
THREE REVOLUTIONS IN THE KERNEL ARE
WORSE THAN ONE

BENJAMIN JAYE AND FEDOR NAZAROV

Abstract. An example is constructed of a purely unrectifiable
measure µ for which the singular integral associated to the kernel
K(z) = z̄

z2 is bounded in L2(µ). The singular integral fails to
exist in the sense of principal value µ-almost everywhere. This
is in sharp contrast with the results known for the kernel 1

z (the
Cauchy transform).

1. Introduction

Let B(z, r) denote the closed disc in C centred at z with radius r > 0.
A finite Borel measure µ is said to be 1-dimensional if H1(supp(µ)) <
∞, and there exists a constant C > 0 such that µ(B(z, r)) ≤ Cr for
any z ∈ C and r > 0.

For a kernel function K : C\{0} → C, and a finite measure µ, we
define the singular integral operator associated to K by

Tµ(f)(z) =

∫
C
K(z − ξ)f(ξ)dµ(ξ), for z 6∈ supp(µ).

A well-known problem in harmonic analysis is to determine geomet-
ric properties of µ from regularity properties of the operator Tµ, see
for instance the monograph of David and Semmes [DS]. This paper
concerns the question of characterizing those functions K with the fol-
lowing property:

Let µ be a 1-dimensional measure. Then

‖Tµ(1)‖L∞(C\ supp(µ)) <∞ implies that µ is rectifiable.
(∗)

The property that ‖Tµ(1)‖L∞(C\ supp(µ)) < ∞ is equivalent to the
boundedness of Tµ as an operator in L2(µ), see for instance [NTV]. A
measure µ is rectifiable if supp(µ) can be covered (up to an exceptional
set of H1 measure zero) by a countable union of rectifiable curves. A
measure µ is purely unrectifiable if its support is purely unrectifiable,
that is, H1(Γ ∩ supp(µ)) = 0 for any rectifiable curve Γ.
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David and Léger [Leg] proved that the Cauchy kernel 1
z

has property
(∗). As is remarked in [CMPT], the proof in [Leg] extends to the case
when the Cauchy kernel is replaced by either its real or imaginary part,

i.e. <(z)
|z|2 or =(z)|z|2 . Recently in [CMPT], Chousionis, Mateu, Prat, and

Tolsa extended the result of [Leg] and showed that kernels of the form
(<(z))k
|z|k+1 have property (∗) for any odd positive integer k. Both of these

results use the Melnikov-Menger curvature method.
On the other hand, Huovinen [Huo2] has shown that there is a purely

unrectifiable Ahlfors-David (AD)-regular set E for which the singular

integral associcated to the kernel <(z)|z|2 −
<(z)3
|z|4 is bounded in L2(H1

|E).

In fact, an essentially stronger conclusion is proved that the principal
values of the associated singular integral operator exist H1-a.e. on
E. Huovinen takes advantage of several non-standard symmetries and
cancellation properties in this kernel to construct his very nice example.

The result of this paper is that a weakened version of Huovinen’s the-
orem holds for a very simple kernel function. Indeed, it is perhaps the
simplest example of a kernel for which the Menger curvature method
fails to be directly applicable. From now on, we shall fix

(1.1) K(z) =
z̄

z2
, z ∈ C\{0}.

We prove the following result.

Theorem 1.1. There exists a 1-dimensional purely unrectifiable prob-
ability measure µ with the property that ‖Tµ(1)‖L∞(C\ supp(µ)) <∞.

In other words, the kernel K in (1.1) fails to satisfy property (∗).
At this point, we would also like to mention Huovinen’s thesis work
[Huo1], regarding the kernel function K(z) from (1.1). It is proved

that if lim infr→0
µ(B(z,r))

r
∈ (0,∞) µ-a.e. (essentially the AD-regularity

of µ), then the µ-almost everywhere existence of Tµ(1) in the sense of
principal value implies that µ is rectifiable. This result was proved by
building upon the theory of symmetric measures, developed by Mattila
[Mat2], and Mattila and Preiss [MP]. Unfortunately the measure in
Theorem 1.1 does not satisfy the AD-regularity condition. In view of
Huovinen’s work it would be of interest to construct an AD-regular
measure supported on an unrectifiable set for which the conclusion of
Theorem 1.1 holds. We have not been able to construct such a measure
(yet).

