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INTRODUCTION 

The problem of exp~n.qion of a given function ~ defined on 

a finite interval ~ of real axis ~ in Dirichlet series with 

complex frequencies ~ 

r~Z 

is the nearest analog of the well-known Fourier analysis problemX! 

. ~,A. a: ~ Z  In general, the family of exponentials (e )~ is not 

orthogonal in the Hilbert space L~(1) of all square-summable 

functions on ~ and apart from that, it need not be complete 

on that interval. Leaving aside the difficult completeness prob- 

lem (i.e. the problem of completeness of exponentials in ~,Z(1) ), 

we shall focus our attention on a more narrow question: to des- 

cribe families of frequencies (~'~)~¢~Z producing "well-be- 

haved" bases )146Z in the space ~,~ Cl). 

The convergence problem for o r t h o g o n a i expansions 

with respect to a general complete orthonormal system (~)~6~ 

in L,~(.]~) is solved by the famous V.A.Steklov theorem: such 

an expansion converges in L ~ to the function being expanded. 

loreover, the system ( ~ )  ~ c~Z being orthogonal, the corres- 

ponding Pourier series converges unconditionally; that is it con- 

verges to the same sum after any permutation of its terms. This, 

surely, remains true for any system (~)~Z (a so-called 

R i • s z b a s i s ) which can be obtained from the system 

(~*)~Z by an invertible bounded linear transformation 

o f  L~cI~. 
In what follows we shall use a slightly more general notion 

of ~mconditional bas is  to avoid the hypothesis I( ~,1[ X] ( i . e .  

EJ To emphasize the relationship of a general problem to the 
classical one we shall use the set of all integers Z as an 
index set; this kind of numeration will be also highly convenient 
for the comparison of our results with the classical theory. 
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II ~II > 0 , ~ II ~It < +~ ) and to cover by 

the same token the case~of exponentials with frequencies whose 

imaginary parts are bounded from one side. 

According to the definition of u n c o n d i t i o n a i 

b a s i s (see, for example, [7], [18]) every element Oc of a 

given space can be uniquely decomposed in an unconditionally con- 

vergent series 36 = ~ 0~ ~ . In this paper we deal, 

aside from one exception, with a Hilbert space where by the clas- 

sical G.Kothe - O.Toeplitz theorem a complete system (~)~t6~[ 

forms an unconditional basis iff the following "approximate Par- 

seval identity" holds 

II y__., fl { 
So we take the following definition as one suitable to work with. 

DEFINITION. A family (~ ~)~ of non-zero vectors 

in a Hilbert space ~ is called a n u n c o n d i t i o - 

nal basis in ~ if 

I) the family (~)~6Z spans the space ~ ; 

2) there are positive constants C,C such that for every 

finite sequence of complex numbers {~%)~Z the following 

inequalities hold 

Thus every Riesz basis is unconditional and conversely every 

unconditional basis satisfying II ~ ~ ~ ~ is a Riesz basis. 

AThe~ purpose of this paper is to describe~l subsets 

: ~@ '. ~ 6~ 1 of a half-plane CV = {~cC :l~t~ >~}, 

~ , (or of the half-plane { ~  : I~ < ~ }-'C ~ ) such 

that the family <@~i~0c )~eZ forms an unconditional basis 

The first fundamental progress in the outlined area was at- 

ta~ed by ~.Wiener [58] ~d by N.Wiener ~d 2.Paley [59] 
1934. They proved that the system ~e~k~a)~6Z forms a 

Riesz basis in ~Q (07~) if k~6 ~ , ~£Z , and if 

I~%-k~l < ~i -~ . This result has been repeatedly re- 

vised and generalized; see the history of the question in §7 of 

Part I. The most exquisite formulation of the achievements men- 

tioned above can be obtained by comparison of the theorems due 
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to A.Ingham [41"] and M.I.Kadec ~10]. 

TH~OREI~. Let ~ > 0 Every family (e_. ~X~lc " 
lying 

satis- 

forms a~iesz basis in L ~CO,~  iCando~yi¢ S<q, 
We obtain this theorem in Part I of the paper as a consequen- 

ce of our main results. 

In all papers, which have dealt with the subject discussed, 

it was assumed that ~ l~v% ~I 4 co and the main tool 

of investigation was an idea stated in the remarkable book of 

N.Wiener and R.Paley [591: to form ~ Riesz basis in ~C0~) 

it is sufficient for the family (e )~to be close enough to 

the usual trigonometrical system Ce ~ )~. 

One can hardly expect that such an approach to the general 

problem will be successful, though a result of part III (see ~4) 

exhibits some connection between the general and the classical 

case. 

Another point of view,also originated in [591 has been ad- 

vanced by B.Ja.Levin. In his method a central role is played by 

an entire function of exponential type with zeros ~, 

and whose width of the indicator diagram coincides with the length 

of the interval where our basis is considered• We shall Qall this 

entire function "a generating function for the family ~e t~'~0~)~cZ". 

We are now going to state in terms of generating functions 

a condition sufficient for the exponentials to form a Riesz basis 

in 

DEFINITION. A countable subset h = { X~tl ~ e ~ }  of the 

complex plane C is named s e p a r a t e d if 

DEFINITION (B.Ja.Levin). An entire function ~ of exponen- 

tial type is called a s i n e - t y p e f u n c t i o n (bri- 

efly STIr) if its zero set is contained in a strip of a finite 

width, parallel to the real axis, and if 

The s i n e - t y p e  f m ~ c t i o n s  p l a y  m~ i m p o r t a n t  r o l e  i n  t h e  e x p o n e n -  

t i a l  b a s e s  p rob lem ~ d  we w i l l  be r e t u r n i n g  f rom t ime  t o  t ~ e  t o  

a a ~ s c u s s i o n  o f  t h e i r  p r o p e r t i e s  i n  t h e  s e q u e l .  
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THEOREM (B.Ja.Levin, V.D.Golovin [14~, ~6] ). Let the genera- 

ting function of a family (e~h~°c)~ be a sine-type functi- 

on with the width of the indicator diagram equal to gt , ~>0. 

Then ( ~ % ) ~ t e Z  forms a Riesz basis in L£( I ) ,  III = ~ .  
Some attempts have been made to unify the approaches mentio- 

ned above. The relevant result of ¥.Eo Kacnelson [12] can be 

stated, broadly speaking, as follows. A transformation ~-~ ~@, 

~EZ, of the zero set of a STP preserves the property to form 

a Riesz basis for the corresponding family of exponentials if the 

set { , /b~ ; ~ E Z }  is separated and if I ~ (j~-X~J,< 

( ~-- ~ l~)~a- ~ ~ I . The most subtle result has 

been ~ ~ . proves by S.A.Avdonin [2], see ~7 of the Part I below. The 

main tools of these papers are delicate estimates of canonical 

products. 

The method of the present paper rests on completely different 

considerations. It comes from an e~plicit description of those 

families of exponentials O h = (.~ ) ~ ~ which form un- 

conditional bases in~heir closed linear spans ~Xb ~A in 

m~( ~+j. , ~+ ~ ( O, + co 3 . This description is given 
by the famous C a r 1 e s o n c o n d i t i o n 

see L.Carleson [28], H.Shapiro - A.Shields [56], V.F..Kaonelson 

[11], N.K.Nikol'skii - B.S.Pavlov [20]. If we deal with such a 

set of frequencies ~ = {)~ ' ~ ~ ~I and if the transforma- 

tion ~--~ ~" /~ [ 0,~] , which, obviously, coincides with the 

orthogonal projection onto ~(0~@) ~), is an isomorphism of 

~ b  8A onto L ~ (0,~) , then, clearly, the family 

( e~&~x "~ [o,a) ) ~  will form an unconditional basis in 

This procedure is a chief ingredient of the proofs of all our 

results. It appeared for the first time in [22] , and was used, in 

particular, in the proof of Levin - Golovin theorem. However, only 

five years later it became clear that these arguments lead not on- 

ly to a full solution of the exponential Riesz bases problem [231 , 

but also imply simple and transparent proofs of almost all known 

results in that area [25]. In the sequel, it turned out that the 

~) We assume that the space ~ (O~C~) is imbedded into 
m ~ (~+) in a natural way. 
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sphere of applications of the described method can be considerab- 

ly extended to cover unconditional bases of exponentials as well 

as the bases formed by reproducing kernels [19]. 

Our method has several advantages in comparison with those of 

Wiener - Paley and Levin; requiring less in what concerns the non- 

-perturbed basis, it allows one to redistribute the difficulties 

more uniformly between the investigation of non-perturbed bases 

in m ~ (~+) and perturbed ones in L ~ (0~) , 6t>0 • More- 

over, under the slight additional requirement that the projection 

does not distort the elements of our family too much, the above 

geometrical reasoning can be inverted. 

It should be noted that the solution of a well-known problem, 

originated in the papers of LoSchwartz [55]and P.Koosis ~43], is 

reduced to the application of the described method too. This is a 

problem of equivalence of norms (\R+ I~I~ I / ~ ~  - . ~ ~ I  I I~I~) I/~ on 

the span of exponentials (etX~%)a~2 in ~ (~÷) . Clearly, 

the norm equivalence together with Carleson's condition imply that 

the family (e~k~c'~l)~2 is an unconditional basis in its 

span. 

The same procedure can be applied to the joint completeness 

problem of an operator and its adjoint (for dissipative operators 

and contractions). The application, outlined in [21] in a vague 

form, appears now more distinctly. The joint basis property is al- 

so discussed here. Both of them are important for the spectral 

theory of differential operators. They arise naturally, for exam- 

ple, in the investigation of the Sturm - Liouville problem contai- 

ning a spactral parameter in the boundary condition: 

A similar problem for the Schrodinger operator has been considered 

by T.Regge [52] in connection with a question of resonance scatte- 

ring theory. 

Aside from the systematic exposition of [19], [23], [25] and 

the applications to the theory of differential operators, our pa- 

per contains some new results too. The exposition is developed 

along the following plan. 

The main purpose of Part I is to apply the above mentioned ap- 

proach to the exponential bases problem; to formulate all our main 

results including the results for the reproducing kernels; and to 

discuss the connections between them. Apart from that there is a 

series of examples here illustrating the general theory. Part I is 

concluded with a short survey of the history of problem. 
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Part II deals with a bases problem for reproducing kernels. 

The connections of the bases problem with Hankel operators and 

with the B.Szo-Nagy - C.Foia~ functional model are discussed. The 

bases close to orthogonal are considered here also. In conclusi- 

on we outline an interpretation of our results in terms of the 

interpolation theory and investigate the bases problem in ~P~ 

The next part, Part III, is devoted to some applications of 

our approach in the classical domain. We prove here some results 

concerning the perturbation theory for exponential unconditional 

bases. In particular, a new proofs for the theorems of S.A.Avdo- 

nin and V.E°Kacnelson are given. In section 3 of Part III we 

state an example, which is due to S°A.Vinogradov and V°I.Vasju- 

nin, of a generating function bounded on ~ together with its 

reciprocal and such that ~t I~ ~a = ~ co for a seque- 

nce (~)~X of its zeros. It is also proved (following to 
, ,:,},,~:c 

V.I.Vasjunin) that in many cases an unconditional basis ~6 )~ 

in its closed span in ~ (0~) can be extended to be an un- 

conditional exponential basis in the whole space ~(0~@) . The 

last section of the Part, ~ 4, deals with the problem of equicon- 

vergence of Fourier series with respect to the general unconditi- 

onal basis ( e ~ ) ~  in ~ ( , 0 ~ o ~  ") and of those with 

respect to ~e~)%cZ . A theorem is proved generalizing the 

well-known Levinson theorem [481 . 

Part IV is devoted to the applications of our geometrical ap- 

proach to the above mentioned Regge problem. The main purpose of 

this part of the paper is to indicate new possibilities of the 

method rather than prove accomplished results. So it is linked to 

the preceding Parts by the method of investigation. 

Completing the discussion we mention that we have tried to 

make the bulk of the article intelligible to anyone with basic 

knowledge of functional analysis and function theory. 
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PART I 

BACKGROUND OF EXPONENTIAL BASES PROBLEM 

I. Functional model 

To translate our problem into the language used in B.Sz.-Nagy 

- C.Poias model some facts of common knowledge about the Hardy 

class ~ in the upper half-plane ~+~{~:~t~ ~ 0} 

are needed. The following sources [18], [33], [44], ~54] contain 

the exhaustive information about the subject. 

