purely unrectifiable measure μ for which the singular integral associated to the kernel $K(z)=\frac{\bar{z}}{z^{2}}$ is bounded in $L^{2}(\mu)$. The singular integral fails to exist in the sense of principal value μ-almost everywhere. This is in sharp contrast with the results known for the kernel $\frac{1}{z}$ (the Cauchy transform).

1. Introduction

Let $B(z, r)$ denote the closed disc in \mathbb{C} centred at z with radius $r>0$. A finite Borel measure μ is said to be 1-dimensional if $\mathcal{H}^{1}(\operatorname{supp}(\mu))<$ ∞, and there exists a constant $C>0$ such that $\mu(B(z, r)) \leq C r$ for any $z \in \mathbb{C}$ and $r>0$.

For a kernel function $K: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$, and a finite measure μ, we define the singular integral operator associated to K by

$$
T_{\mu}(f)(z)=\int_{\mathbb{C}} K(z-\xi) f(\xi) d \mu(\xi), \text { for } z \notin \operatorname{supp}(\mu)
$$

A well-known problem in harmonic analysis is to determine geometric properties of μ from regularity properties of the operator T_{μ}, see for instance the monograph of David and Semmes [DS. This paper concerns the question of characterizing those functions K with the following property:

Let μ be a 1-dimensional measure. Then

$$
\begin{equation*}
\left\|T_{\mu}(1)\right\|_{L^{\infty}(\mathbb{C} \backslash \operatorname{supp}(\mu))}<\infty \text { implies that } \mu \text { is rectifiable. } \tag{*}
\end{equation*}
$$

The property that $\left\|T_{\mu}(1)\right\|_{L^{\infty}(\mathbb{C} \backslash \operatorname{supp}(\mu))}<\infty$ is equivalent to the boundedness of T_{μ} as an operator in $L^{2}(\mu)$, see for instance [NTV]. A measure μ is rectifiable if $\operatorname{supp}(\mu)$ can be covered (up to an exceptional set of \mathcal{H}^{1} measure zero) by a countable union of rectifiable curves. A measure μ is purely unrectifiable if its support is purely unrectifiable, that is, $\mathcal{H}^{1}(\Gamma \cap \operatorname{supp}(\mu))=0$ for any rectifiable curve Γ.

Date: July 16, 2013.

David and Léger Leg proved that the Cauchy kernel $\frac{1}{z}$ has property $(*)$. As is remarked in [CMPT], the proof in Leg extends to the case when the Cauchy kernel is replaced by either its real or imaginary part, i.e. $\frac{\Re(z)}{|z|^{2}}$ or $\frac{\Im(z)}{|z|^{2}}$. Recently in [CMPT, Chousionis, Mateu, Prat, and Tolsa extended the result of Leg and showed that kernels of the form $\frac{(\Re(z))^{k}}{\mid z z^{k+1}}$ have property $(*)$ for any odd positive integer k. Both of these results use the Melnikov-Menger curvature method.

On the other hand, Huovinen [Huo2] has shown that there is a purely unrectifiable Ahlfors-David (AD)-regular set E for which the singular integral associcated to the kernel $\frac{\Re(z)}{|z|^{2}}-\frac{\Re(z)^{3}}{|z|^{4}}$ is bounded in $L^{2}\left(\mathcal{H}_{\mid E}^{1}\right)$. In fact, an essentially stronger conclusion is proved that the principal values of the associated singular integral operator exist \mathcal{H}^{1}-a.e. on E. Huovinen takes advantage of several non-standard symmetries and cancellation properties in this kernel to construct his very nice example.

The result of this paper is that a weakened version of Huovinen's theorem holds for a very simple kernel function. Indeed, it is perhaps the simplest example of a kernel for which the Menger curvature method fails to be directly applicable. From now on, we shall fix

$$
\begin{equation*}
K(z)=\frac{\bar{z}}{z^{2}}, z \in \mathbb{C} \backslash\{0\} \tag{1.1}
\end{equation*}
$$

We prove the following result.
Theorem 1.1. There exists a 1-dimensional purely unrectifiable probability measure μ with the property that $\left\|T_{\mu}(1)\right\|_{L^{\infty}(\mathbb{C} \backslash \operatorname{supp}(\mu))}<\infty$.

In other words, the kernel K in (1.1) fails to satisfy property (*). At this point, we would also like to mention Huovinen's thesis work [Huo1, regarding the kernel function $K(z)$ from (1.1). It is proved that if $\lim \inf _{r \rightarrow 0} \frac{\mu(B(z, r))}{r} \in(0, \infty) \mu$-a.e. (essentially the AD-regularity of μ), then the μ-almost everywhere existence of $T_{\mu}(1)$ in the sense of principal value implies that μ is rectifiable. This result was proved by building upon the theory of symmetric measures, developed by Mattila [Mat2], and Mattila and Preiss [MP. Unfortunately the measure in Theorem 1.1 does not satisfy the AD-regularity condition. In view of Huovinen's work it would be of interest to construct an AD-regular measure supported on an unrectifiable set for which the conclusion of Theorem 1.1 holds. We have not been able to construct such a measure (yet).

For the measure μ constructed in Theorem 1.1, we show that $T_{\mu}(1)$ fails to exist in the sense of principal value μ-almost everywhere. Thus the two properties of $L^{2}(\mu)$ boundedness of the operator T_{μ}, and the
existence of $T_{\mu}(1)$ in the sense of principal value, are quite distinct for this singular integral operator.