For the measure µ constructed in Theorem 1.1, we show that Tµ(1)
fails to exist in the sense of principal value µ-almost everywhere. Thus
the two properties of L2(µ) boundedness of the operator Tµ, and the
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existence of Tµ(1) in the sense of principal value, are quite distinct for
this singular integral operator.

2. Notation

• Let m2 denote the 2-dimensional Lebesgue measure normalized
so that m2(B(0, 1)) = 1. We let m1 denote the 1-dimensional
Lebesgue measure.
• A collection of squares are essentially pairwise disjoint if the

interiors of any two squares in the collection do not intersect.
Throughout the paper, all squares are closed.
• We shall denote by C and c large and small absolute positive

constants. The constant C should be thought of as large (at
least 1), while c is to be thought of as small (smaller than 1).
• For a > 1, the disc aB denotes the concentric enlargement of a

disc B by a factor of a.
• We define the H1-measure of a set E by
H1(E) = supδ>0 inf

{∑
j rj : E ⊂

⋃
j B(xj, rj) with rj ≤ δ

}
.

• For z ∈ C and r > 0, we define the annulusA(z, r) = B(z, r)\B(z, r
2
).

• The set supp(µ) denotes the closed support of µ.

3. A reflectionless measure

Let us make the key observation that allows us to prove Theorem
1.1.

Lemma 3.1. Let z ∈ C, r > 0. For any ω ∈ B(z, r),∫
B(z,r)

K(ω − ξ)dm2(ξ) = 0.

Proof. Without loss of generality, we may set z = 0 and r = 1. If
|ω| < |ξ|, then

K(ω − ξ) =
ω − ξ
ξ2

∞∑
`=0

(`+ 1)
(ω
ξ

)`
.

So whenever t > |ω|, we have
∫
∂B(0,t)

K(ω−ξ)dm1(ξ) = 0. (This follows

merely from the fact that
∫
∂B(0,t)

ξ̄`ξkdm1(ξ) = 0 whenever k, ` ∈ Z
satisfy k 6= `.) On the other hand, if |ξ| < |ω|, then

K(ω − ξ) =
ω − ξ
ω2

∞∑
`=0

(`+ 1)
( ξ
ω

)`
.
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0

i

π
6

Figure 1. The set-up for the proof of Lemma 3.2.

Therefore, if t < |ω|, then∫
∂B(0,t)

K(ω − ξ)dm1(ξ) = 2π
[
t
ω

ω2
− 2

t3

ω3

]
=

2π

ω3
(t|ω|2 − 2t3).

Since
∫ |ω|
0

(t|ω|2 − 2t3)dt = 0, the desired conclusion follows. �

The next lemma will form the basis of the proof of the non-existence
of Tµ(1) in the sense of principal value.

Lemma 3.2. There exists a constant c̃ > 0 such that for any disc
B(z, r), and ω ∈ ∂B(z, r),∣∣∣∫

A(ω,r)∩B(z,r)

K(ω − ξ)dm2(ξ)

r

∣∣∣≥ c̃.

Proof. By an appropriate translation and rescaling, we may assume
that B(z, r) = B(i, 1), and ω = 0. Making reference to Figure 1 above,
we split the domain of integration into three regions, I = {ξ ∈ A(0, 1) :
arg(ξ) ∈

[
π
6
, 5π

6
]}, II = {ξ ∈ A(0, 1) ∩ B(i, 1) : arg(ξ) ∈

[
0, π

6

]
} and

III = {ξ ∈ A(0, 1) ∩ B(i, 1) : arg(ξ) ∈
[
5π
6
, π
]
}. The regions II and

III are respectively the right and left grey shaded regions in Figure
1. Note that =K(−ξ) < 0 if arg(ξ) ∈

[
π
3
, 2π

3

]
, and =K(−ξ) > 0 if

arg(ξ) ∈
[
0, π

3

]
∪
[
2π
3
, π
]
. Furthermore, note that∫

I

=K(−ξ)dm2(ξ) =
1

π

∫ 1

1
2

1

t

∫ 5π
6

π
6

−=
(
e−3θi

)
tdθdt = 0.

But
∫
II∪III =K(−ξ)dm2(ξ) = 2

∫
II
=K(−ξ)dm2(ξ) > 0. Therefore, by

setting c̃ = 2
∫
II
=K(−ξ)dm2(ξ), the lemma follows. �
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4. Packing squares in a disc

Fix r, R ∈ (0,∞) such that r < R
16

and R
r
∈ N.