A function ~ which is analytic in ~+ belongs to the Har- 

dy class m ~ ÷ if 

II ll 4 <+oo. 
R 

By Fatou's theorem the space ~+ may be considered as a closed 

subspace of L~C ~) . It is convenient to define an inner pro- 

duct in ~C R) by the formula 

A nontrivial function f 

the product 

R 
in ~ + can be factored uniquely as 

I = 

where 0 is a unimodular constant, JCI=~ ; 

product; ~ is a singular inner function; and 

function. A Blaschke product 

is an infinite product 

is a Blaschke 

~6 is an outer 

with the zero sequence (~.)~ 

where signs 8~ , 15.1 = ~ make each factor in the product non- 

-negative at the point ~ = ~ . A well-known Blaschke condition 

is the necessary and sufficient one for the Blaschke product to 
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converge.To describ~ th~ factor ~ one can consider a one-point 

compaotification ~ 0~4 ~ U too I of the real line ~ o Then 

where ~ is a non-negative finite measure on ~ which, being 

restricted on Q , is singular with respect to the usual Lebesgue 

measure on ~ • The measure ~ of the full mass equal to D~.CD, 

6~> 0 , supported by the point co corresponds, obviously, to the 

exponential e ~ o The product C' ~ ' S is called an inner 

function• Inner functions can be described as elements of the 

H ~ algebra of all uniformly bounded and holomorphic in C+ 

functions, whose boundary values are unimodular aoeo on ~ ° The 

outer part ~e of the function ~ is defined by 

e t - ~  { ' z + ~  • 

I t  s h o u l d  be n o t e d  t h a t  the  same f a c t o r i z a t i o n  p r o p e r t y  h o l d s  

for all Hardy classes H ~ 0 < p ~ + ~o ( ~P+ consists of 

all functions ~ , analytic in C + and satisfying 

i,l!l Ii 
7 

The w e l l - k n o w n  P a l e y  - Wiener  t heo rem a s s e r t s  t h a t  t he  i n v e r -  

se F o u r i e r  t r a n s f o r m  

is a one to one norm-preserving mapping of L ~ (~ ,) onto ~+ . 

By the inversion formula we have 

Let, for the time being, ~--{ X~" ~Z~ be a .~ixed subset 

of C+ and let @>0 . Clearly, the family C~h~)~b~ I _ 

forms an unconditional basis in i~ C0?~] iff the family C ~- ~) 

does. ~,et ~ < - -  { -  X~  : ~ ~ ~ t  . The ~ o ~ i e r  t r ~ s f o ~ m  
maps the closed span ~A* of the family < "/~[o,~o) ) X 6 A  ~ 

onto the subspace 
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in H ~ ÷ , ~ being the Blaschke product for the sequence ~k~)~a2 

if it satisfies the Blaschke condition and the identically zero 

function otherwise. The proof of this fact rests on a simple cal- 

culation: 
cO 

. Is qz e-~ ~ #* (J@ %Eo,+~) cz)= ~LS= ~-x 
0 

It remains onlyL/ to observe that the span of the family_ _((~-~)-~k~& 

is equal to ~5' 

The space ~ ,  being described, we have to do the same 
for the space O,&) o Let Qa(i() ~ e i'a~ , 0~>0 . Clear- 

ly, 

The program outlined in Introduction can be easily applied 

now. But it is natural to consider now a more general problem. 

Let 0 be any inner function and let ~ be a Blaschke pro- 

duct with the sequence of zeros ( ~ J ~  . The function 

k (~,x) ~ Ht : ~_~ is, obviously, the reproducing kernel for 

( l ,  k c',x))= ~r~--c ~ 
R 

Let Pe be an orthogonal p~jection onto the subspace K e . 

Then the function ~ 8 (-,k) ~ ~ ~ (.~ k) is the reproducing 

kernel for K% . Indeed, if ~ ~ ~8 then 

C~, ke c., x))= (~, Pekc-,~)) = c~, k (.,A))=~CX). 
Simple computations show that 

k e (~,x) -_ t 

Now we are in a position to formulate g e n e r a I 

problem of unconditional bases 

for reproducing kernels : 

What is to be assumed about the pair (0,~) for the family 

~-,(~@(',kJ~k6~ to be an unconditional basis in _~0 ? 
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2. Carleson condition 

As it was already mentioned in Introduction, the test for the 

family ((~-~)-~)~ to be an unconditional basis in its 

closed span in H~+ is given by the well-known Carleson condition: 

~ ~ >0, (c) 

Clearly, (C) ~ (B) and therefore the Blaschke product 

may be considered. Denoting 

(C) in a more compact form 

, one may rewrite 

I B~(M)}>O (c) 
It is a matter of common knowledge, see for example [18], that 

the Carleson ~pndition is equivalent to a purely geometrical one. 

Let Dca,m) ~ { g e C :  Ig-~l <-c}. 
DEPINITION. A subset A = { )"~t" ~Z} of C+ is cal- 

led a r a r e s e t if there is a positive ~ sach that 

DEPINITION. A positive measure J% in C+ is called a C - 

measure if 

A ~ (C) Then 

( ~ denotes the unit mass at X ) is a C -measure. 

Here are two examples of sets satisfying (C)" A I = 

=I~ :~bE~l, ~i={$÷~:~I o In general, if 

C It ~ C : 0 < C ~I~C~I then the separation condition 

and the Carleson condition are equivalent. 

There is one more notion needed for the formulation of the 

main theorem on unconditional bases of rational fractions. 

DEFINITION. A family of non-zero elements (OC~)~tey of 

iff h e (~) and the measure ~. l~tX~'~h~ 
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a Banach space ~ is called a u n i f c r m 1 y 

m a 1 f a m i 1 y if 

1%~ ~O~b Csc~ • w, ~ ,t')) > O. 

mini- 

Clearly, any basis, and, in particular, any unconditional 

basis, forms a uniformly minimal family. The converse assertion 

does not hold in general but it, nevertheless, holds for the fa- 

milies of rational fractions in m~ ; see theorem A below. Ap- 

parently, the main reason of this phenomenon is rooted in simple 

formulae for the dual family 

~[~k~.  B~C~) , ~ Z ,  

of the family ~ , ~ ~ (~-~)-~ spanning the space 

~Cb~ ¢ ~1 H, cw~ : ~ Z ~ = H *  eBH~=K~ 

It is an easy task to check that ~E K B , ~t~ , and that 

Q ~ , ~ ~ ~ = ~ . The computation of the distance from 

II t~ll -~ to the ~CUYb(~K ; K~) is now an elementary 

exercise: ~ { II ~ II -~ ~ , ~Yb k~K; K ~ ~)) =(by the Ha/pn - Ba- 

nach theorem) = II ~ }I~¢ ' II ~11~.  = C~[I¢t ~)V~ C~.I~¢~,,~)-/~ I~C~I = 

CO~O~A~. ~or a family [ C ~ - ~ p  -~, ~Z} , I ~  X~>O, to 
be uniformly minimal it is necessary and sufficient that 

Ck~)~ez e cC). @ 
THEOREM A. Let & = {)X~¢' ~d, EZ} ~_ C+ . The fo l low ing  as- 

ser t ions are equivalent. 

I. The family CC~-~)-~J~6~[ forms an unconditional ba- 

sis in its own span in ~i÷. 

2. The family C C ~ - ~ ) - ~ J ~ t ~ 2  is uniformly minimal in ~ .  
3- The family Ce~k~ )~t~2 forms an unconditional ba- 

sis in its ~ C ~+) -spanF + 

4. / ~ ( C ) .  
In such form Theorem ~ has been obtained by N.K.Nikol'skii 

and B.S.Pavlov [631, [20] (see also [61], [62])as a consequence 

of a more general theory. Their proof hinges on preceding results 

of L.Carleson [28] and of H.Shapiro - A.Shields [56], [64] from 

the interpolation theory. 

There are many ways to reformulate the assertions I-4 of The- 

cram ~ and, first of all, to link these assertions to the oh- 
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Jects fundamental for our approach• We mean the expansions in 

Fourier series with respect to the eigen-functions of the so-cal- 

led "model semigrcup" and the well-known interpolation problem 

, (O~t)~..7 - E_ ~ in H+. We leave 

the discussion of these links - f o r t h e t i m e b e- 

i n g - till ~ 5, not to be led too far from exponential bases. 

Note, however, that it is just the operator-theoretical approach 

(connected with the model semigroup) the proof of Theorem ~ in 

[20] was based upon. 

Our last remark concerns the interplay between the unconditi- 

onal bases property and the completeness problem for rational 
i 

fractions in ~+. Obviously, (C) ~ (B), and therefore the uncam- 

p/eteneBs is a necessary condition for the family ((~ -- -~ 
H ~ 

to be an unconditional basis in its closed span in H+. 
Now we are in a position to make the first step towards the 

investigation of the basis property for exponentials. Namely, ac- 

cording to the plan stated in Introduction we are to prove that 

the Carleson condition (C) is necessary for exponentials to form 

an unconditional basis in I i(0~) • The next step will be to stu- 

dy the orthogonal projection ~).~e, ~ = ~ . Because of the 

general nature of our geometrical reasoning, it is natural to de- 

al with the general case of reproducing kernels at once; see the 

end of §I. 

THEOREM I. Let 0 be an inner function and let ~ = 

I. If the family (k@ ( ' ,  kcu))~Z is an unconditional basis 

in its span then A (C) 
2. If the family (ks (',~))~7 _ is uniformly minimal 

and if 

'h, 
A t h e n  

Leaving aside the proof of the assertion I till ~ I of Part 

II, we shall give now a simple explanation of the assertion 2 of 

the theorem, which is sufficient for our analysis of exponential 

bases property. For 0 = Q~ the condition (I) implies, obvious- 

ly, that ~ C ~ ~ , for some positive number ~ • The role 

of the condition (I) in what follows becomes clear after we note 

that it is a necessary and sufficient condition for H ~ + -n~ 

of the functions C7~-~)-~ and PO C~-~)-I = k0 C ' , ~ )  
to be comparable. If ~ --Q~ then it means 



228 

The statement 2 of Theorem I is an immediate corollary of 

Theorem ~ and the following elementary Lemma. 

LE~NA *). Let L be a bounded linear operator in a Banach 

space X and let (~c~)~ be a sequence of non-zero vec- 

tors in ~ satisfying C-~i~-~ II~c~llJIm~Jl do~ . Then 

the family (0c~)~ is uniformly minimal if the same 

holds for the family (L~c~J~. 

PROOF. If ~bK ~C , ~K: 6tK IIL0c~II II~ll-I 
t h e n  

_ I1~:., - ~ L ~ : ~ I I ~  I t L ~ ' I I  L~: II -~ ~ ~L~c~I I : I I~ :~ I l t lL~I I -~ I IL~c~ ' - 

It follows that 

- -  - I  

To prove the statement 2 of Theorem I let ~= C~-~J 
• 2 - 

L= P 8 . Then it follows from the equallties II~ =(~i~J. 

II L ~II Z = C ~-I~C~]2)C~I~ that ~ ~II'JJL%~IF ~ <~-" 

+oo ° The trivial part of Theorem ~ (2 --9 4) together 

with the Lemma imply A={~;~bC~}C CC). • 

A simple but, nevertheless, important remark is relevant now. 

Let ~ = ~ for the time being. There are a few isomorphisms 

in ~(0~@) preserving the exponentials: 

c ~  ~ e ~ ~ c~) ,  ~ c C 

C~), ' ~(~). 

Any of these isomorphisms preserves, obviously, the property to 

be a uniformly minimal exponential family and the basis property 

as well. Using these isomorphisms we always can move a frequency 

*) An ~n~logous lemma may be found in [22]. 
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set A = {X~ : ~ 1  from any half-plane CT (or CT ),TER, 

to the half-plane C~ , ~ >0 . So the assumption (I) does not 

restrict the generality if we deal with the sets ~ contained 
in a half-plane ~V(olCT) , ~G~. 

The second step in splitting up our problem into two inde- 

pendent ones is made by theorem 2 below. We again not only formu- 

late the theorem in its natural generality, but also give a speci- 

al formulation (Theorem 2') for the important case of exponentials. 