2. Notation

- Let m_{2} denote the 2-dimensional Lebesgue measure normalized so that $m_{2}(B(0,1))=1$. We let m_{1} denote the 1 -dimensional Lebesgue measure.
- A collection of squares are essentially pairwise disjoint if the interiors of any two squares in the collection do not intersect. Throughout the paper, all squares are closed.
- We shall denote by C and c large and small absolute positive constants. The constant C should be thought of as large (at least 1), while c is to be thought of as small (smaller than 1).
- For $a>1$, the disc $a B$ denotes the concentric enlargement of a disc B by a factor of a.
- We define the \mathcal{H}^{1}-measure of a set E by $\mathcal{H}^{1}(E)=\sup _{\delta>0} \inf \left\{\sum_{j} r_{j}: E \subset \bigcup_{j} B\left(x_{j}, r_{j}\right)\right.$ with $\left.r_{j} \leq \delta\right\}$.
- For $z \in \mathbb{C}$ and $r>0$, we define the annulus $A(z, r)=B(z, r) \backslash B\left(z, \frac{r}{2}\right)$.
- The set $\operatorname{supp}(\mu)$ denotes the closed support of μ.

3. A Reflectionless measure

Let us make the key observation that allows us to prove Theorem 1.1.

Lemma 3.1. Let $z \in \mathbb{C}, r>0$. For any $\omega \in B(z, r)$,

$$
\int_{B(z, r)} K(\omega-\xi) d m_{2}(\xi)=0
$$

Proof. Without loss of generality, we may set $z=0$ and $r=1$. If $|\omega|<|\xi|$, then

$$
K(\omega-\xi)=\frac{\overline{\omega-\xi}}{\xi^{2}} \sum_{\ell=0}^{\infty}(\ell+1)\left(\frac{\omega}{\xi}\right)^{\ell}
$$

So whenever $t>|\omega|$, we have $\int_{\partial B(0, t)} K(\omega-\xi) d m_{1}(\xi)=0$. (This follows merely from the fact that $\int_{\partial B(0, t)} \bar{\xi}^{\ell} \xi^{k} d m_{1}(\xi)=0$ whenever $k, \ell \in \mathbb{Z}$ satisfy $k \neq \ell$.) On the other hand, if $|\xi|<|\omega|$, then

$$
K(\omega-\xi)=\frac{\overline{\omega-\xi}}{\omega^{2}} \sum_{\ell=0}^{\infty}(\ell+1)\left(\frac{\xi}{\omega}\right)^{\ell}
$$

Figure 1. The set-up for the proof of Lemma 3.2 .
Therefore, if $t<|\omega|$, then

$$
\int_{\partial B(0, t)} K(\omega-\xi) d m_{1}(\xi)=2 \pi\left[t \frac{\bar{\omega}}{\omega^{2}}-2 \frac{t^{3}}{\omega^{3}}\right]=\frac{2 \pi}{\omega^{3}}\left(t|\omega|^{2}-2 t^{3}\right)
$$

Since $\int_{0}^{|\omega|}\left(t|\omega|^{2}-2 t^{3}\right) d t=0$, the desired conclusion follows.
The next lemma will form the basis of the proof of the non-existence of $T_{\mu}(1)$ in the sense of principal value.
Lemma 3.2. There exists a constant $\tilde{c}>0$ such that for any disc $B(z, r)$, and $\omega \in \partial B(z, r)$,

$$
\left|\int_{A(\omega, r) \cap B(z, r)} K(\omega-\xi) \frac{d m_{2}(\xi)}{r}\right| \geq \tilde{c} .
$$

Proof. By an appropriate translation and rescaling, we may assume that $B(z, r)=B(i, 1)$, and $\omega=0$. Making reference to Figure 1 above, we split the domain of integration into three regions, $I=\{\xi \in A(0,1)$: $\left.\arg (\xi) \in\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right]\right\}, I I=\left\{\xi \in A(0,1) \cap B(i, 1): \arg (\xi) \in\left[0, \frac{\pi}{6}\right]\right\}$ and $I I I=\left\{\xi \in A(0,1) \cap B(i, 1): \arg (\xi) \in\left[\frac{5 \pi}{6}, \pi\right]\right\}$. The regions $I I$ and III are respectively the right and left grey shaded regions in Figure 1. Note that $\Im K(-\xi)<0$ if $\arg (\xi) \in\left[\frac{\pi}{3}, \frac{2 \pi}{3}\right]$, and $\Im K(-\xi)>0$ if $\arg (\xi) \in\left[0, \frac{\pi}{3}\right] \cup\left[\frac{2 \pi}{3}, \pi\right]$. Furthermore, note that

$$
\int_{I} \Im K(-\xi) d m_{2}(\xi)=\frac{1}{\pi} \int_{\frac{1}{2}}^{1} \frac{1}{t} \int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}-\Im\left(e^{-3 \theta i}\right) t d \theta d t=0
$$

But $\int_{I I \cup I I I} \Im K(-\xi) d m_{2}(\xi)=2 \int_{I I} \Im K(-\xi) d m_{2}(\xi)>0$. Therefore, by setting $\tilde{c}=2 \int_{I I} \Im K(-\xi) d m_{2}(\xi)$, the lemma follows.

4. Packing SQuares in a disc

Fix $r, R \in(0, \infty)$ such that $r<\frac{R}{16}$ and $\frac{R}{r} \in \mathbb{N}$.
Lemma 4.1. One can pack $\frac{R}{r}$ pairwise essentially disjoint squares of side length $\sqrt{\pi r R}$ into a disc of radius $R\left(1+4 \sqrt{\frac{r}{R}}\right)$.
Proof. We may assume that the disc is centred at the origin. Consider the square lattice with mesh size $\sqrt{\pi r R}$. Label those squares that intersect $B(0, R)$ as Q_{1}, \ldots, Q_{M}. These squares are contained in $B\left(0, R\left(1+4 \sqrt{\frac{r}{R}}\right)\right)$. Since $M r R=\sum_{j=1}^{M} m_{2}\left(Q_{j}\right)>m_{2}(B(0, R))=R^{2}$, we have that $M>\frac{R}{r}$. By throwing away $M-\frac{R}{r}$ of the least desirable squares, we arrive at the desired collection.