Lemma 4.1. One can pack R
r

pairwise essentially disjoint squares of

side length
√
πrR into a disc of radius R(1 + 4

√
r
R

).

Proof. We may assume that the disc is centred at the origin. Con-
sider the square lattice with mesh size

√
πrR. Label those squares

that intersect B(0, R) as Q1, . . . , QM . These squares are contained in

B(0, R(1 + 4
√

r
R

)). Since MrR =
∑M

j=1m2(Qj) > m2(B(0, R)) = R2,

we have that M > R
r
. By throwing away M − R

r
of the least desirable

squares, we arrive at the desired collection. �

Lemma 4.2. Consider a disc B(z,R). Let Q1, . . . , QR/r be the collec-

tion of squares contained in B(z,R(1 + 4
√

r
R

)) found in Lemma 4.1.

Then m2(B(z,R)4
⋃R/r
j=1Qj) ≤ Cr1/2R3/2.

Proof. Since m2(B(z,R)) = m2

(⋃R/r
j=1Qj) = R2, the property follows

from the fact that both sets are contained in B(z,R(1 + 4
√

r
R

)). �

5. The construction of the sparse Cantor set E

Let r0 = 1, and choose rj, j ∈ N, to be a sequence which tends to
zero quickly. Assume that rj <

rj−1

100
, 1
rj
∈ N, and

rj
rj+1
∈ N for all j ≥ 1.

Several additional requirements will be imposed on the decay of rj
over the course of the following analysis, and we make no attempt to
optimize the conditions.

It will be convenient to let sn+1 = 4
√

rn+1

rn
for n ∈ Z+.

First define B̃
(0)
1 = B(0, 1). Given the n-th level collection of 1

rn
discs

B̃
(n)
j of radius rn, we construct the (n + 1)-st generation according to

the following procedure:

Fix a disc B̃
(n)
j . Apply Lemma 4.1 with R = rn and r = rn+1 to find

rn
rn+1

squaresQ
(n+1)
` of side length

√
πrn+1rn that are pairwise essentially

disjoint, and contained in (1 + sn+1) · B̃(n)
j . Let z

(n+1)
` be the centre of

Q
(n+1)
` , and set B̃

(n+1)
` = B(z

(n+1)
` , rn+1). This procedure is carried out

for each disc B̃
(n)
j from the n-th level collection. There are a total of

1
rn+1

discs B̃
(n+1)
` in the (n+ 1)-st level.

The above construction is executed for each n ∈ Z+.

Now, set B
(n)
j = (1 + sn+1)B̃

(n)
j . Define E(n) =

⋃
j B

(n)
j . We shall

repeatedly use the following properties of the construction:
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B
(n)
j

Figure 2. The picture shows a single disc B
(n)
j of radius (1+sn+1)rn. The

grey shaded squares are the squares Q
(n+1)
` of sidelength

√
πrnrn+1 formed

by applying Lemma 4.1 to the disc B̃
(n)
j of radius rn. The boundary of the

disc B̃
(n)
j is the dashed circle. Deep inside each square Q

(n+1)
` is the disc

B
(n+1)
` of radius (1 + sn+2)rn+1.

(a)
⋃
`Q

(n+1)
` ⊂ E(n), for all n ≥ 0.

(b) B
(n)
j ⊂ Q

(n)
j for each n ≥ 1. Moreover, dist(B

(n)
j , ∂Q

(n)
j ) ≥

1
2

√
rn−1rn.

(c) dist(B
(n)
j , B

(n)
k ) ≥ 1

2

√
rn−1rn whenever j 6= k, n ≥ 0.

Property (a) is immediate. To see property (b), merely note that

dist(B
(n)
j , ∂Q

(n)
j ) =

√
πrn−1rn

2
− (1 + sn+1)rn ≥ 1

2

√
rn−1rn. For property

(c), we shall use induction. If n = 0, then the claim is trivial. Using

(b), the claimed estimate is clear if Q
(n)
j and Q

(n)
k have been created

by an application of Lemma 4.1 in a common disc B̃
(n−1)
` . Otherwise,

the squares are born out of applying Lemma 4.1 to different discs at
the (n − 1)-st level, and those parent discs are already separated by
1
2

√
rn−2rn−1.
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Courtesy of properties (a) and (b), we see that E(n+1) ⊂ E(n) for each
n ≥ 0. Set E =

⋂
n≥0E

(n). Each z ∈ E(n) is contained in a unique disc

B
(n)
j (or square Q

(n)
j ) which we shall denote by B(n)(z) (respectively

Q(n)(z)).