THEOREM 2. Let 0 be an inner function, ~ = { ~: TL~tC 
C C , and let ~ ~ (I). Then the following statements are 

equivalent. 

I. The family ( ~0 (" ,k~))~c~ forms an unconditional 

basis in ~0 

2. a) ~ (C) ; b) the operator ~01~B maps isomorphi- 

cally the space ~B onto ~0 ' ~ being the Blaschke product 

for the sequence ( k ~ ) ~  z • 

THEOR~ 2' .  Let k = { ~ :  ¥ 1 . ~ Z }  CC 8 , (~ ~0 , and 

let ~ be a positive number. The following statements are equi- 
valent. 

I. The family <~ik~°c %[0,a))~Z is an unconditional ba- 
sis in L ~(0,~). 

2. a) ~ ~ (~) ; b) the restriction of the, orthogonal pro- 

jection ~ ~-*~ [O,a.)'~ onto ~0~tLz(~)(e~X~: 
is an isomorphism of the span onto ~(0,o~). * 

It is clear from ~ I that Theorem 2' is covered by Theorem 2. 

THE PROOF OF THEOREM 2. I ~ 2. From Theorem I it follows 

that ~ ~ (C) and therefore the family ((~_~)-i)~ 

is an unconditional basis in its closed span KB = H ~ O ~H i 

by Theorem ~ . Using the condition ~(~-~)-~ II~ 

× IIPo (~  - -t - N ~ )  IIH~ + i m p l i e d  by ( 1 ) ,  we see that 

This, clearly, implies that the map Po : I<B ' Ko 
morphism. 

2 ~ I. The set A 
follows by Theorem A 

is an iso- 

satisfying the Carleson condition, it 

that the family ((K-k~)-{)~£~-- 
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forms an unconditional_ basis in K B • The family ke 
= %  C~- k< ~t is now an unconditional basis in K e beca- 

use it is assumed in the conditions of the theorem that the opera- 

tor PO I K5 is an isomorphism. • 

Thus the unconditional basis problem for exponentials defined 

on a finite interval, as well as the more general problem for rep- 

roducing kernels in ~0 , is reduced to the study of the condi- 

tions of invertibility of the operator Pe : R6 -~0 

We shall describe later, see ~ 3,5, all pairs of inner functions 

~QI' ~) such that ~0t: ~0~ • K0~ is an isomorphism,~ and 

shall be e@pecially detailed in the leading case ~=e/x~ ~, 

e% = ~ ~--~-~ ~&~ Such a description, see ~4, may be 
Z 

given directly in terms of the distribution of numbers (k~)~aZ, 
,0 

and all known results on exponential bases in ~(0,~) can be 

easily derived after that. 

To end this section we note that Theorems2, 2 ~ cam be given 

a form covering the case of unconditional bases in their closed 

linear span (i.e. not assuming the family under consideration to 

be complete in the whole space). Let us do this, e.g., for Theo- 

rem 2. 

THEOREM 2 bis. Let ~ be an inner function, let ~= 

={k~:~6~ 1 CC , and let ~ ~ (4) . Then the following sta- 

tements are equivalent. 

I. The family { k e (',k~): ~6~} forms an unconditional 

basis in its closed linear span. 

2. a) ~ £ (C) , b) the operator Qe: K B ~ K@ is 
left-invertible. 

3. The invertibility tests for P~ I KB: ~eometrical 

and anal2tical aspects 

Let ~ and N be closed subspaces of a Hilbert space m . 

The invertibility of the operator ~MIN means clearly that 

the subspaces are "close" (in a sense). Geometrically speaking 

this "closeness" can be expressed as the positivity of the angle 

<N,M >for ed by subspaces N H H o M a precise 
definition of the angle <X,~> will be given later (§ 2, Part II; 

now it will be used only no~Linally). Note for the time being, that 

c <X,Y> : II P x l V  II (see~2, I I ) .  
The following Lemma gives simple geometrical conditions for 

the operator P IK B to be invertible. 
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LEW&. Let ~ and ~ denote closed subspaces of a Hil- 

bert space m . The following statements are equivalent: 

~. Ke-~(P~IN)={O] ; ~. M ~- n N = {O} ; ~. c~cM,NZ)=H, 
4. c,~ PN1'Q=N. 

. . . . o . , . o . . . t , ,  ,.,..t_ 

invertible; ~. II P~ I M ~" }1 < ~ ; ~. o< I{1 ~ 4. H= 
= H + N  ~ 

There is no sense to burden our text with the highly standard 

proof of the Lemma; see however Lezmma 2.1, ~ 2, Part II. Consi- 

dering RM } N as a mapping of N into ~ we see that 

so that the Lemma yields the following useful conclusion. 

COROLLARY. The following statements are equivalent. 

I. The projection RM maps the subspace N isomorphically 

onto M. 

3. o < < N , M  ) ~d NSM ~=H. 
4. llPNIM~II<4, Mn ={0] .  
We may now return to the problem of the invertibility of the 

operator Pe I K8 arisen at the end of ~ 2. Let ~÷ be the or- 
thogonal projection of L £ (~) onto H~+ , and let ~_=~-~+. 

:r.,ma~A. Pe = elp_e IH~. 
PROOP. I t  i s  c l e a r  that e ? _ 0 ~  = @ ~ i f  ~cE 0m~+. 

I f  gr.._L eH~+ , then, obviously, @% _L H+ and therefore 
0 P _ 0 x =  ~. @ 

T ~ o ~  3. Set~ ,eJj be an i~er  f~motion, Pe~ --PKe, 
K@j = H. 0 e i H+ =~,t . The following statements are equiva- 

lent. 

I. The operator Pe : K e ---* K e is invertible. 

4. ~ , ( e , e , , H ' ) < ~ ,  e~,Ht nH~ : {O} .  
5. 0<(,e~H~-, 0,H+~), 0,HZ_÷e,H~+ =1~(~). 
6. 0<{e, Ht,e~H~+), e, Ht +O,H~,=L*(R). 
PROOP. To use the obtained tests of invertibility of PM IN, 

where M= ~8~ , N = Ke¢ , we are to calculate the norm II ~e£1Kill: 01 

@4 

-- I : , H t ,  u,~p{I #,e,k, -~ l  I,,~H~, k~e l lb411.~ = 
R 



232 

(we use well-known propert ies of spaces HP+; H ~_ =~;~ G H i } ;  
the unit ball of H~+ coincides with the set {~ : li~llH~ %4, 

II~IIH~ + ~ ~I ~ s e e  the  s o ~ c e s  ~ d i c a t e d  a t  the  b e g ~ g  o f  
~ )  

- ~ ~ H ~ (the Hahn Banaoh theorem) = C u~.,.J~, ), 
So 1 ¢==~ 2, as was to be proved. The remaining assertions can 

be obtained by a formal application of the corollary stated above. 

It is useful to note that 0~ ~ - = H t- ~ K 8 for any inner 

function ~. • 
The same arguments lead to the following tests. 

THEOREM 3 his. Let the conditions of Theorem 3 be satisfied. 

Then the following assertions are equivalent. 

I. The operator P~ : K@~ ~ K@~ is left-invertible. 

3. 0< ( e~ H~_, @,H~}. 
4. d (R):  e, Ht + • 
Any reader familiar with the Hankel operators may descry the 

Hankel operator H ~le~ at the right-hand side of the formula 

@~, 

This connection of the bases problem with the Hankel (and Toep- 

litz) operators and with their spectral theory will be very use- 

ful. Remind necessary definitions. 

Let ~* C~) be the space of all bounded measurable functi- 

ons ~ on ~ with the natural norm 

DEFINITION. Let q 6 f f ( ~ )  • The T o e p 1 i t z 
--?_ 

0 p e r a t o r with the symbol ~ is the operator I~ on 

H+ defined by 
] 

+ • 

The H a n k e 1 o p e r a t o r ~ 
i 

is defined by the formula 
with the same symbol 

The operators - ~  and H~ are d i f fe ren t  parts of the m u l t i -  
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plication operator 

Now we see that 

(2) 

O~ O~ 

and therefore 

II Pe~ I KI II --- II H 

(3) 

Returning to the Theorem 3, one can in~ediately note that it is 

reduced to the well-known Nehari theorem. 

T~oR~ (Z.Ne~rl [~01, IS4] ). If ~ L ® (R), then 

II H~ll : ~  (if, H~°), 
On the other hand the Hankel operators appearing in _Theo- 

rems 3 and 3bis have unimodular symbols ~= ~ 0~ ~ ~=0101" 

Then it follows from (2) that 

IIH~II < t i f f  T~ is left-invertible; 

II Hqll < ~ ~ II H~ II < 1 iff T~ is an invertible operator. 
Putting these remarks together with Theorems 3 and 3bis, we obtain 

the following result. 

THEOREM 4. Let ~i be an inner function for i=~,~ . Then 

the operator Pe~ Ks~ • K04 is an isomorphism ( respecti- 

vely left-invertible) if and only if the Toeplitz operator T81~i 
is invertible (respectively left-invertible). • 

In order to translate now the invertibility of P0 IKs~ into 

"the language of inner functions" 0~ , ~i (or returning to ex- 

ponential and reproducing kernel bases - into the language of 

the Blachske product ~ with the zero set ~={~:~I)we 

can apply the invertibility criteria of the Toeplitz operator 

theory, and in particular A.Devinatz's - H.Widom's theorem [31] , 

[57], [54]. For its formulation a new portion of definitions is 
needed. 

The first deals with the Hilbert transform in ~(~). The 

space [,~ ~R) being not contained in ~(R) it is impossible 

to extend the Hilbert transform (from ~ (~)) by means of the 
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usual Cauchy integral. We shall use the conformally-invariant 

form to remove the singularity at infinity° Namely, we define the 

Hilbert transform U of a function V, V ~ ~C ~ )  by 

R 

The Schwarz formula 

t I {  ~ t }vC[)~t 

recovers the funct ion V by i t s  real  part 
V e i l  ~ and [mg(~) :O.  

DEFINITION. A non-negative function ~J 

on satisfying H e 1 s o n - S z e g 

(briefly ~ c H S )  
such that 

only, provided 

is called a functi- 

condition 

) if there are functions %,V in ~C~) 

Another form of the Helson -SzegB condition has been obtained 

in a remarkable paper of B.Muckenhoupt, RoHunt and R.Wheeden [401 . 

Let ~ be the family of all intervals on ~. 

THEOREM (R.A.Hunt, B.Muckenhoupt, R.L.Wheeden [401 ). The 

(H~)-condition is equivalent to C~i)-condition of Muckenhoupt: 

I ~ - ~  <o~, CA~ 
le~ I I 

THEOREM (A°Devimatz, H.Widom [311, [57] ). A Toeplitz operator 

T with a unimodular symbol 7 ( I 7 { = ~ a.e.) is invertib- 

le ~f and only if 

~C~+~+~ ~ : e  , where C ~  ~,~L~CR), IIvJl~<~/~. 

The next theorem combined with Theorem 4 will be a key tool 

for the proofs of many efficient basis tests. 

THEOREM 5. Let ~ be a unimodular function. The following 

conditions are equivalent. 

I. The Toeplitz operator is invertible. 

3. There is  an outer  func t ion  ~ ,  f ~ H ~ , ~ t i s f y ~ g  
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II q-~ Iloo < ~. 
4. There is a branch of the argument J~ of the unimodular 

function ~ ~(%) e ~& t~c) , = , such that 

¢ 

and an outer function 5. There are a unimodular constant 

such that 

q=x.-~, l~l~m(HS) (or IglZe(A~) ). 
To obtain a list of _invertibility tests for ~8 I~8 it re- 

mains only to put ~ = ~ ~ in the condition of the theorem. 

Referring the reader to ~ 2, Part II for the proof of Theorem 

5, we mention that the equivalence I ¢--> 2 has been already pro- 

ved and the equivalence I < ~ 5 is a simple consequence of the 

A.Devinatz - H.Widom theorem. 

4. Basis property of exponentials on an interval 

f 

Comparing Theorems 2,2 and 2his with Theorems 3,3his, 4 and 

5 one can easily obtain a series of tests for the basis property 

mentioned in the title of the section. Nevertheless, for the con- 

venience of the reader we formulate one of them. 