Lemma 4.2. Consider a disc $B(z, R)$. Let $Q_{1}, \ldots, Q_{R / r}$ be the collection of squares contained in $B\left(z, R\left(1+4 \sqrt{\frac{r}{R}}\right)\right)$ found in Lemma 4.1. Then $m_{2}\left(B(z, R) \triangle \bigcup_{j=1}^{R / r} Q_{j}\right) \leq C r^{1 / 2} R^{3 / 2}$.
Proof. Since $m_{2}(B(z, R))=m_{2}\left(\bigcup_{j=1}^{R / r} Q_{j}\right)=R^{2}$, the property follows from the fact that both sets are contained in $B\left(z, R\left(1+4 \sqrt{\frac{r}{R}}\right)\right)$.

5. The construction of the sparse Cantor set E

Let $r_{0}=1$, and choose $r_{j}, j \in \mathbb{N}$, to be a sequence which tends to zero quickly. Assume that $r_{j}<\frac{r_{j-1}}{100}, \frac{1}{r_{j}} \in \mathbb{N}$, and $\frac{r_{j}}{r_{j+1}} \in \mathbb{N}$ for all $j \geq 1$.

Several additional requirements will be imposed on the decay of r_{j} over the course of the following analysis, and we make no attempt to optimize the conditions.

It will be convenient to let $s_{n+1}=4 \sqrt{\frac{r_{n+1}}{r_{n}}}$ for $n \in \mathbb{Z}_{+}$.
First define $\widetilde{B}_{1}^{(0)}=B(0,1)$. Given the n-th level collection of $\frac{1}{r_{n}}$ discs $\widetilde{B}_{j}^{(n)}$ of radius r_{n}, we construct the $(n+1)$-st generation according to the following procedure:

Fix a disc $\widetilde{B}_{j}^{(n)}$. Apply Lemma 4.1 with $R=r_{n}$ and $r=r_{n+1}$ to find $\frac{r_{n}}{r_{n+1}}$ squares $Q_{\ell}^{(n+1)}$ of side length $\sqrt{\pi r_{n+1} r_{n}}$ that are pairwise essentially disjoint, and contained in $\left(1+s_{n+1}\right) \cdot \widetilde{B}_{j}^{(n)}$. Let $z_{\ell}^{(n+1)}$ be the centre of $Q_{\ell}^{(n+1)}$, and set $\widetilde{B}_{\ell}^{(n+1)}=B\left(z_{\ell}^{(n+1)}, r_{n+1}\right)$. This procedure is carried out for each disc $\widetilde{B}_{j}^{(n)}$ from the n-th level collection. There are a total of $\frac{1}{r_{n+1}} \operatorname{discs} \widetilde{B}_{\ell}^{(n+1)}$ in the $(n+1)$-st level.

The above construction is executed for each $n \in \mathbb{Z}_{+}$.
Now, set $B_{j}^{(n)}=\left(1+s_{n+1}\right) \widetilde{B}_{j}^{(n)}$. Define $E^{(n)}=\bigcup_{j} B_{j}^{(n)}$. We shall repeatedly use the following properties of the construction:

Figure 2. The picture shows a single disc $B_{j}^{(n)}$ of radius $\left(1+s_{n+1}\right) r_{n}$. The grey shaded squares are the squares $Q_{\ell}^{(n+1)}$ of sidelength $\sqrt{\pi r_{n} r_{n+1}}$ formed by applying Lemma 4.1 to the disc $\widetilde{B}_{j}^{(n)}$ of radius r_{n}. The boundary of the disc $\widetilde{B}_{j}^{(n)}$ is the dashed circle. Deep inside each square $Q_{\ell}^{(n+1)}$ is the disc $B_{\ell}^{(n+1)}$ of radius $\left(1+s_{n+2}\right) r_{n+1}$.
(a) $\bigcup_{\ell} Q_{\ell}^{(n+1)} \subset E^{(n)}$, for all $n \geq 0$.
(b) $B_{j}^{(n)} \subset Q_{j}^{(n)}$ for each $n \geq 1$. Moreover, $\operatorname{dist}\left(B_{j}^{(n)}, \partial Q_{j}^{(n)}\right) \geq$ $\frac{1}{2} \sqrt{r_{n-1} r_{n}}$.
(c) $\operatorname{dist}\left(B_{j}^{(n)}, B_{k}^{(n)}\right) \geq \frac{1}{2} \sqrt{r_{n-1} r_{n}}$ whenever $j \neq k, n \geq 0$.

Property (a) is immediate. To see property (b), merely note that $\operatorname{dist}\left(B_{j}^{(n)}, \partial Q_{j}^{(n)}\right)=\frac{\sqrt{\pi r_{n-1} r_{n}}}{2}-\left(1+s_{n+1}\right) r_{n} \geq \frac{1}{2} \sqrt{r_{n-1} r_{n}}$. For property (c), we shall use induction. If $n=0$, then the claim is trivial. Using (b), the claimed estimate is clear if $Q_{j}^{(n)}$ and $Q_{k}^{(n)}$ have been created by an application of Lemma 4.1 in a common disc $\widetilde{B}_{\ell}^{(n-1)}$. Otherwise, the squares are born out of applying Lemma 4.1 to different discs at the $(n-1)$-st level, and those parent discs are already separated by $\frac{1}{2} \sqrt{r_{n-2} r_{n-1}}$.