If m ≥ n ≥ 0, then E ∩ B(n)
j is covered by the rn

rm
discs B

(m)
` that

are contained in B
(n)
j , each of which has radius (1 + sm+1)rm ≤ 2rm.

Therefore H1(E ∩B(n)
j ) ≤ 2rn. Taking n = 0 yields H1(E) ≤ 2.

6. The measure µ

Define µ
(n)
j = 1

rn
χ
B̃

(n)
j
m2. Set µ(n) =

∑
j µ

(n)
j . Then supp(µ(n)) ⊂

E(n), and µ(n)(C) = 1 for all n. Therefore, there exists a subsequence
of the sequence of measures µ(n) that converges weakly to a measure
µ, with µ(C) = 1 and supp(µ) ⊂ E.

The following three properties hold:

(i) supp(µ(m)) ⊂
⋃
j B

(n)
j whenever m ≥ n,

(ii) µ(m)(B
(n)
j ) = rn for m ≥ n, and

(iii) there exists C0 > 0 such that µ(n)(B(z, r)) ≤ C0r for any z ∈ C,
r > 0 and n ≥ 0.

Properties (i) and (ii) follow immediately from the construction of
E(n). To see the third property, note that since µ(n) is a probability
measure, the property is clear if r ≥ 1. If r < 1, then r ∈ (rm+1, rm)
for some m ∈ Z+. If m ≥ n, then B(z, r) intersects at most one disc

B
(n)
j . Then µ(n)(B(z, r)) = 1

rn
m2(B(z, r) ∩ B̃(n)

j ) ≤ r2

rn
≤ r. Otherwise

m < n. In this case, note that since the discs B
(m+1)
j are 1

2

√
rmrm+1

separated, B(z, r) intersects at most 1 + C
(

r√
rmrm+1

)2
discs B

(m+1)
j .

Hence, by property (ii), we see that

µ(n)(B(z, r)) =
∑
j

µ(n)(B(z, r)∩B(m+1)
j ) ≤

[
1+C

( r
√
rmrm+1

)2]
rm+1,

which is at most Cr.
The weak convergence of a subsequence of µ(n) to the measure µ,

along with property (iii), yields that µ(B(z, r)) ≤ C0r for any disc
B(z, r). We shall henceforth refer to this property by saying that µ is
C0-nice. We have now shown that µ is 1-dimensional.

Notice that we also have H1(E) ≥ 1
C0
µ(E) > 0.
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7. The boundedness of Tµ(1) off the support of µ

As a simple consequence of the weak convergence of µ(n) to µ, the
property that ‖Tµ(1)‖L∞(C\ supp(µ)) < ∞ will follow from the following
proposition.

Proposition 7.1. Provided that
∑

n≥1
√
sn < ∞, there exists a con-

stant C > 0 so that the following holds:
Suppose that dist(z, supp(µ)) = ε > 0. Then for any m ∈ Z+ with

rm < ε
4
, ∣∣∣∫

C
K(z − ξ)dµ(m)(ξ)

∣∣∣≤ C.

To begin the proof, fix rm with rm < ε
4
. Let z∗ ∈ supp(µ) with

dist(z, z∗) = ε. For any ξ ∈ supp(µ), B(m)(ξ) ∩ supp(µ(m)) 6= ∅, so
dist(z, supp(µ(m))) ≥ ε− (1 + sm+1)rm ≥ ε

2
.

Now, let q be the least integer with rq ≤ ε (so m ≥ q). Then by
property (ii) of the previous section,

(7.1)

∫
B(q)(z∗)

|K(z, ξ)|dµ(m)(ξ) ≤ 2

ε
µ(m)(B(q)(z∗)) =

2rq
ε
≤ 2.

The crux of the matter is the following lemma.

Lemma 7.2. There exists C > 0 such that for any n ∈ Z+ with
1 ≤ n ≤ q,∣∣∣∫

B(n−1)(z∗)\B(n)(z∗)

K(z − ξ)dµ(m)(ξ)
∣∣∣≤ C

√
sn + C

√
ε

rn−1
.