Let ~ ~ {~: IT~ ~,~ (~)} and let ~ +C= 

= {i&+C: t~ ~, C~C} . It is~ useful to note that 

non-zero constants can not coincidewitht~.the harmonic continuati- 

on of U is vanishing at the point b--. Por any function 

defined on ~ let 

'.et C "~o , ~d let be a Blasc~e produot 

with the zero set ~ . It is easy to see that the function &~ 

defined by 
% 

A~C0c) = 
I~,-{I ~ , , 

0 

is a continuous branch of argume_nt, up to an additive constant, 

of the unlmodular function ~ ~ on R. 
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THEOREM 6. Let ~= ~k~ : ~ E Z ]  C ~ , ~ >0 . Then 
the family (e ~k~ )~ forms an unconditional basis in L~(0~) 
if and only if 

The sufficiency part of Theorem 6 is a simple consequence of 

Theorems 2 ~ ,4 and 5- We put aside the proof of the necessity till 

I of Part III where it will be proved that the function & , 

arising in Theorem 5 (see assertion 4 of that theorem), is auto- 

matically continuous under the conditions of Theorem 6. This will 

imply, obviously, ~-~-- ~ .  
The M.I.Kadec theorem can be easily obtained as a corollary 

of Theorem 6. The same reasonings fit in for the proof S.A.Avdonin 

and V•EoKaauelson theorems as well; see ~2 of Part III. 

COROLLARY. Let (~ ~)~a~ be a sequence of real numbers and 

let ~ l%-k~l ~ I/q . Then the family C ~ k ~ ) ~  is a 

Riesz~asis in ~(0,t~), 

PROOF. According to our remark on po 229 , we may without loss 

of generality consider a family of frequencies (~* ~),~Z 

~0 • It is clear that the family C~(~+t~)~)~Z is a Ri- 

esz basis in ~i (0, ~) . This example is a good illustrati- 

on for Theorem 5. Let ~ = ~ ( -  ~ )  , then 

We may conclude therefore that 

The function ~ ~ 8 e ~ = - is outer and 

Therefore statement 5 of Theorem 5 holds and the Toeplitz opera- 

tor TB~ is invertible by that theorem. Obviously, ~+ ~ 

C0) . So the combination of Theorems 2 ~ and 4 implies among 

other things the Riesz basis property for the family Ce~x.~-~)~ 

in ~ C 0, ~ ~) The function & . ~. , up to an additive 
• ~ ~ 

constant, is an argument of the unimodular function Bo 
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This implies 

~ C Moreover ~ ~ ~ H ~ and ~ c + - 2+~ as 

and & ~ . Let Now we may compare the functions oL2+~ +~ 

~= ~b +~ , ~ . Then 
o6 

o 
o 

C~-~?+ ~ Ct-~) ~÷~ ~t ' 
-8"~ -~  

It is time to remember that ~ ~ l~sl < ~/~ • An obvious 

estimate shows 

sc ~ 

It remains to show that the right-hand side of the equality is 

bounded by ~/4 uniformly on ~ . Very simple reasonings lead 

to this conclusion. The periodic function 

~.~z C~-~)~ +~ ~ 

tends to a constant uniformly in t as ~-~ +oo . Its in- 

tegral along the interval [ 0,~] is ~ . So the integral along 

any interval with length smaller than ~/~ will be smaller than 

~/~ if ~ is sufficiently large. 

We may, certainly, use a more formal calculation. By the Pois- 

son summation formula 

=~ 

= ~  ~ )  . It is clear that 
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a 

! I 
and the right-hand side tends $o ~$ (9~/~ as ~-* + oo. " 

REMARK. See another proof of the Corollary in t19] , [18] 

p.342. 

Our next topic concerns the relationship between the bases 

problem and the theory of entire functions. Entire functions 

arise in the unconditional bases problem in a natural way. Assu- 

ming. the family (e ~k~ )~[ is an unconditional basis in 

L,~'(O~G,) we see that the co-aimension of 

~0J%let~'~[0,~);~\10~}- - -- in L~(0,~) is equal to 1. By the 

Hahn - Banach theorem 

6L 

o 
It follows that the Fourier - Laplace transform 

ct 

0 

vanishes exactly on the set [X% ; ~b ~ Z  \ {0}} if the func- 

tion ~ [ i 0 belongs to the one-~ensional subspace conside- 

red in ('4) Indeed, every zero ~L (~'(~)= 0) not belonging to 

the set gives rise to a function ~ belonging to the subspace 

defined by (4) and not a scalar multiple of ~ . Indeed, let 
, -~ ~ ~ i , ~ s  

t(~).C~-~) -I = ~(~) , where ~=.._-~e "~ f o e  ~($)~5, 
I ~ff( 0,6L ) • So the function J'-/k' 

6U 

0 

is an entire function of the exponential type gb with the ze- 

ro set {,k,~ ; %t ~ ~I • It follows from (5) that the conju- 

gate diagrsm~ of F A is the segment ~ O, ~ @] *). Let 

~@ denote the set of all entire functions of exponential type 

) The exhausting information about diagrams, and in general 
about the growth theory, may be found in L13], [27J. In our case 

o~ is the length of the interval on which the basis problem is 
considered. 
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with the conjugate diagram [ 0 ~ ~ . An entire function of 

exponential type without zeros coincides with one exponential 

~c~ ~ , ~ ~ C . Therefore the functions in ~ are defined 

by their zero-set up to a multiplicative constant. 

DEFINITION. Let ~C~+ , @> 0 . An entire function ~ 

in ~a is called a g e n e r a t i n g f u n c t i o n for 

the pair (A,~) if its zero set is ~ and if Fm (0)= I 
THEOREM 7- Let ~= { ~ : '¢~ E 21 C C ~  , ~ > 0 and let 

~>0 . The following conditions are equivalent. 

I. family (e is a Riesz basis in L ~ (O,a) 

2. A e (C) and there is a generating function FA for 

the pair (A,~) satisfying I F~ I~I~ ~ (HS) (or equiva- 

lently I F~ I ~ I R E (~) ). 

We shall give now o n l y  an idea of the proof, the details may 

be found in Part III. What we are to prove is the equivalence 

of the inclusion I~l~ I~ ~ (~S) and of the invertibili- 

ty of the Toeplitz operator ~a8 . By Theorem 5 (see the 

statements I and 5) the operator T~ is invertible if and 

only if the unimodular function ~ ~ can be factored in a 

This implies the equality 

holds a.e. on for the outer function k . It follows from 

by V.I.Smirnov theorem that ~(~+~)-~E ~Z+. 

The equality (6) means that the boundary values of the function 

~ analytic in the upper half-plane coincide with the ones 

of ~--~ C ~(~) ~C~) , which is, obviously, mnalytic in 

the lower half-plane. Using the inclusion ~(~+~)-~ C H~ 

one can easily deduce that the function ~ is a restriction 

of an entire function F onto C+ . Standard estimates show 

that F E ~ . The zero set of F is h - We see also that 

I F 1 ~ = I~ I i on ~ . These arguments can be easily conver- 

ted. 

REMARK. The Levin - Golovin theorem (see Introduction for the 

formulation) is an obvious corollary of Theorem 7. 

Let now ~ = ~ : ~C~I C ~ . It would be plea- 

sant to have a test for the unconditional bases property in terms 

of this set only. To do this let 
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The function ~h is non-decreasing on ~ . An asymptotic pro- 

perty of ~A equivalent to the unconditional bases property 

for the family ( ) ~  in ~ C 0~ will be given 

in terms of the well-known class ~0C~) o The space ~0C~) 

consists of locally integrable functions ~ on ~ satisfying 

I I 
Here ~ stands for the family of all intervals on ~ . An impor- 

tant property of B ~0 (~) is that this class as well as 

the class of function satisfying (~) -condition, has a comple- 

tely different description. A function ~ belongs to B~0 iff 

there are bounded measurable functions ~ such that ~ = 

---%b + ~ . This and other properties of 0 may be found in 

[441 , [54]. If ~ ~ B~0 then it follows that 

I l c )l 
and so every function ~ in ~ 0  has a harmonic continuation 

into ~+ ; 

I£~C~):~ It_~l~ 
R 

Let symbol ~ denote the set of a l l  ~ in ~ 0  satisfying 
the followin~-condition. There are a positive number ~ , a real 

number 6 and bounded measurable functions tb~1~ such that 

iff 

qA~ C~+ W ) 

TH~0REM 8. Let 

~e ) ~ Z  
~ ~ ~ ~ . Then the family 
forms a Riesz basis in ~ C0~sb) ~ 6L>0, 

2 .  ~ 

The condition 2 of Theorem 8 defines a number @ uniquely 
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because the linear function % ~-* 0~ does not belong to 6~0 

(indeed, ~ ~+°£ ~ =- +oo ). 

It is interesting to compare Theorem 8 with known theorems 

concerning the completeness problem. It follows from the condition 

l + a .  9- 

R 

by the Beurling - Malliavin theorem that the fantily (e )~e~[ 

is complete on any interval ~ , II I < 0~ ; see theorem 71 in 

[51] . We see therefore that the conditions implying the unconditi- 

onal basis property for a family of exponentials on I are consi- 

derably more restrictive than those for the completeness property. 

The Kadec theorem may be also proved with the help of Theorem 

8. Here is a sketch of the proof. Let ~(0~)= ~Z(%)- %' o~ 

Then the function 0£ ~-* ~ (X + ~ )  , ~> 0 belongs to ~ +C. 

If ~=~b+~ and if ~ I~I = ~ < {/~ , then 

Therefore the Poisscn integral of I~ 2 -I~, is equal to 

The proof is finished as on p° 238 • 

The next result demonstrates the close relationship existing 

between general unconditional exponential bases and the classical 

orthogonal system ( ~ ) ~  in ~ (-~u, gL) . Let ~ = 

= {k+~ :~% ~ 2} C C+ and let the family ( ~ 3  -~ 

be an unconditional basis in. I. ~ (-~Z, ~JL) , L e t  (~l,,~,)~t~ 
be the dual family for )~t6Z in ~ (-~): 

T~ 

O, ~¢fK. 
-$L 

Then i t  i s  p o s s i b l e  t o  as ooiate t o  e v e r y  f u n c t i o n  i n  

the non-harmonic Fourier series 
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which, in accordance with our assumption, converges unconditio- 

nally in ~ to the function ~ . However, the question of the 

pointwise convergence of such a non-harmonic Fourier series is 

interesting too. It were again R.Paley and N.Wiener who have stu- 

died the problem for the first time ~ . After that N.Levinson 

in his well-known book ~4 has proved, assuming ~ C R, 
~plX~t-~i < ~/4, that for every function ~ in (- ~,~) 

N++~LI~I4N I#[{N 

~I~for l l t ly  on every compact subset of  the i n t e r v a l  - ~ . ~ h -  Here 

(~ = N~ h-% e ~ (~)i~ stands for usual eourier coef- 

ficients of ~ . In ~4 of Part III this theorem is extended on 

each family (e ~k~x )~Z ~' with ~ C C+ , which forms an 

unconditional basis in ~ ,  ~). 

5. Hilbert space ~eometr 2 of exponentials and reproducing 

kernels, and the spectral expansion of the model semi~roup 

Let us return once more to the Carleson condition (C) for the 

set ~ = { ~ : ~ E 2 I , ~ ~ C+ . As we have alrea- 

dy noted, this condition appeared originally in the papers of 

L.Carleson ~81, W.K.Hayman ~61, D.J.Newman ~5] as a condition 

H for the solvability of the interpolation problem in . H.Sha- 

piro and A.Shields proved later that (C) is a necessary and suf- 

ficient condition for the following interpolation problem in 

H~ to be solvable for any given sequence (~)~Z , 

A formal solution of the problem is given by the formula 

~z- ~-×~. "B~O,~ ~+B~, 
The series under the condition A ~ (C) turns out to be uncon- 

ditionally convergent for every (Ct~)~ ~ ~ . The soluti- 

on ~ corresponding to ~ = 0 has the minimal norm among ot- 

her solutions and belongs to K B = H~+ ~ ~H~+ 

In the paper ~20] it was observed that the considered series 
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is the Fourier series expansion with respect to the eigen-func- 

tions of the so-called model contractive semigroup. The model 

semigroup has been thoroughly studied in papers of B.Sz-Nagy, 

C.Foia~, V.M.Adamjan, D.Z.Arov, M.G.Krein and others. The semi- 

group we want to deal with is defined in K B by the formula 

Ujc-~ c%)=e,x.p C~z-E).-~cT,.)__ . The inner function B where 

is named the characteristic function of the semigroup CZ~)~>O" 

Spectral properties of ~Z~)~ 0 are now well-studied, 

see for example [18]. We mention only that the generator ~ of 

a model semigroup, ~ = ~o~ C ~ )  , t ~ 0 is a simple dis- 

sipative operator and its spectrum ~ coincides with the spect- 

rum of the characteristic function ~, 

In particular, every~ simple zero ~ of B is a simple 

eigen-value for ~ = ~ and the corresponding eigen-function 

is defined by 

Bx C ) 

If B is a Blaschke product then the family (~)a~of eigen- 

functions of ~B is complete in K B . The dual system, 

being, the family of eigen-functions for the conjugate operator 

B , is defined by 

C ~, !F~ X ") ~I~ 

By Theorem A the Oarleson condit ion is a necessary and 
sufficient condition for Cc~4~')~6_Z , as well as for C~)~ Z 

to form an unconditional basis in K B . 