Courtesy of properties (a) and (b), we see that $E^{(n+1)} \subset E^{(n)}$ for each $n \geq 0$. Set $E=\bigcap_{n \geq 0} E^{(n)}$. Each $z \in E^{(n)}$ is contained in a unique disc $B_{j}^{(n)}$ (or square $Q_{j}^{(\bar{n})}$) which we shall denote by $B^{(n)}(z)$ (respectively $\left.Q^{(n)}(z)\right)$.

If $m \geq n \geq 0$, then $E \cap B_{j}^{(n)}$ is covered by the $\frac{r_{n}}{r_{m}} \operatorname{discs} B_{\ell}^{(m)}$ that are contained in $B_{j}^{(n)}$, each of which has radius $\left(1+s_{m+1}\right) r_{m} \leq 2 r_{m}$. Therefore $\mathcal{H}^{1}\left(E \cap B_{j}^{(n)}\right) \leq 2 r_{n}$. Taking $n=0$ yields $\mathcal{H}^{1}(E) \leq 2$.

6. The measure μ

Define $\mu_{j}^{(n)}=\frac{1}{r_{n}} \chi_{\widetilde{B}_{j}^{(n)}} m_{2}$. Set $\mu^{(n)}=\sum_{j} \mu_{j}^{(n)}$. Then $\operatorname{supp}\left(\mu^{(n)}\right) \subset$ $E^{(n)}$, and $\mu^{(n)}(\mathbb{C})=1$ for all n. Therefore, there exists a subsequence of the sequence of measures $\mu^{(n)}$ that converges weakly to a measure μ, with $\mu(\mathbb{C})=1$ and $\operatorname{supp}(\mu) \subset E$.

The following three properties hold:
(i) $\operatorname{supp}\left(\mu^{(m)}\right) \subset \bigcup_{j} B_{j}^{(n)}$ whenever $m \geq n$,
(ii) $\mu^{(m)}\left(B_{j}^{(n)}\right)=r_{n}$ for $m \geq n$, and
(iii) there exists $C_{0}>0$ such that $\mu^{(n)}(B(z, r)) \leq C_{0} r$ for any $z \in \mathbb{C}$, $r>0$ and $n \geq 0$.

Properties (i) and (ii) follow immediately from the construction of $E^{(n)}$. To see the third property, note that since $\mu^{(n)}$ is a probability measure, the property is clear if $r \geq 1$. If $r<1$, then $r \in\left(r_{m+1}, r_{m}\right)$ for some $m \in \mathbb{Z}_{+}$. If $m \geq n$, then $B(z, r)$ intersects at most one disc $B_{j}^{(n)}$. Then $\mu^{(n)}(B(z, r))=\frac{1}{r_{n}} m_{2}\left(B(z, r) \cap \widetilde{B}_{j}^{(n)}\right) \leq \frac{r^{2}}{r_{n}} \leq r$. Otherwise $m<n$. In this case, note that since the discs $B_{j}^{(m+1)}$ are $\frac{1}{2} \sqrt{r_{m} r_{m+1}}$ separated, $B(z, r)$ intersects at most $1+C\left(\frac{r}{\sqrt{r_{m} r_{m+1}}}\right)^{2} \operatorname{discs} B_{j}^{(m+1)}$. Hence, by property (ii), we see that
$\mu^{(n)}(B(z, r))=\sum_{j} \mu^{(n)}\left(B(z, r) \cap B_{j}^{(m+1)}\right) \leq\left[1+C\left(\frac{r}{\sqrt{r_{m} r_{m+1}}}\right)^{2}\right] r_{m+1}$,
which is at most $C r$.
The weak convergence of a subsequence of $\mu^{(n)}$ to the measure μ, along with property (iii), yields that $\mu(B(z, r)) \leq C_{0} r$ for any disc $B(z, r)$. We shall henceforth refer to this property by saying that μ is C_{0}-nice. We have now shown that μ is 1 -dimensional.

Notice that we also have $\mathcal{H}^{1}(E) \geq \frac{1}{C_{0}} \mu(E)>0$.

7. The boundedness of $T_{\mu}(1)$ off the support of μ

As a simple consequence of the weak convergence of $\mu^{(n)}$ to μ, the property that $\left\|T_{\mu}(1)\right\|_{L^{\infty}(\mathbb{C} \backslash \operatorname{supp}(\mu))}<\infty$ will follow from the following proposition.

Proposition 7.1. Provided that $\sum_{n \geq 1} \sqrt{s_{n}}<\infty$, there exists a constant $C>0$ so that the following holds:

Suppose that $\operatorname{dist}(z, \operatorname{supp}(\mu))=\varepsilon>0$. Then for any $m \in \mathbb{Z}_{+}$with $r_{m}<\frac{\varepsilon}{4}$,

$$
\left|\int_{\mathbb{C}} K(z-\xi) d \mu^{(m)}(\xi)\right| \leq C
$$

To begin the proof, fix r_{m} with $r_{m}<\frac{\varepsilon}{4}$. Let $z^{*} \in \operatorname{supp}(\mu)$ with $\operatorname{dist}\left(z, z^{*}\right)=\varepsilon$. For any $\xi \in \operatorname{supp}(\mu), B^{(m)}(\xi) \cap \operatorname{supp}\left(\mu^{(m)}\right) \neq \varnothing$, so $\operatorname{dist}\left(z, \operatorname{supp}\left(\mu^{(m)}\right)\right) \geq \varepsilon-\left(1+s_{m+1}\right) r_{m} \geq \frac{\varepsilon}{2}$.