For the proof of Lemma 7.2, we shall require the following simple
comparison estimate.

Lemma 7.3. Let z0 ∈ C, and λ > 0. Fix r, R ∈ (0, 1] with 100r ≤
R. Suppose that ν1 and ν2 are Borel measures, such that supp(ν1) ⊂
Q(z0,

√
πRr) = Q, supp(ν2) ⊂ B(z0, 2r) = B, and ν1(C) = ν2(C).

Then, for any z ∈ C with dist(z,Q) ≥ λ
√
rR, we have∣∣∣∫

Q

K(z − ξ)dν1(ξ)−
∫
B

K(z − ξ)dν2(ξ)
∣∣∣

≤ 1

λ2

∫
Q

C
√
Rr

|z − ξ|2
dν1(ξ) +

1

λ2

∫
B

Cr

|z − ξ|2
dν2(ξ).

Proof. Note that the left hand side of the inequality can be written as∣∣∣∫
Q

[K(z − ξ)−K(z − z0)]d(ν1 − ν2)(ξ)
∣∣∣.
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But, under the hypothesis on z, we have that |K(z− ξ)−K(z− z0)| ≤
C|ξ−z0|
λ2|z−ξ|2 for any ξ ∈ Q. Plugging this estimate into the integral and

taking into account the supports of ν1 and ν2, the inequality follows. �

Proof of Lemma 7.2. Write

A = {j : B
(n)
j 6= B(n)(z∗) and B

(n)
j ⊂ B(n−1)(z∗)}.

First suppose that dist(z,Q
(n)
j ) ≥ 1

4

√
rn−1rn for j ∈ A. Then the hy-

pothesis of Lemma 7.3 are satisfied with ν1 = χ
Q

(n)
j

m2

rn−1
, ν2 = χ

B
(n)
j
µ(m),

R = rn−1, r = rn, and z0 = z
Q

(n)
j

. Thus∣∣∣∫
Q

(n)
j

K(z − ξ)dm2(ξ)

rn−1
−
∫
B

(n)
j

K(z − ξ)dµ(m)(ξ)
∣∣∣

≤
∫
Q

(n)
j

C
√
rn−1rn

|z − ξ|2
dm2(ξ)

rn−1
+

∫
B

(n)
j

Crndµ
(m)(ξ)

|z − ξ|2
.

(7.2)

Now suppose that j ∈ A and dist(z,Q
(n)
j ) ≤ 1

4

√
rn−1rn. Since dist(z,Q

(n)
j ) ≥

dist(z∗, Q
(n)
j ) − dist(z, z∗) ≥ 1

2

√
rn−1rn − ε, we must have that ε ≥

1
4

√
rn−1rn. But as dist(z, supp(µ(m))) ≥ ε

2
, and µ(m)(B

(n)
j ) = rn, we

have the following crude bound∣∣∣∫
Q

(n)
j

K(z − ξ)dm2(ξ)

rn−1
−
∫
B

(n)
j

K(z − ξ)dµ(m)(ξ)
∣∣∣

≤ C

rn−1

√
m2(Q

(n)
j ) +

2

ε
µ(m)(B

(n)
j ) ≤ Csn.

(7.3)

(Here it is used that
∫
A
|K(ξ)|dm2(ξ) ≤ C

√
m2(A) for any Borel mea-

surable set A ⊂ C of finite m2-measure.)

At most 4 of the essentially pairwise disjoint squares Q
(n)
j , j ∈ A,

can satisfy dist(z,Q
(m)
j ) ≤ 1

4

√
rn−1rn (and it can only happen at all

if n = q). Therefore by summing (7.2) and (7.3) over j ∈ A in the

cases when dist(z,Q
(n)
j ) ≥ 1

4

√
rn−1rn and dist(z,Q

(n)
j ) ≤ 1

4

√
rn−1rn

respectively, we see that the quantity∣∣∣∫⋃
j∈AQ

(n)
j

K(z − ξ)dm2(ξ)

rn−1
−
∫
B(n−1)(z∗)\B(n)(z∗)

K(z − ξ)dµ(m)(ξ)
∣∣∣,

is no greater than a constant multiple of∫
B(z,2rn−1)\B(z,

1
4
√
rnrn−1)

√
rn
rn−1

dm2(ξ)

|z − ξ|2
+

∫
C\B(z,

1
4
√
rnrn−1)

rndµ
(m)(ξ)

|z − ξ|2
+sn.
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The first term here is bounded by C
√

rn
rn−1

log
(
rn−1

rn

)
≤ Csn log( 1

sn
) ≤

C
√
sn. Since µ(m) is C0-nice, we bound the second term by

Crn

∫ ∞
1
4
√
rnrn−1

dr

r2
≤ Crn

1
√
rnrn−1

≤ Csn.