Let now ~ denote a singular inner function and let S 

denote a Blaschke product. The invertibility problem for the ope- 

rator Pe : ~B ~ K e , which is central for the unconditio- 

nal basis problem, can be reformulated in terms of model opera- 

tors. To do this consider the subspace ~c~(KB+ K@) in H~+. 

THE PROOF is an elementary calculation: if ~ I K B + K(~ 
n OH = BeH . • 



244 

Let ~ be a model dissipative operator in ~ 56 

a characteristic function ~ and let (Z~)t~o: 

~Ke~Z~ ~At 

with 

be a corresponding semigroup of contractions. 

The spaces K 5 and K e have a well-defined spectral 

s ense. 

LEMMA A • The space K B 
spectrum for ~* and the space 

gular 99ntinuous spectrum for ~* 

in K ~~ K~e 

is the subspace of discrete 

K 0 is the subspace of sin- 

. Their orthogonal complements 

K e K s = B K  e, K e K  e = e K  s 

are the spaces of singular continuous spectrum and the space of 

discrete spectrum for the operator ~ respectively• 

The point discrete spectrum ~C ~) of ~ coincides 

with ~= {~: ~b6~ and ~ = {X~: ~E~} =~C~*). 

If ~ = ~ then the point co belongs to.the singular 

continuous spectrum of the both operators A and ~*. 

The interested reader can find the proof of a proposition ana- 

logous to the Lemma in ~8]. 

The spectral interpretation of the completeness problem and 

the unconditional bases problem requires to remind the reader one 

definition more. 

DEFINITION (see ~],  p.382). A family of vectors C~)~6Z,  
II 7~ II ~ ~ in a Hilbert space is named O0 -1 i n e a r - 

ly independent 

imply A~¢= O, ~e~[. 

if the conditions 

To emphasize the spectral sense of the subspaces K 5 
,OK 8 = K @ K e ~2 we shall use the following notation 

--~ K e K e .  Ea. ----- K B, E ~ (~.I,~,,a '~- 
Let now q~= ~ - and let ~ge 2 l e cx~)l < 

it follows from ~2t~t ll~ff~ll~4 
L~MA. The following statements are equivalent: 

I. the family [PO ~) E~[ is complete in K@; 

and 

• Then 
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If h ~(C) 
3- the family 

dent ; 

4 n 

P~OO~. ~ ~ ~ .  Let ~ ~ K e e ~ffn~CPeq~', m~Z) 

then the following statements are equivalent: 

C ~@ ~ ~6~ is a 03-linearly indepen- 

• Then 

and therefore ~ ~_ K~. 

3 < > 4. The family C ~ J ~  is a Riesz basis in K B 
by Theorem ~ . Therefore for every ~ in ~0 KB one may find 

a sequence (Ct~J~t6Z in ~£(~J such that 

On the other hand each sum of such a form is the orthogonal pro- 

jection of a function in K B . Therefore the condition 

PO~=O' ~gK 8 appears to be equivalent to ~ cb~P8 ~= O, 

(~.)~ ~ . But the kernel of the operator Pel K B is 

K~n K~. • 
LEMMA. The following statements are equivalent: 

I. the family ( ~@ Q~.) ~Z is complete in K0; 

2. K= cb~ cEt+'E~).  
If the family of eigen-functions of ~ (or ~* ) forms an 

unconditional basis in its own span, then the following statements 
are equivalent : 

3. the family ( P@ ~) ~t ~Z is CO -linearly independent; 

PROOF. Apply Lemma ~ . 

It is easy to obtain the spectral test for the invertibility 

of ~ :KB-+K e. 
L~A. The operator P8 ' K B --+ K@ is invertible if and 

only if 

b) 
The following theorem finds its application in Part IV for the 

case ~ = e ~ 

THEORE~ 9. Let ~ be an inner function, ~ be a Blasch- 

ke product• Suppose that the pg~nt spectrum 6~ (~) of the model 

operator ~ defined in ^ K ~ KBe satisfies .~l~(k) l< 
and let eigen-vectors {~-~-  : X P~ 6"p(~J} of ~ Pform an 

unconditional basis in their span. Then the following conditions 
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are equivalent. 

I. The operator ~e • ~B --* ~0 is invertible. 

2. The family of reproducing kernels { (]- ~(k) ~) C~_~)-1.k£6p(~)~ 

forms an unconditional basis in K%. 

3. The joint family of eigen-functions for ~ and ~ 

forms an unconditional basis in ~. 

PROOF. The implications I < > 2 are a simple corollary of 

Theorem 2. The statement I ,~ ~ ~, 3 is implied by the spectral test 

of the invertibility of Polk g. • 
REMARK. Clearly 

= {,Pe I KBf. 

It follows that the operator P@ I K B has a bounded inver- 

se operator if and only if the subspaces of continuous singular 

spectrum for ~, A* span the space ~ = ~ B@ and form 

a positive angle. 

6. Bases problem in the disc and in the half-plane 

In § 1 it was shown that the unconditional exponential bases 

problem leads to a more general one. By some reasons it is conve- 

nient to deal with the general case of reproducing kernels in the 

setting of Hardy classes in the unit disc D = {~C : I~I < ~ }. 

The main purpose of the section is to establish the connection 

between the Hardy classes theory in the half-plane and that in 

the disc. 

the complex plane and let L ~ C-~) 
square-summable functions on 

zed Lebesgue measure ~t on 

denote the unit circle of 

be the Hilbert space of all 

with respect to the normali- 

• The Hardy class H ~ C D) 
is defined as the space of all holomorphic functions ~ in 

sat isfying 

! I  < + oo. 

H By F a t o u ' s  theorem the space (~)) may be cons idered  as 
a closed subspace of m @ C T) . Let 0 be an inner function 

in D and let K e = H i <D) e ~ H ~ (D) . The reprodu- 

cing kernel for H~cD) being defined by k (~,k) =(I-~) -I, 
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the reproducing kernel for K O is equal to 

k o (~,k)= 

Let ~ be a subset of D satisfying the Blaschke condition 

and let ~ denote the Blaschke product 

We remind that the Carleson condition for 
as for  C+ . ~amely, h ~ cC) i f  

 lB c )l>o, B =B. 

D 

~--R~ 

(B) 

has the same form 

It also may be split up into two parts; see ~18]. 

THEOREM 10. Let h ~CB) and let ~ be the Blaschke 

product with the zero set ~ . Let 0 be an inner function 

in ~ satisfying ~ 10 (~)I < ~ . The following statements 

are equivalent. 

1. The family I ~ : ~6~'~ forms an unconditional 

basis in. Ko= H~CD~OH ~ CD~. 
2. /\ ~ CC) and the operator ~ maps K 5 isomorphically 

onto ~ ~. 
i J/ 

The operator ~ I~ B is invertible iff the Toeplitz ope- 

rator I-~@ does. The tests for the last are given by an analog 

of Theorem 5; see § 3. 

In conclusion, some words about the relationship between the 

Hardy classes in the disc and in the half-plane. Clearly, the ope- 

rator 

is an isometry of ~,~ C-~-") onto ~ C ~ )  • Let ~C~c)- 

0C6 ~ . Then it is aesy to check that 
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where ~ stands for the multiplication operator i~ ~ and 

~ ~ ~. It follows from the equality U~(~) = ~+ 

that an analogous formula holds for the Hankel and Toeplitz opera- 

tors. It should be also noted that U K 0 = K~o~ and that 

the operator U establishes a one-to-one correspondence between 

the reproducing kernels of K 0 and those of K eo~ . so the 

unitary operator ~ allows one to move from the disc into the 

half-plane and vice versa. 

The special condition ~ I ~ (~)I ( ~ imposed onto the 

pair (~,~) plays the same role as in ~I-4: simplifying the 

problem it leads to the more elegant formulations. When ~ is 

a function "with a single charged point" this condition does not 

constitute a real restriction, a linear fractional transformation 

(linear ~ ~-~ ~ +~ , ~>0 , when ~(~) =e i~ ) of h gives 

a set with the required property. We give also a general cri- 

terion for the family to form an unconditional basis. But the 

criterion being somewhat cumbersome, we prefer not to quote it 

here (see § 4, Part II). 

7. Some remarks concernin~ the history of the problem 

As we already pointed out in Introduction the problem we have 

discussed goes back to the fundamental book of R.Paley and N.Wi- 

ener [59 I . It was also mentioned that the problem of Riesz bases 

of exponentials, as it was posed by R.Paley and N.Wiener, has 

been solved by M.I°Kadec in [10] . The intermediate result with 

4 ~-{" ~ ~ was proved in [34] • The elegant proof of R. Duff in 

and J.Eachus may be found in the book ~16], p.227. For the sake 

of completeness we represent here, essentially following the N. 

Levinson's book ~48], an example of A.Ingham which shows that the 

constant 4/4 in the Kadec theorem can not be increased. 

EXAMPLE (A.Ingham). Let ~0 = 0 , let ~=ft-~/~ if 

~>0, ~t~, and let )~ = -k_~t if ~< 0~ ~ .  

Then 

= ' \ { o } ) .  

In particular, the family (e~)%cz is not minimal in 

It is sufficient to prove that the generating function FA 

(which d o e s exist in this case) satisfies 
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1 + ~  oLz = + o o .  

R 
as well as the existence of Ffk The last assertion 

quence of the formula 

is a conse- 

C ~ ~g% l\(CO~)_~/, t ~.~ , because the function 

does not-~ ~elong to ~C-cc,Co), although i t  belongs, obviously, to 
] ~ P  C-~-b,~i) . To prove the formula we are only to check 

t the zero set of IC~)= ~TLe~CCO~/~)I/z~ coincides with 
' . W "-T~, ~ . - 7 /  { ) k ~  'H.£Z \ { 0 } }  e nave I o r  f tg- / / - - ,  ~7/  { : 

-~ -% 

C[~ = 0 

since (~ + ~.}-t/~, C H,i C]~) , Now we are going to prove 

that if I(%) = 0 and if ~ ~ ~ 0 then ~ = X~ for some 

in Z ° The function C cos~) -{Iz being even this would 

imply the desired conclusion. By the Taylor formula 

C( + = (-0 K ~ I~I-<~ 
K:o @K)!! ' ' 

Let now F~ 1)J>~O and let X ~ ~ liT4- ~/l 4 • Then 

-qL -T~ 

ck ). z 
~=0 (~K)!! X + K  
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But obviously, 

CZ~) I]' IX÷ KI ~ ~ 0 

if • 

As R.M.Young noted in ~601 , the condition 

is also insufficient for the family (~i~0c J~Z to form a 

Riesz basis in ~ (0,~%J. This observation is based on the fol- 

lowing theorem. 

THEORE~ (RoDuffin, AoSchaeffer ~351~ !. ~et (~,J~Q~ be a 

real sequence such that the family (e ~ J~t~Z forms a Riesz 

basis in ~ (0?g,) . Then there exists a positive number ~, 

> 0 such that any f~mily q~ ~% cZ , satisfying 

i~t-~L~l ~ ~ is also a Riesz basis in ~ (0,OBJ. 

We obtain in Part IIIa generalization of this result. 

It was B.Ja°Levin who showed the significance of the notion 

of generating function. Generalizing his definition of a sine 

type function, see the definition in Introduction, we give the 

following o n e .  