Now, let q be the least integer with $r_{q} \leq \varepsilon$ (so $m \geq q$). Then by property (ii) of the previous section,

$$
\begin{equation*}
\int_{B^{(q)}\left(z^{*}\right)}|K(z, \xi)| d \mu^{(m)}(\xi) \leq \frac{2}{\varepsilon} \mu^{(m)}\left(B^{(q)}\left(z^{*}\right)\right)=\frac{2 r_{q}}{\varepsilon} \leq 2 \tag{7.1}
\end{equation*}
$$

The crux of the matter is the following lemma.
Lemma 7.2. There exists $C>0$ such that for any $n \in \mathbb{Z}_{+}$with $1 \leq n \leq q$,

$$
\left|\int_{B^{(n-1)}\left(z^{*}\right) \backslash B^{(n)}\left(z^{*}\right)} K(z-\xi) d \mu^{(m)}(\xi)\right| \leq C \sqrt{s_{n}}+C \sqrt{\frac{\varepsilon}{r_{n-1}}}
$$

For the proof of Lemma 7.2, we shall require the following simple comparison estimate.

Lemma 7.3. Let $z_{0} \in \mathbb{C}$, and $\lambda>0$. Fix $r, R \in(0,1]$ with $100 r \leq$ R. Suppose that ν_{1} and ν_{2} are Borel measures, such that $\operatorname{supp}\left(\nu_{1}\right) \subset$ $Q\left(z_{0}, \sqrt{\pi R r}\right)=Q, \operatorname{supp}\left(\nu_{2}\right) \subset B\left(z_{0}, 2 r\right)=B$, and $\nu_{1}(\mathbb{C})=\nu_{2}(\mathbb{C})$. Then, for any $z \in \mathbb{C}$ with $\operatorname{dist}(z, Q) \geq \lambda \sqrt{r R}$, we have

$$
\begin{aligned}
& \left|\int_{Q} K(z-\xi) d \nu_{1}(\xi)-\int_{B} K(z-\xi) d \nu_{2}(\xi)\right| \\
& \leq \frac{1}{\lambda^{2}} \int_{Q} \frac{C \sqrt{R r}}{|z-\xi|^{2}} d \nu_{1}(\xi)+\frac{1}{\lambda^{2}} \int_{B} \frac{C r}{|z-\xi|^{2}} d \nu_{2}(\xi)
\end{aligned}
$$

Proof. Note that the left hand side of the inequality can be written as

$$
\left|\int_{Q}\left[K(z-\xi)-K\left(z-z_{0}\right)\right] d\left(\nu_{1}-\nu_{2}\right)(\xi)\right|
$$

But, under the hypothesis on z, we have that $\left|K(z-\xi)-K\left(z-z_{0}\right)\right| \leq$ $\frac{C\left|\xi-z_{0}\right|}{\lambda^{2}|z-\xi|^{2}}$ for any $\xi \in Q$. Plugging this estimate into the integral and taking into account the supports of ν_{1} and ν_{2}, the inequality follows.

Proof of Lemma 7.2. Write

$$
\mathcal{A}=\left\{j: B_{j}^{(n)} \neq B^{(n)}\left(z^{*}\right) \text { and } B_{j}^{(n)} \subset B^{(n-1)}\left(z^{*}\right)\right\} .
$$

First suppose that $\operatorname{dist}\left(z, Q_{j}^{(n)}\right) \geq \frac{1}{4} \sqrt{r_{n-1} r_{n}}$ for $j \in \mathcal{A}$. Then the hy-
 $R=r_{n-1}, r=r_{n}$, and $z_{0}=z_{Q_{j}^{(n)}}$. Thus

$$
\begin{align*}
& \left|\int_{Q_{j}^{(n)}} K(z-\xi) \frac{d m_{2}(\xi)}{r_{n-1}}-\int_{B_{j}^{(n)}} K(z-\xi) d \mu^{(m)}(\xi)\right| \tag{7.2}\\
& \quad \leq \int_{Q_{j}^{(n)}} \frac{C \sqrt{r_{n-1} r_{n}}}{|z-\xi|^{2}} \frac{d m_{2}(\xi)}{r_{n-1}}+\int_{B_{j}^{(n)}} \frac{C r_{n} d \mu^{(m)}(\xi)}{|z-\xi|^{2}} .
\end{align*}
$$

Now suppose that $j \in \mathcal{A}$ and $\operatorname{dist}\left(z, Q_{j}^{(n)}\right) \leq \frac{1}{4} \sqrt{r_{n-1} r_{n}}$. Since $\operatorname{dist}\left(z, Q_{j}^{(n)}\right) \geq$ $\operatorname{dist}\left(z^{*}, Q_{j}^{(n)}\right)-\operatorname{dist}\left(z, z^{*}\right) \geq \frac{1}{2} \sqrt{r_{n-1} r_{n}}-\varepsilon$, we must have that $\varepsilon \geq$ $\frac{1}{4} \sqrt{r_{n-1} r_{n}}$. But as $\operatorname{dist}\left(z, \operatorname{supp}\left(\mu^{(m)}\right)\right) \geq \frac{\varepsilon}{2}$, and $\mu^{(m)}\left(B_{j}^{(n)}\right)=r_{n}$, we have the following crude bound

$$
\begin{align*}
& \left|\int_{Q_{j}^{(n)}} K(z-\xi) \frac{d m_{2}(\xi)}{r_{n-1}}-\int_{B_{j}^{(n)}} K(z-\xi) d \mu^{(m)}(\xi)\right| \tag{7.3}\\
& \quad \leq \frac{C}{r_{n-1}} \sqrt{m_{2}\left(Q_{j}^{(n)}\right)}+\frac{2}{\varepsilon} \mu^{(m)}\left(B_{j}^{(n)}\right) \leq C s_{n} .
\end{align*}
$$

(Here it is used that $\int_{A}|K(\xi)| d m_{2}(\xi) \leq C \sqrt{m_{2}(A)}$ for any Borel measurable set $A \subset \mathbb{C}$ of finite m_{2}-measure.)