We now wish to estimate
∫⋃

j∈AQ
(n)
j
K(z − ξ)dm2(ξ)

rn−1
. With a slight

abuse of notation, write B̃(n−1)(z∗) = B̃
(n−1)
j if z∗ ∈ B(n−1)

j . Then∣∣∣∫
B̃(n−1)(z∗)

K(z − ξ)dm2(ξ)

rn−1
−
∫
⋃

j∈AQ
(n)
j

K(z − ξ)dm2(ξ)

rn−1

∣∣∣
is bounded by C

rn−1

(
m2

(
B̃(n−1)(z∗)4

⋃
j∈AQ

(n)
j

))1
2 . By Lemma 4.2, this

quantity is no greater than C
rn−1

√
r
1/2
n r

3/2
n−1 + rnrn−1 ≤ C

√
sn.

It remains to employ the reflectionless property (Lemma 3.1). Since
z ∈ (1 + ε

rn−1
)B(n−1)(z∗), we use Lemma 3.1 to infer that∣∣∣∫

B̃(n−1)(z∗)

K(z−ξ)dm2(ξ)

rn−1

∣∣∣= ∣∣∣∫
(1+

ε
rn−1

)B(n−1)(z∗)\B̃(n−1)(z∗)

K(z−ξ)dm2(ξ)

rn−1

∣∣∣.
This quantity is bounded by C

rn−1

(
m2((1+ ε

rn−1
)B(n−1)(z∗)\B̃(n−1)(z∗))

)1
2≤

C
√
sn + ε

rn−1
. The lemma follows. �

With Lemma 7.2 in hand, we may complete the proof of Proposition
7.1. First write∫

C
K(z − ξ)dµ(m)(ξ) =

∫
B(q)(z∗)

K(z − ξ)dµ(m)(ξ)

+

q∑
n=1

∫
B(n−1)(z∗)\B(n)(z∗)

K(z − ξ)dµ(m)(ξ).

(7.4)

Next note that that ε
rn−1

≤ 1 if n = q, and
√

ε
rn−1

≤ sn for 1 ≤
n < q. As

∑
n≥1
√
sn < ∞, it follows from Lemma 7.2 that the sum

appearing in the right hand side of (7.4) is bounded in absolute value
independently of q, m and ε. The remaining term on the right hand
side of (7.4) has already been shown to be bounded in absolute value,
see (7.1).
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8. Tµ(1) fails to exist in the sense of principal value
µ-almost everywhere

We now turn to consider the operator in the sense of principal value.
The primary part of the argument will be the following lemma.

Lemma 8.1. Provided that n is sufficiently large, there exists a con-

stant c0 > 0 such that for any disc B
(n)
j , and z ∈ C satisfying

dist(z, ∂B
(n)
j ) ≤ c0rn,∣∣∣∫

A(z,rn)

K(z − ξ)dµ(ξ)
∣∣∣≥ c0.

Before proving the lemma, we deduce from it that Tµ(1) fails to exist
in the sense of principal value for µ-almost every z ∈ C. To this end,
we set F = {z ∈ E : z ∈ (1 − c0)B(n)(z) for all but finitely many n}.
It suffices to show that µ(F ) = 0.

First note that, with Fn = {z ∈ E : z ∈ (1− c0)B(m)(z) for all m ≥
n}, we have F ⊂

⋃
n≥0 Fn, so it suffices to show that µ(Fn) = 0 for all

n.
To do this, note that for each m ≥ 0, at most (1−c0) rm

rm+1
+C

√
rm
rm+1

squares Q
(m+1)
` can intersect (1− c0)B(m)

j . Thus

µ
(⋃

`

{
B

(m+1)
` :B

(m+1)
` ∩(1− c0)B(m)

j 6= ∅
})
≤ (1− c0)rm + C

√
rm
rm+1

rm+1

= (1− c0)µ(B
(m)
j ) + Csm+1rm ≤

(
1− c0

2

)
µ(B

(m)
j ),

where the last inequality holds provided that m is sufficiently large.
But then, as long as n is large enough, this inequality may be iterated
to yield

µ
({
z ∈ E : z ∈ (1− c0)B(n+k)(z) for k = 1, . . . ,m

})
≤ (1− c0

2
)m.