DEFINITION. An entire function S of exponential type is 

called a g e n e r a 1 i z e d s i n e t y p e f u n c t i- 

o n (briefly ~ G S T F ) if all its zeros are in ~ for 

some ~, ~>0 and if above that 

It is not a difficult task to give an example of G S T 

function whose zeros h = {~: ~ 2~ satisfy the condition 

l~)k~=+oo . It appears nevertheless,and this is a 

subtle result due to S.A. Vinogradov, see 33 of Part III, that 

there is such an example satisfying in addition A ~ (C).In[14] 

B.Ja.Levin has proved that a family (e~k~x)~@2 is a basis in 

L~(0~) if the set { ~: ~%C~} is separated and if it 

coincides with the zero set of a STF having the width of the in- 

dicator diagram equal to Cb . V.D.Golovin remarked later that in 

fact these families are Riesz bases in I%( 0, ~) , see [5], [6]. 

Now the Levin - Golovin theorem is a simple concequence of Theo- 

rem 7 of the present paper, but at that time it was a fun~men- 

tel step forward. V.~. Kacnelson has generalized the Levin-Golo- 
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vin theoram as well as that of Kadec. 

THEOREM (V.~. Kacnelson ~12~). Let (~),taZ be a zero 

sequence of STF with the width of the indicator diagram equal to 

Cb , O~>0 . Let (j~)~a2 be a sequence of points in ~+ 

satisfying 

where < and . at 

last ~ I~,~- ~I >0 . Then the family (@~$)~ta~ is 

a Riesz basis in ~ (0,~), 

This theorem has been strengthened by S.A.Avdonin in [21 and 

[3] • To formulate his results the next definition is needed. 

DEFINITION. Let ~= { )k~ ' ~t ~ be a separated subset 

of a strip of a finite width, parallel to the real axis. A parti- 

tioning ~=~Z ~K of ~ by some vertical lines into disjoint 

subsets ~K is named an ~ -p a r t i t i o n i n g if the 

distances ~ K between the lines bounding each group ~K are 

uniformly bounded. 

THEOREM (S.A.Avdonin K21). Let ~ be a zero set of STP with 

the width of the indicator diagram equal to gb , 0~>0 • Let 

(~k)~a~ be a bounded family of complex numbers satisfying 

X ~ A  i 
for some A-partitioning, where ~( I/4 . Suppose, t[at the 

family (e tk^+~)x ~ set I k + ~k~ k ~ ~ is separated. Then the Jk~ 

forms a Riesz basis in ~ (0, @). 

A new proof of Kacnelson and Avdonin theorems will be given 

in § 2 of Part III. The paper of Avdonin [2~ contains also a theo- 

rem very slmilar to one of the corollaries of our Theorem 7. Let, 

for the time being, ~ denote the set of all positive functions 

define~ on ~ 0, + ~o) and such that the function 
. . . .  ' 4 ' ( x )  [~)= ~" ~(-~V satisfies the following conditions 

THEOREM (S.A.Avdonin [2~ ). Let ~ be a zero set of the en- 

tire function ~ with the width of the indicator diagram equal 

to Cb . Suppose that 0 <~ l~k ~ ~ 14~4~ ~+oo and 

suppose there is a function ~ in ~ satisfying 
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0 E 

~hen the family Ce ~)X~A is aRiesz basis in ~(0,~). 
The paper [~ contains also some examples which show that the 

IF A 1 ~ I ~ satisfying C ~) can, nevertheless, modulus 

bahave irregularly. 

The problem of unconditional exponential bases is closely 

connected with the completeness problem and with the spectral the- 

cry of Toeplitz operators. It is interesting to note that all 

machinery needed for the solution of the problem of exponential 

Riesz bases (as is given by Theorem 6) was ready in the early 

60-ies. The papers ~, ~, were especially close to the solu- 

tion. The paper [43], containing really a characterization of 

Blaschke products (for the upper half-plane) generating compact 

Hankel operators H B@~ for every ~ ~ > 0 , contains also 

various combinations of all attributes of our description of ba- 

ses. The same can be said on the paper K321 by R.Douglas and D. 

Sarason containing sufficient conditions of the completeness of 

exponentials involving invertibility of the Toeplitz operators 

~-~e~ . Let us mention the paper ~ (indicated to one of 

us by P.Koosis), where one can find the trick employed in our 

proof of Kadec's theorem on {/~. 

On the other hand, the idea of preservation of Riesz bases 

under some orthogonal projections was formulated (and used for 

a proof of the Levin-Golovin theorem) by one of us as early as 

in I973 in the paper [22] 
And in conclusion we indicate the paper ~ where bases of 

reproducing kernels of spaces ~ 8 are studied. But these bases 

are very close to orthogonal (~ la Wiener - Paley theorem). This 

causes strong restrictions imposed on the inner function 

(see also ~ 5 Part II below). Riesz bases (of exponentials or of 

reproducing kernels) are connected with the problem of free inter- 

polation by analytic functions (at corresponding knots). Almost 

every work devoted to exponential bases, beginning from the book 

by N.Wiener and R.Paley, contains some interpolatory corollaries. 

One can also find such corollaries in ~ 7 Part II. 
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PART II 

BASES OF REPRODUCING KERNELS 

1. Carleson condition 

In §I Part I we have formulated the general problem concer- 

ning unconditional bases composed of reproducing kernels. Now we 

recall it : 

G i V e n a p a i r (~ A) w i t h 0 a n i n - 

ner function in the disc ~ and 

Ac~ , find necessary and suffici- 

ent conditions for the family 

koCh, X)= , AeA 

t o  b e  an unconditional basis of 

~e (or of the subspace of ~ it generates)• 

This problem generalizes the problem concerning bases of ra- 

tional fractions (and coincides with it when ~=B = ~ ~ ), 

described in §2 Part I. ~A 

To link together the problems discussed we need a part of the 

well-known N.K.Bari theorem on Riesz bases (a proof may be found 

in Ds], p.172). e e g .  

THEOREM (N.K.Bari). Let-,,v(~)~C~ be a family of nonzero vectors 

in a Hilbert space ~ and set ~= ~I~II ) ~C~ . 

The following assertions are eqmivalent. 

I. The family (Q0~)~ is an unconditional basis of ~. 

2 .  The Gram m a t r i x  ~ -- -- - ~ ~ ( U # ~ ) ~ , ~  g e n e r a t e s  a continu- 

ous a n d  invertible operator in the space ~(~) and H = 

We state now the main result of this section. 

THEOREM 1.1. Suppose that the family [ ~8(. ~ ~): A~A} 

is an unconditional basis in its closed linear span. Then 

AcCC). 
PROOF. We shall extract all information we need from the Gram 

matrix F={(~ ' -  ~ ) ~  ~, ~C~ corresponding in the same 

way as in N.K.Bari Theorem to the family of functions 

[A~:~} being an enumeration of • Using the de- 
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finition of the reproducing kernel, we obtain 

,f- e(/~.,)B(/~.~) 

and, in particular, tl fhOi1, IIC= C4-1B(A )I )( q-IA I 
Hence 

t 

,I-T.A  '~- O(A.,) (~(A~) 

Note that the absolute value of the divisor in the right-hand side 

of the last formula is less than I: 

C~-l~l~)(~-li~I ~) I Ix~-~ I ~ 
i 1 . ~ z l  ~ - - 1 -  I - ~  ' 

Let r ~ - ~,v ~~6~sC7/ be the standard unit vector basis in ~ "~"'~) : 

~(k) = 0 for ~ ~ ~, ~(~) ~ ~ . The fact that 

the Gram matrix defines a bounded operator in ~(~,) implies 

the inequality 

from which it follows in view of the preceding remarks that 

But the last condition is necessary and sufficient for the measure 

~-~. (~'l~J)~ to be a Carleson one (for the proof see 

or [44] 
Let us check now the rarity condition. If (~) ~ is an 

unconditional basis in ~ then the normed family C~. ) 

1.~ ,,v ., 0 ) ,  
and, consequently, ~ P . ~ l ( ~ , % ~ ) l ~  = r < ~ • ~ the 

x) I t  should be noted t ha t  the Oarleson c o n d i t i o n  ( C ) ,  as 
well as the rarity condition ( ~ ) and the condition that the 
corresponding measure is a Carleson one may be transferred from 
the half-plane ~ to the disc ~) ̂  .~y meaz~s of conformal map- 
ping--The equivalence ( C ) ~  ( ~ )~ ( ~ ) still holds 
in ~) , cf. §2.6 of Part I for the details. 
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case we examine this inequality may be rewriten as follows: 

• . I ~ - ~  I 

Let p@ be the orthogonal projection onto the space ~6 " 

Theorem 1.1 shows that each unconditional basis of the form 

I~(',~): ~A} in ~$ is necessarily the ima@e under ~ 

of some unconditional basis consisting of rational fractions (na- 

mely, the basis ~(~-~)'~ : ~A} in ~ ). 

Let us assume now that ~$ does not distort very much the 

norms of the rational fractions: 

-I ,) 

~ A  

Sincell( -& ) ~ , 

 dllP C4-1 )" k~(A,X)=cd-lecA)l~)(d-I &l~; "',  
the l as t  condi t ion is  equivalent to the fo l lo~rL~ inequa l i t y :  

~eA 
This inequality means that (a) the poles of the rational frac- 

tions (~- ~ F' , As A can accumulate only to the spec- 

trum of ~onT(i.e. to the set [~EF: ~_~ I~(~)I ~- 0~ ); 

and, moreover, (b) this accumulation m~st be ~ in a sense nontangen- 

tial with respect to the unit circle. We shall see later that the 

condition (a) is i m p I i e d b y t h e f a c t t h a t 

t h e f u n c t i 0 n s _ { ke ( '~  /~): /~e A ~  form an 
unconditional basis of the space they generate (see corollary 4.2 

and its comments, page 268 and ~6 p. 276 ). 

THEOREM I .2. Suppose that the pair ~ ~ A ) satisfies condi- 

tion (I). Then the following assertions are equivalent. 

1. The family [ ~e ('~ ~ ) : ~ ~ ~ } is an unconditional 

basis in K~ (resp., in the subspace of ~m it generates). 

2. A ~ ( C ) ~d  Pe I K ]~ is an isomo'~phis~ of KB 
onto K e ( resp. ,  of K1 ~ onto P e  ( KI~ ) )" 

PRO0? follows the same l~nes as the proof of Theorem 2 (Part 

I, ~2). Here is its shortened version. 

I~>2. Theorem 1.1 implies that ~ ~) . In view of The- 

orem A (cf. Part I, ~2) the fractions ~('~ ~) ,~A form an 

*) From no~ on H~ H~(O) 
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unconditional basis in _ ~ . Combining this with (1) we obtain 

that _1) e I ~ is an isomorphism. 

Implication 2 --> I is a consequence of Theorem A and inequa- 

lity (1). • 

2. Pro~ectin~ onto ~ and Toeplitz operator ~ 

The c o n d i t i o n "  ,~6J ~1~ is an isomorphism onto i t s  image" may 
"be restated in geometric terms. To do this we need some notations 
and definitions. 

Given a closed subspace M of a Hilbert space ~I we denote 

by M I the orthogonal complement to ~ and by PM the or- 

thogonal projection of ~ onto M. 

By the a n g 1 e b e t w e e n t w o s u b s p a c e s 

and N we mean a number (denoted ~ N~ ~ > ) uniquely determined 

b, <N,M>e[O, ~-I and 

= I!?MI N II = lli)N I M II--11 ' ~  l) 

~,~[ llP~ ~ll ~: ~N, II,II=~}=d-~P[IIP~ ~IIS,~N,II,II=~}~,~<N,I~>. (~) 

be two subspaces of H Let M,N 
f ine a (possibly discontinuous) projection ~M I1~ 

with ~ n  N = [~)}  - D e -  

onM+N 

• ~ N )  . 

by 

~NIIIN ( ~ ÷ ~ ) - :  m, ( ~ M ,  

We call it t h e p r o j e c t i o n onto M along 

) . It follows 

from the closed graph theorem that this projection is continuous 

if and only if M+ a is closed. Also we have 

II(I-PM)~II 

T,~mA 2.1. Let ~ and U be closed subspaces of a Hil- 
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bert space ~ . The following assertions are equivalent. 

k'¢.~ (PM l N) = {.0}. 

The following assertions are also equivalent. 

l a . P M I N  i s  an isomorphism (onto its image). 