At most 4 of the essentially pairwise disjoint squares $Q_{j}^{(n)}, j \in \mathcal{A}$, can satisfy $\operatorname{dist}\left(z, Q_{j}^{(m)}\right) \leq \frac{1}{4} \sqrt{r_{n-1} r_{n}}$ (and it can only happen at all if $n=q$). Therefore by summing (7.2) and (7.3) over $j \in \mathcal{A}$ in the cases when $\operatorname{dist}\left(z, Q_{j}^{(n)}\right) \geq \frac{1}{4} \sqrt{r_{n-1} r_{n}}$ and $\operatorname{dist}\left(z, Q_{j}^{(n)}\right) \leq \frac{1}{4} \sqrt{r_{n-1} r_{n}}$ respectively, we see that the quantity

$$
\left|\int_{\bigcup_{j \in \mathcal{A}} Q_{j}^{(n)}} K(z-\xi) \frac{d m_{2}(\xi)}{r_{n-1}}-\int_{B^{(n-1)}\left(z^{*}\right) \backslash B^{(n)}\left(z^{*}\right)} K(z-\xi) d \mu^{(m)}(\xi)\right|
$$

is no greater than a constant multiple of

$$
\int_{B\left(z, 2 r_{n-1}\right) \backslash B\left(z, \frac{1}{4} \sqrt{r_{n} r_{n-1}}\right.} \sqrt{\frac{r_{n}}{r_{n-1}}} \frac{d m_{2}(\xi)}{|z-\xi|^{2}}+\int_{\mathbb{C} \backslash B\left(z, \frac{1}{4} \sqrt{r_{n} r_{n-1}}\right)} \frac{r_{n} d \mu^{(m)}(\xi)}{|z-\xi|^{2}}+s_{n} .
$$

The first term here is bounded by $C \sqrt{\frac{r_{n}}{r_{n-1}}} \log \left(\frac{r_{n-1}}{r_{n}}\right) \leq C s_{n} \log \left(\frac{1}{s_{n}}\right) \leq$ $C \sqrt{s_{n}}$. Since $\mu^{(m)}$ is C_{0}-nice, we bound the second term by

$$
C r_{n} \int_{\frac{1}{4} \sqrt{r_{n} r_{n-1}}}^{\infty} \frac{d r}{r^{2}} \leq C r_{n} \frac{1}{\sqrt{r_{n} r_{n-1}}} \leq C s_{n}
$$

We now wish to estimate $\int_{\bigcup_{j \in \mathcal{A}} Q_{j}^{(n)}} K(z-\xi) \frac{d m_{2}(\xi)}{r_{n-1}}$. With a slight abuse of notation, write $\widetilde{B}^{(n-1)}\left(z^{*}\right)=\widetilde{B}_{j}^{(n-1)}$ if $z^{*} \in B_{j}^{(n-1)}$. Then

$$
\left|\int_{\tilde{B}^{(n-1)}\left(z^{*}\right)} K(z-\xi) \frac{d m_{2}(\xi)}{r_{n-1}}-\int_{\bigcup_{j \in \mathcal{A}} Q_{j}^{(n)}} K(z-\xi) \frac{d m_{2}(\xi)}{r_{n-1}}\right|
$$

is bounded by $\frac{C}{r_{n-1}}\left(m_{2}\left(\widetilde{B}^{(n-1)}\left(z^{*}\right) \triangle \bigcup_{j \in \mathcal{A}} Q_{j}^{(n)}\right)\right)^{\frac{1}{2}}$. By Lemma 4.2. this quantity is no greater than $\frac{C}{r_{n-1}} \sqrt{r_{n}^{1 / 2} r_{n-1}^{3 / 2}+r_{n} r_{n-1}} \leq C \sqrt{s_{n}}$.

It remains to employ the reflectionless property (Lemma 3.1). Since $z \in\left(1+\frac{\varepsilon}{r_{n-1}}\right) B^{(n-1)}\left(z^{*}\right)$, we use Lemma 3.1 to infer that

$$
\left|\int_{\widetilde{B}^{(n-1)}\left(z^{*}\right)} K(z-\xi) \frac{d m_{2}(\xi)}{r_{n-1}}\right|=\left|\int_{\left(1+\frac{\varepsilon}{r_{n-1}}\right) B^{(n-1)}\left(z^{*}\right) \backslash \widetilde{B}^{(n-1)}\left(z^{*}\right)} K(z-\xi) \frac{d m_{2}(\xi)}{r_{n-1}}\right|
$$

This quantity is bounded by $\frac{C}{r_{n-1}}\left(m_{2}\left(\left(1+\frac{\varepsilon}{r_{n-1}}\right) B^{(n-1)}\left(z^{*}\right) \backslash \widetilde{B}^{(n-1)}\left(z^{*}\right)\right)\right)^{\frac{1}{2}} \leq$ $C \sqrt{s_{n}+\frac{\varepsilon}{r_{n-1}}}$. The lemma follows.