Hence µ(Fn) = 0.
In preparation for proving Lemma 8.1, we make the following claim.

Claim 8.2. Let n ∈ Z+. For any disc B
(n)
j , and z ∈ C, we have∣∣∣∫

A(z,rn)∩B(n)
j

K(z − ξ)d
(
µ− m2

rn

)
(ξ)
∣∣∣≤ Csn+1.

Proof. To derive this claim, first suppose that a squareQ
(n+1)
` ⊂ A(z, rn).

Then from a crude application of Lemma 7.3 (see (7.2)), we infer that∣∣∣∫
Q

(n+1)
`

K(z − ξ)d(µ− m2

rn
)(ξ)

∣∣∣≤ C

√
rnrn+1

r2n
rn+1 ≤ C

(rn+1

rn

)3
2
.
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If it instead holds that Q
(n+1)
` ∩ ∂A(z, rn) 6= ∅, then we have the blunt

estimate∣∣∣∫
Q

(n+1)
` ∩A(z,rn)

K(z − ξ)d(µ− m2

rn
)(ξ)

∣∣∣≤ 2

rn

[
µ(Q

(n+1)
` ) +

m2(Q
(n+1)
` )

rn

]
,

which is bounded by Crn+1

rn
. There are most rn

rn+1
squares Q

(n+1)
` con-

tained in A(z, rn), and no more than C
√

rn
rn+1

squares Q
(n+1)
` can in-

tersect the boundary of A(z, rn).

On the other hand, the set Ã consisting of the points in A(z, rn) ∩
B

(n)
j not covered by any square Q

(n+1)
` has m2-measure no greater than

Cr
1/2
n+1r

3/2
n (see Lemma 4.2). Thus

∫
Ã
|K(z − ξ)|dm2(ξ)

rn
≤ 2m2(Ã)

r2n
≤

Csn+1.
Bringing these estimates together establishes Claim 8.2. �

Let us now complete the proof of Lemma 8.1

Proof of Lemma 8.1. Note that
∫
A(z,rn)∩B(n)

j
K(z − ξ)dm2(ξ)

rn
is a Lips-

chitz continuous function in C, with Lipschitz norm at most C
rn

. Thus,
we infer from Lemma 3.2 that there is a constant c0 > 0 such that∣∣∣∫

A(z,rn)∩B(n)
j

K(z − ξ)dm2(ξ)

rn

∣∣∣≥ c̃

2
,

whenever dist(z, ∂B
(n)
j ) ≤ c0rn. But now we apply Claim 8.2 to deduce

that for all such z,
∣∣∫
A(z,rn)

K(z − ξ)dµ(ξ)
∣∣≥ c̃

2
− Csn+1 (the only part

of the support of µ that A(z, rn) intersects is contained in B
(n)
j ). The

right hand side here is at least c̃
4

for all sufficiently large n. �

9. The set E is purely unrectifiable

We now show that E is purely unrectifiable, that is, H1(E ∩ Γ) = 0
for any rectifiable curve Γ. The proof that follows is a simple special
case of the well known fact that any set with zero lower H1-density is
unrectifiable (one can in fact say much more, see for instance [Mat1]).

First notice that for each z ∈ C and n ≥ 1, B(z, 1
4

√
rnrn−1) can

intersect at most one of the discs B
(n)
j . Hence

H1(E ∩B(z, 1
4

√
rnrn−1)) ≤ 2rn.

A rectifiable curve Γ can be covered by discs B(zj,
1
4

√
rnrn−1), j =

1, . . . , N , the sum of whose radii is at most `(Γ).
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Thus H1(E ∩Γ) ≤
∑N

j=1H1(E ∩B(zj,
1
4

√
rnrn−1)) ≤ 2

∑N
j=1 rn. But∑N

j=1
1
4

√
rnrn−1 ≤ `(Γ), and so H1(Γ ∩ E) ≤ 8

√
rn
rn−1

`(Γ), which tends

to zero as n→∞ (the sequence
√
sn is summable).
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