2a c0~ (N,  M ~) < 4. 
3a. < N~ M~> • O. 

F~ ly ,  PMI N i s  an isomorphism of  N o n t o M i f  
and only if any of the following (equivalent) conditions is satis- 

fied. 

,b co~ <N, MZ> <~; co~ (N~,M.> <1. 
2b H=N+ M" ~ Nn IVff--{e}. 
3b. ¢f,e~(N+MJ')-- H, II~NIIM'II < , o o .  
PROOP of the lemma is routine, but we include it for the sake 

of completeness. 

The equivalence of the first four assertions follows immedia- 

tely from the equality (.p. : N -_,_ M) *=  (,pu ~M ___~- N ) and 
the fact that E&$ A ~ - - { ~ ) ' ~ ' ( : > C e O ~  A*H = 

I m p l i c a t i o n s  l a <  > 2a f o l l o w  f rom the fo rmu la  (~) and i m p l i -  
c a t i o n s  2 a ~ > 3 a  are e v i d e n t .  

To prove the  t h i r d  pa r t  o f  the Lemma use once more the  f a c t  
ttmt(PMI N)%PNIM ana apply the Banach theorem (an operator is 

onto if and only if the conjugate operator is an isomorphic imbed- 

COROLLARY 2.2. Let 0 and ~ be inner functions. The fol- 

lowing assertions are equivalent. 

1.p el K~ is an isomorp~sm onto its im~e.. 

3. II G .  ,ell ~ II < ~ 
The operator Pe maps isomorphically K]~ 0 n t 0 Ke 

iff any of the following equivalent conditions is satisfied: 

2a H . = K ~ +  @H ~', KBneN - -  [ 0 }  . 

where J;=~= 2o..~,,'~,,~ . 
~oo~. A;p%' ~.e"~,a 2. ~ with N=  K~. M--  K e . ~,,en t r e a t ~  

the  c o n d i t i o n  3a one needs to  keep i n  mind t h a t  ~,+ H. L - E H _  ~ . • 

it is easy to compute the number GG~<~ ~ 

using the following well-knowm fact: every function ~ in the 

Hardy class H I can be represented in the form~= ~i. k~ with 
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II II %, ~,~ I-I ~ and I1~,11~= IIk~ll~ = ~. 
L~A 2.3. Let ~ be a unimodular function on ~ . Then 

P~oo,. ce~.< H. ~, ~H ~ > ' =  

~>=  H. ~ ~ c~<K B, 614 co~<:g ,ell > -  ¢~<H.,:~eH ~'>. • 
The first assertion of Lemma 2.3 essentially coincides with 

Z.Nehari theorem mentioned in Part I. 

We have already pointed out (Part I, §4) that it is possible 

to obtain Theorem 5 combining well-known theorems of Helson - 

Szeg~ andDevinatz - Widom. A proof of Theorem 5 may be found in 

~8] or extracted from lectures E54~. However, we present here 

a proof of this theorem to make the exposition selfcontained. This 

proof is also of interest by another reason: it enables us to con- 

sider the Helson-SzegB theorem from a new view-point (as a theo- 

rem describing a special class of unimodular functions; see, howe- 

ver, [I] in connection with this view-point). Keeping in mind the 

unitary equivalence of the Toeplitz operators in the disc and in 

the half-plane mentioned in Part I, ~6 we shall prove the analog 

of Theorem 5 for ~. 

To begin with, we introduce two definitions. If Vel;'(F) 

then ~ stands for the h~=o~c oonJ~ate of ~(4 ~%~----0). 
Prom now on we assume all functions from [,~(~) to be harmonical- 

ly extended into ~ , a function and its extension being denoted 

by the same letter. So for a real function %" its harmonic conju- 

gate ~ is uniquely determined by it+ ~I~E ~(~) and 

~0) = O. 
DEFINITION. Let k be an outer function in H~(~) ; 

is said to satisfy the H e 1 s o n - S z e g B c o n d i - 

t i 0 n if there are $~; ~/~ L°°(~) with 

DEFINITION. A un~modular function ~ on 

Hel s on-S z egB function 

(He) 

is called a 

if there are a cons- 
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taut A ' I~1 = ~ and an outer function k satisfying Hel- 

son - Szego condition, such that 

I 

k ~=~ 

THEOREM 50. Let ~ be a unimodular function on ~ . The 

following assertions are equivalent. 

I. The Toeplitz operator T~ is invertible. 

2. ~ C~H ~ 
3. There exists an outer function ~ in H ~'-- H°°(~) 

such that II ~-9 II ~ ~ ~- 
4. There exists a Lebes~ue measurable branch o6 of the argu- 

ment of  ~ (i.e. ~(~)= 6~(~)~ ~ )  satisfying 

5. ~ is a Nelson - SzegB function. 

Some details of the proof of this theorem are of independent 

interest, and so we begin just with them. 

2.4. (R.Douglas [54]). Let ~ ( ~ )  ,I~l=~ a.e. L~A 

Then the Toeplitz operator T~n is an isomorphism (onto its image) 

i f  , ~  ouly i f  I H~ II = d~t~'(~, H ~ / <  4. 
PROOF. If ~H ~ then clearly 

I1 11 = 
and the result follows. 

Tot 0<~I . Set 

At= [ ~c: 

IIH  I + II ÷ II 

and the essential image F(T) 
the circle T is contained in the angle Ar(o<y ~ I) 
F(0)c A r 

2. ~f p is ~alytic in ~ and P(0)cA~ 
outer and PC H ~, p ~ (2 ~)'~. 

PROOF. I. FonowlngJ.B.aarnett ( ~4], p.632, 
200), suppose that there exists a point ~o in 

~0=~(%0)~ A~ . construct a polynomial 

p(~0) =~, ~(~Ip(~I~ ~/~ 

of  

then  

then  ~ I s  

D~, ~ . ~ -  
wi th  

so t h a t  
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Then p(P(~0)) = 4 , but boundary values of the function 

p o ~ on T are almost everywhere less than 4/$ • This contra- 

dicts the maximum modulus principle. 

2. Since P(~)~A~,~-- P has no zeros in ~ , f o r  other- 

wise 0 would be an in~t;rior point of P (~) . Consider the 

function ~ ~--- F ~/~ ~ . Clearly ~ ~ >/0 in [D and hence 

is an outer function (one of numerous well-known ways to see 

this is as follows: if ~ > 0 , then ~ ~ ~ is evidently an outer 

function for it is bounded away from zero in ~ ; hence 

~I#(0)*6J =;~¢~19<~), a I ~ ~  and it suffices to pass 

to limlt~as ~-~ O, using monotone convergence theorem). Conse- 

quently the function ~ is also outer. 

The remaining part of the second assertion is due to V.I.Smir- 

nov and is widely known. Here is a proof. If ~< (~)'f then 

there is a constant C so that W~AjD ~. ~ >  Jwl.< 6~OW. 
Therefore J ~(~)JP~< C ~6 ~( ~)P , ~ ~ ~ ,and, consequent- 

ly, 

? T 
LEM~A 2,6. I f  the asser t ion  2 of Theorem 5D i s  f u l f i l l e d  then 

the set { S~ Ha(~ ) , .  I le -~  II ~ < ~ } co~,ists en- 
t i re ly  of outer functions. 

PROOF. Let ~ ~ H ~ (O) and 

~ . II < I II - II 

These inequalities i m p l y  that all values of the funotions~S IT , 

~IT lie in A~ for some ~, ~<~/~,, and so~(I~)c_ A~l;o 
sy ~,e~ 2.~ ~, is ~ outer f~otion ~d hence ~, ~, are 
outer. • 

PROOF OF THEOREM 5D. I<----->2 by Lemma 2.4, 2----~ 3 by Lemma 

2.6. 

3 >4: Let 9 be an outer function withll~-~llO0=~<~. 
There exists a number ~ , I~I= ~ such that 

The values of the function ~ I T  lie in the .~le Ak~o,~ ~)/~ 
and so there exists a u mi" u qu~e real-valued function o~ with 

4~>5. If ~ ~- 80~p ~ and~ ~- C+ $&+ i~ with 
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~ =  

o~ , ~"(V) , ~(0)= ~ , II~II~<~/~, then we 

set ~--~p ~O and find an outer function ~ from the equa- 

tion 

~ I~I =- ~- ~. ~(0) 

We have then ~Ik I~-~ * ~M Since ll1~II ~ <.~/Z , Lemm~ 

2.5 implies that 4~p(V-$V) ~ ~Z t ,~u ' ~)) , hence ~ (1~1) 
and, consequently, ~ satisfies the Helson - Szego condition. 

The formula ~= ~ ~L ~ follows from the construction. 

5---->2. Suppose q=~/~ with ~ satisfying the Helson - SzegB 

,I/(0) - II and hence 9-~- ~0~p (- ~(~$I/(0) - ~')) ~ where 

II t~IIoo < q~/~ . Set 

6C ~ g ~'0. 

H . We have: 

14- &llo --II 
provided ~ is sufficiently small, because ~8~ H ~ and 

R~.~AaKS. 1. Lemma 2 .6  and  i m p l i c a t i o n  3 ~ 2 show t h a t  t h e  

~ot [s~H ~. I I~-~ l l~  ~ ~ } either does not intersect the 
set of outer functions or is contained in it. 

2. The famous Helson-SzegB theorem stated below may be easi- 

ly derived from Theorem 5~). 

THEOREM (H.Helson, G.Szego ~8] ). Let 14[~ ~(~)) ~4T>/0. 
Then the Riesz projection p (~D [~-~ ~ ~ ~ %-~ n ~ 

is contznuous in the welghted space li~/Gmv ~. .~ t ...~0 ,M~<. } 

Indeed, the assertion that E is continuous is equivalent 
to the assertion 2 of Theorem 50 with ~= ~/~; ~ being an 

outer function satisfying ~ H ~, I ~ l l : W .  • 

Theorem 1.2 combined with Theorems 4 and 5D enables us to list 
many useful necessary and sufficient conditions for a family of 

reproducing kernels ( ke(., ~)) ~ A to be a basis of the 
space ~@ . To obtain criteria for such a family to be a basis 
in its closed linear span, Theorems 1.2 and 2 bin (Part I) and 

Lemma 2.4 can be used. 
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3. A criterion in terms of the model operators 

Using the implications 1<-~-> 2 of Theorem 5D and a formula re- 

lating Hankel operators and the Functional model,it is possible 

to add to equivalent assertions I-5 of Theorem 5D another one exp- 

ressed in Functional model terms. 

Let ~ be an inner function and let ~ stand for the ope- 

rator of multiplication by ~ in ~ (Z being the identity 

function: ~(~) = ~ ). Consider the model operator 

Te (~:F ?e g l K e 

H% It is well known that this operator admits an functional cal- 

culus : 

~(Te) = Pe~(~)l ~o, ~ H ~ 
We have also 

s(To)Po = 0H~ 

This formula and some of its applications can be found in 

stituting in it ~ = 

isomorphism 

only if 

18]. Sub- 

we obtain that ~G I ~I~ i s a n 

o f ~ o n t o ~ i f a n d 

lloCT~) I < 

K~ onto K~) if 

I10CT.~)[I .¢ ,1 

isomorphism of 

and only if 

(3) 

(combine implications1<------>2 in Theorem 5D, theorem of Z.Nehari in 

§ 3 of Part I and Lemma 2.4). 

Here is a consequence of these assertions. 

THEOREM 3.1. Let A ~ [~ : ~.} C C~ . Suppose 

A e (O) and ~ ~ I~ ~ = + oo • Then for every posi- 

tive number 65 the family of exponents ( e ~ ) ~  

is an unconditional basis in the subspace of ~(0~0~) it 

generates. The deficiency of this subspace in ~( 0, 65) is in- 
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finite. 

This theorem is a special case of the following one. 

THEOREM 3.2.. Let ~ be an inner function in ~ and let 

= B" ~ be the canonical factorization of ~ . Let /% be a 

subset of ~ satisfying the Carleson condition and also the con- 

dition ~ ]~(~)]~ub0 s Then the following assertions holds. 
XeA~IAI-~ ; A ! 

I. There exists a e of A with o~(AxAZ)<c~ 
so that the family { ke(.,~): Ac/%[} is an unconditional 
basis of its closed linear span. 