With Lemma 7.2 in hand, we may complete the proof of Proposition 7.1. First write

$$
\begin{align*}
\int_{\mathbb{C}} K(z-\xi) d \mu^{(m)}(\xi) & =\int_{B^{(q)}\left(z^{*}\right)} K(z-\xi) d \mu^{(m)}(\xi) \\
& +\sum_{n=1}^{q} \int_{B^{(n-1)}\left(z^{*}\right) \backslash B^{(n)}\left(z^{*}\right)} K(z-\xi) d \mu^{(m)}(\xi) \tag{7.4}
\end{align*}
$$

Next note that that $\frac{\varepsilon}{r_{n-1}} \leq 1$ if $n=q$, and $\sqrt{\frac{\varepsilon}{r_{n-1}}} \leq s_{n}$ for $1 \leq$ $n<q$. As $\sum_{n \geq 1} \sqrt{s_{n}}<\infty$, it follows from Lemma 7.2 that the sum appearing in the right hand side of (7.4) is bounded in absolute value independently of q, m and ε. The remaining term on the right hand side of (7.4) has already been shown to be bounded in absolute value, see (7.1).

8. $T_{\mu}(1)$ FAILS TO EXIST IN THE SENSE OF PRINCIPAL VALUE μ-ALMOST EVERYWHERE

We now turn to consider the operator in the sense of principal value. The primary part of the argument will be the following lemma.
Lemma 8.1. Provided that n is sufficiently large, there exists a constant $c_{0}>0$ such that for any disc $B_{j}^{(n)}$, and $z \in \mathbb{C}$ satisfying $\operatorname{dist}\left(z, \partial B_{j}^{(n)}\right) \leq c_{0} r_{n}$,

$$
\left|\int_{A\left(z, r_{n}\right)} K(z-\xi) d \mu(\xi)\right| \geq c_{0}
$$

Before proving the lemma, we deduce from it that $T_{\mu}(1)$ fails to exist in the sense of principal value for μ-almost every $z \in \mathbb{C}$. To this end, we set $F=\left\{z \in E: z \in\left(1-c_{0}\right) B^{(n)}(z)\right.$ for all but finitely many $\left.n\right\}$. It suffices to show that $\mu(F)=0$.

First note that, with $F_{n}=\left\{z \in E: z \in\left(1-c_{0}\right) B^{(m)}(z)\right.$ for all $m \geq$ $n\}$, we have $F \subset \bigcup_{n \geq 0} F_{n}$, so it suffices to show that $\mu\left(F_{n}\right)=0$ for all n.

To do this, note that for each $m \geq 0$, at most $\left(1-c_{0}\right) \frac{r_{m}}{r_{m+1}}+C \sqrt{\frac{r_{m}}{r_{m+1}}}$ squares $Q_{\ell}^{(m+1)}$ can intersect $\left(1-c_{0}\right) B_{j}^{(m)}$. Thus

$$
\begin{gathered}
\mu\left(\bigcup_{\ell}\left\{B_{\ell}^{(m+1)}: B_{\ell}^{(m+1)} \cap\left(1-c_{0}\right) B_{j}^{(m)} \neq \varnothing\right\}\right) \leq\left(1-c_{0}\right) r_{m}+C \sqrt{\frac{r_{m}}{r_{m+1}}} r_{m+1} \\
=\left(1-c_{0}\right) \mu\left(B_{j}^{(m)}\right)+C s_{m+1} r_{m} \leq\left(1-\frac{c_{0}}{2}\right) \mu\left(B_{j}^{(m)}\right)
\end{gathered}
$$

where the last inequality holds provided that m is sufficiently large. But then, as long as n is large enough, this inequality may be iterated to yield

$$
\mu\left(\left\{z \in E: z \in\left(1-c_{0}\right) B^{(n+k)}(z) \text { for } k=1, \ldots, m\right\}\right) \leq\left(1-\frac{c_{0}}{2}\right)^{m} .
$$

Hence $\mu\left(F_{n}\right)=0$.
In preparation for proving Lemma 8.1, we make the following claim.
Claim 8.2. Let $n \in \mathbb{Z}_{+}$. For any disc $B_{j}^{(n)}$, and $z \in \mathbb{C}$, we have

$$
\left|\int_{A\left(z, r_{n}\right) \cap B_{j}^{(n)}} K(z-\xi) d\left(\mu-\frac{m_{2}}{r_{n}}\right)(\xi)\right| \leq C s_{n+1}
$$

Proof. To derive this claim, first suppose that a square $Q_{\ell}^{(n+1)} \subset A\left(z, r_{n}\right)$. Then from a crude application of Lemma 7.3 (see 7.2), we infer that

$$
\left|\int_{Q_{\ell}^{(n+1)}} K(z-\xi) d\left(\mu-\frac{m_{2}}{r_{n}}\right)(\xi)\right| \leq C \frac{\sqrt{r_{n} r_{n+1}}}{r_{n}^{2}} r_{n+1} \leq C\left(\frac{r_{n+1}}{r_{n}}\right)^{\frac{3}{2}}
$$

If it instead holds that $Q_{\ell}^{(n+1)} \cap \partial A\left(z, r_{n}\right) \neq \varnothing$, then we have the blunt estimate

$$
\left|\int_{Q_{\ell}^{(n+1)} \cap A\left(z, r_{n}\right)} K(z-\xi) d\left(\mu-\frac{m_{2}}{r_{n}}\right)(\xi)\right| \leq \frac{2}{r_{n}}\left[\mu\left(Q_{\ell}^{(n+1)}\right)+\frac{m_{2}\left(Q_{\ell}^{(n+1)}\right)}{r_{n}}\right]
$$

which is bounded by $\frac{C r_{n+1}}{r_{n}}$. There are most $\frac{r_{n}}{r_{n+1}}$ squares $Q_{\ell}^{(n+1)}$ contained in $A\left(z, r_{n}\right)$, and no more than $C \sqrt{\frac{r_{n}}{r_{n+1}}}$ squares $Q_{\ell}^{(n+1)}$ can intersect the boundary of $A\left(z, r_{n}\right)$.

On the other hand, the set \widetilde{A} consisting of the points in $A\left(z, r_{n}\right) \cap$ $B_{j}^{(n)}$ not covered by any square $Q_{\ell}^{(n+1)}$ has m_{2}-measure no greater than $C r_{n+1}^{1 / 2} r_{n}^{3 / 2}$ (see Lemma 4.2. Thus $\int_{\widetilde{A}}|K(z-\xi)| \frac{d m_{2}(\xi)}{r_{n}} \leq \frac{2 m_{2}(\tilde{A})}{r_{n}^{2}} \leq$ $C s_{n+1}$.

Bringing these estimates together establishes Claim 8.2.
Let us now complete the proof of Lemma 8.1
Proof of Lemma 8.1. Note that $\int_{A\left(z, r_{n}\right) \cap B_{j}^{(n)}} K(z-\xi) \frac{d m_{2}(\xi)}{r_{n}}$ is a Lipschitz continuous function in \mathbb{C}, with Lipschitz norm at most $\frac{C}{r_{n}}$. Thus, we infer from Lemma 3.2 that there is a constant $c_{0}>0$ such that

$$
\left|\int_{A\left(z, r_{n}\right) \cap B_{j}^{(n)}} K(z-\xi) \frac{d m_{2}(\xi)}{r_{n}}\right| \geq \frac{\tilde{c}}{2}
$$

whenever $\operatorname{dist}\left(z, \partial B_{j}^{(n)}\right) \leq c_{0} r_{n}$. But now we apply Claim 8.2 to deduce that for all such $z,\left|\int_{A\left(z, r_{n}\right)} K(z-\xi) d \mu(\xi)\right| \geq \frac{\tilde{c}}{2}-C s_{n+1}$ (the only part of the support of μ that $A\left(z, r_{n}\right)$ intersects is contained in $\left.B_{j}^{(n)}\right)$. The right hand side here is at least $\frac{\tilde{c}}{4}$ for all sufficiently large n.

9. The set E is purely unrectifiable

We now show that E is purely unrectifiable, that is, $\mathcal{H}^{1}(E \cap \Gamma)=0$ for any rectifiable curve Γ. The proof that follows is a simple special case of the well known fact that any set with zero lower \mathcal{H}^{1}-density is unrectifiable (one can in fact say much more, see for instance [Mat1]).

First notice that for each $z \in \mathbb{C}$ and $n \geq 1, B\left(z, \frac{1}{4} \sqrt{r_{n} r_{n-1}}\right)$ can intersect at most one of the discs $B_{j}^{(n)}$. Hence

$$
\mathcal{H}^{1}\left(E \cap B\left(z, \frac{1}{4} \sqrt{r_{n} r_{n-1}}\right)\right) \leq 2 r_{n}
$$

A rectifiable curve Γ can be covered by $\operatorname{discs} B\left(z_{j}, \frac{1}{4} \sqrt{r_{n} r_{n-1}}\right), j=$ $1, \ldots, N$, the sum of whose radii is at most $\ell(\Gamma)$.

Thus $\mathcal{H}^{1}(E \cap \Gamma) \leq \sum_{j=1}^{N} \mathcal{H}^{1}\left(E \cap B\left(z_{j}, \frac{1}{4} \sqrt{r_{n} r_{n-1}}\right)\right) \leq 2 \sum_{j=1}^{N} r_{n}$. But $\sum_{j=1}^{N} \frac{1}{4} \sqrt{r_{n} r_{n-1}} \leq \ell(\Gamma)$, and so $\mathcal{H}^{1}(\Gamma \cap E) \leq 8 \sqrt{\frac{r_{n}}{r_{n-1}}} \ell(\Gamma)$, which tends to zero as $n \rightarrow \infty$ (the sequence $\sqrt{s_{n}}$ is summable).

References

[CMPT] V. Chousionis, J. Mateu, L. Prat, and X. Tolsa, Calderón-Zygmund kernels and rectifiability in the plane. Adv. Math. 231 (2012), no. 1, 535-568.
[DS] G. David and S. Semmes, Analysis of and on uniformly rectifiable sets. Mathematical Surveys and Monographs, 38. American Mathematical Society, Providence, RI, 1993.
[Huo1] P. Huovinen, Singular integrals and rectifiability of measures in the plane. Ann. Acad. Sci. Fenn. Math. Diss. 109 (1997).
[Huo2] P. Huovinen, A nicely behaved singular integral on a purely unrectifiable set. Proc. Amer. Math. Soc. 129 (11) (2001) 3345-3351.
[Leg] J. C. Léger, Menger curvature and rectifiability. Ann. Math. 149 (1999), no. 3, 831-869
[Mat1] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.
[Mat2] P. Mattila, Cauchy singular integrals and rectifiability in measures of the plane. Adv. Math. 115 (1995), no. 1, 1-34.
[MMV] P. Mattila, M. Melnikov, and J. Verdera, The Cauchy integral, analytic capacity, and uniform rectifiability. Ann. Math. 144 (1996), 127-136.
[MP] P. Mattila and D. Preiss, Rectifiable measures in \mathbb{R}^{n} and existence of principal values for singular integrals. J. London Math. Soc. (2) 52 (1995), no. 3, 482-496.
[NTV] F. Nazarov, S. Treil and A. Volberg, The Tb-theorem on nonhomogeneous spaces that proves a conjecture of Vitushkin. Available at www.crm.cat/Paginas/Publications/02/Pr519.pdf.

Department of Mathematical Sciences, Kent State University, Kent, OH 44240, USA

E-mail address: bjaye@kent.edu
E-mail address: nazarov@math.kent.edu