PROOF. Asse r t i on  1 i s  almost immediate. Observe tha t  the ra -  
tio~l fractions [(4-~)'~: ~/%} fo= an unconditional 

basis and %(~f)~(4-~)'~= ~(~)(~.~)'~ ~A f~/ where ~f 

is the Blaschke product corresponding to the set A . From this 
follows the inequality 

the right-hand side of which is strictly less than 1 for an appro- 

priate choice of A [ , ~ (AN A [) < ~o 

The essence of assertion 2 is given by the following argument. 

Set ~ ~6£ ~ ~> 0 . We still have~ I&(~)l=0. 
AGA, IAl'-*'f AK~ * 

Hence an application of assertion I shows that for some M %-1~ 

with 6~%1 (A\Af) < ~ the family [ ~ ' 8 ~ , ( ' , ~ ) :  A~A'} 

forms an unconditional basis in its closed linear span. But if 

an~ 8~ = 8~r ~8 . The rest is contained in two elementary 
lemmas (the first one to be applied to ~ = P@Nr I ~@~ )- 

L~A 3.3. Let X~ ~ be linear topological spaces and let 

A b e  a continuous l i n e a r  map from X to Y • If(~k~)~i ~ is 

a basis in 8pg, ll.x{36tl : I ~ > ~ }  and i s  a basis in 
5pdny { ~ : ~ ~ ~ } then 

PROOF. Note that A is one-to-one on the space 5pd~:~7~,@ 

L~mdA 3.4. Let an inner function O and two subsets A~ A 4 
of ~ satisfy 

AnAt=@ , [ ke(.,A):  eA}) >. 
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and suppose ~4 is finite. Then 

PROOP. It is sufficient to consider the case Og~ A~ = q 

(i.e. to check that kA(°~l , )~ ,~po ,~{kA( .~)~) : /~A} 
provided ~ A and~p@k~[k@(. ,~) :~eX}~ K e ) Indeed, 
an induction by the number of the nonzero summands in 

l~AC~ ~@('~ ~4 ) enables to reduce the Lemma to this us particu- 

~c~se. But the "base of induction" we need is immediate: if 

the multiplicity of zero of { at a point ~ , ~¢ /% then 

= l~e 6 ~ = {,, ~ (as earl ier,  = t h e  f, ction , - ,  g "2" 
), helots to Ke, ~(~)  ~ 0 ~d 

To complete the proof of Theorem 3.2 it suffices now to veri- 

fy that in the case ~=~ ~04~5~ we can take /~7 /~ . But we 

have already established that ~t~l,(~ 0 ~ 6po.,N[ k~(.,/~) : 
~/%/}) ~, being the set existing in virtue of asser- 

tion ~. ~y ~.e--a ~.4 the f=ily [ ~e~', A): ~ ~ a } is al- 
so a basis in the subspace it generates. • 

R~M~RK. Lemma 3-4 is a generalization of some propositions 

of  . aley -  .Wiener =d  . evinson concerning the 

case @(~) ~OCp~ ~+~ 
L -u 

~--qT ~ 6~ 0 (i.e. families of exponents in 

~,i( 0~ ~) ). This lemma shows also that a family of reproducing 

kernels (or exponents) neither loses nor gains the property to 

furm a basis of ~0 (or of the subspace of ~ it generates) 

if a finite set of its members is replaced by a set of functions 

of the same sort having the same cardinality. Another consequence 

(also generalizing some remarks from the books just mentioned; 

cf,also R.Redheffer E51 ] ) :  a family I ks(., ~ ) , ~ A }  
either is a minimal one or ~6( . ,~)esp~b[k@(. ,~) :aeA\  [ 2 } }  

Theorems 3.1, 3.2 show that tests to establish whether a fami- 

ly of reproducing k~rnels (or exponents) is a basis involving con- 

ditions(2), (3) may be exploited not only in general theory, but 

in some concrete questions as well. Here is one more example con- 

firming this. 

T~o~ ~.~. ~.et k c ~ , ,~ Z"~ ~ > - o~ . The fonowi~ 
A~A 

assertions ate equivalent. 

1. The familyFe~*g ~(0,g):- ~ , AeA ") is an uncon~itlo- 



265 

basis in the subspace of -- ~Z(Oy g)  it generates for some hal 

This theorem is, of course, a simple consequence of the analo- 

gous fact for the unit disc. 

THEOREM 3.5~. Let A C ~ and let ~ be an inner functi- 

co I e(A l< 
lent. 

I. There exists a positive integer ~ such that 
t | (.,~. ,m  

{ ~ ~ ̂  ~ is an ~conditional basis in its closed 
linear span. 

2. A~(C) . 

PROOF. The implication I => 2 follows from Theorem 1.1. 

2--~->I Let ~ A @ ~  Since the fractions (~-]Z)'~ e • ) 

~ m constitute an unconditional basis of the subspace they ge- 

nerat e and since G ~(TB ) ~(~-y~ )'~----- ~(-~-~ ( ~ - ~ Z ) "~ , it 

follows that for 14 sufficiently large we have the inequality 

Combining this with the condition (3) and Theorem 2 bis (~art I) 

we obtain the desired implication. @ 

To clarify better the situation some links between Theorem 

3.1 and an interesting paper of  P .Koos i s  E43] ( c f . a l s o  [46])  a re  
to be pointed out. In Koosis' paper a necessary and sufficient con- 

dition is found for all operators 

to be compact on the space )~G~t~(~) [g{~ : ~Z}- The 

condition reads as follows x : L- /~$ 

Theorem 3.1 is an easy consequence of this result, for Koosis 

condition~ is\ implied by its hypotheses (i.e. ~ ) ~  ~ (~) 
Z~ 

A~ ~--+°° ). It should be noted that under the 

hypotheses of Theorem 3.1 we can establish with an equal ease 

that all o p e r a t o r s o f t h e f o r m ( 4 ) a r e 

c o m p a c t . Indeed, each operator of such form is equal to 

5) It is not hard to see that the same condition is equiva- 
l~nt to. compactness of all Hankel operators H~@~ ,@> 0 where 

t~. 



266 

and the operator ~(7~) ~ is evidently compact, for the 

eigenvectors of this operator form an unconditional basis and 

its eigenvalues tend to zero. @ 

Note also that the proof of theorem 3.1 presented here is 

much simpler than that of Koosis' theorem. This is due to the 

fact that in Theorem 3.1 A is assumed to satisfy Carleson 

condition. 

Similar links exist between Theorem 3.2 and the recent paper 

~9]. In ~ all pairs (~ ~) of inner functions with the fol- 

lowing property are identified: ~ is singular and the Hankel 

operator H~$@ is compact for every positive ~. 

4. Unconditional bases of reproducin~ kernels 

(the ~eneral case) 

Theorems 1.2 and 5D give a solution of the problem concerning 

unconditional basis families of reproducing kernels under the 

additional assumption that the pair (~, A ) satisfies condition 

(I). Now we are going to treat the general case. If condition (I) 

is not satisfied then (see §I) the orthogonal projection P6 

~storts rational fractio~ and so P~l KB is no longer an iso- 
morphic imbedding. It is natural to try to "correct" the frac- 

tions ~ ('~ ~) by means of a non-bounded operator in such a 

manner that the subsequent application of ~8 should produce 
no distortion. 

Let ~e ~ and let T~ be the Toeplitz operator whose 

symbol is ~ . If ~ ~ ~oo then this operator is unbounded, 

but in any case its domain contains ~oo . It is evident (and 

well-known) that 

Thus T~ compensates the distortion produced by p@ provi- 
ded 

(5) 

~J~A 4, if th. f~ly [kg(,A): ~A} 
onal basis of its closed linear span then 

is an unconditi- 
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4-1Al ~ 
~̂ ~,, 4-li~d)I ~ < + oo , 

and there exists a solution ~ ~ ~ 

PROOP. Consider the normed reproducing kernels 

(4-1XI~) ~/~ '/- ~ ~-C~ 0 
= (4-10(A)1~//C 4-I~ 

'l-i Ai~ i ~ 

(6) 

of the problem (5). 

~A - -  
,~ ~ A • I f  ~ K[} then 

I I1 11 
Setting here ~ = Pe 1] = 4 - 6 0 (o) and using I fc )~ )1 
>/I-I @(0)[ > 0 we obtain (6). Since A~(C) (Theorem 

1.1), by Theorem A of §2, Part I the problem (5) has a solu- 

tion in H % if and only if the inequality (6) hol~s. • 

R~URK. The solution of the problem (5) in KB is unique 

and is given by the following formula: 

" ' l - l ,kl ~ 4/~('f-l,kl~)~/~ BA ( ~  
' 

COR0~ 4.2. Suppose that the assumptions of Le~Ia 4.1 are 

satisfied. If, in addition, 0 is a singular inner function and 

is the represent~n~g measure of ~ then 

A~A I~;-,t l  ~' <oo . 

I~-AI Indeed, 4-1@(A~l~4_e~pC_zI__ 
g f  4-1XI ~' - 

We hays a l r e a ~  ment ioned t ~ t  i f  a f ~ l y  [ k 0 ( . , A ) : A ~ A }  
is an unconditional basis then IL~t (A)%~p ~) necessarily 

tends to 0 as IAI--~-4, A~A (see ~6 for the proof). 

Corollary 4.2 shows that in the case of a purely singular inner 

function ~ , moreover, it must tend a t 1 • a s t w i t h 

some prescribed rapidity, namely 

THEOR• 4.3. Let A c ~ and let 
on. The following assertions are equivalent. 

be an inner functi- 
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1. The family {kO(, ' ~):  ~ A  } is a basis of ~ 
(resp., of the subspace it generates). 

2. A~(C) and there is a function ~ in H i so that 

the operator P~T~ may be extended from the linear span of 

the fractions ~--(~_~)'~ , ~E ~ to an isomorphism of ~R 

onto ~ (respo. into K 0 ). 

PROOF. Implication I--> 2 follows from Theorem 1.1 and Lem- 

ma 4.1, for if ~ is the function from this lemma, then 

hence 

and oonsequently p e T ~  may be extended to ~ isomorphism ~in- 
deed, i t  takes an uncond i t i ona l  bas is  to an uncond i t i ona l  bas is  
and does not change the norms of its elements). 

To prove that 2~> I we argue similarly to Theorem I: the 

family of fractions ( ~ - ~ ) - ~  , ~ A  is an =conditional 

basis of ~B , hence any isomorphic image of this family is 

also an unconditional basis; in particular so is the family 

G(A~k~c.,A), AeA, ,  
RMMiRK, The property of the function ~ expressed by asser- 

tion 2 is s~red by any other function ~ in H ~ satisfying 

o< I -< I GG) ~eA AeA 
<tOO . 

It is clear also that for any such 

~eA Xe ̂  
Unfortunately Theorem 4.3 is too non-constructive, and the 

situation is unlikely to improve very much even if we try to use 

some concrete ~ (e.g. one given by (7) provided (6) is satis- 

fied) when applying this theorem. As for the function (7), it ve- 

ry probably fails to be the most appropriate. For example, in the 

case ( I )  ( i . e .  ,~p.~ ( ~ - I 0 ( ~ ) 1 % ) - I / ~ <  ¢~ ) it is natural 

to choose ~ ~___A~ qand so we did in Theorems of sections I-3). 

Some facts supporting what we have just said may be found in the 

next §5° 



269 

5. OrthoKonal and nearl2 orthogonal ba, se,s 

of reproducinE kernels 

It was already mentioned that if AC ~ and C ~  A > 

then the family [ ~e(.,A}: A~A } can=or be orthogonal. In 

some cases it is possible, however, to consider reproducing ker- 

nels with poles on the unit circle. For example let the function 

0 an ~n~ic continuntlo= through a point ~, I ~ ~ admit 

Then the kernel 

kec%A) = ~ - { } { b 6 } ( ~ }  _ {}cA} {9( i } -  {~(~} 
' ~ - ~  - T A-~ 

evidently lies in ~%(~)) and, moreover, in 

for the inclusion k&(',~ /~.)'~--.~%(~)) ,~ A ~ T  
P.Ahern and D.Clark [26]. Let 

~ . A criterion 

was obtained by 

be the canonical factorization of an inner function 0 

-o,~1 ~+ ~1 ~ < 

and set 

Roughly speaking, E% consists of those points at which the 
argument of ~ is differentiable. 

THEOR~ (P.Ahern, D.Clark [26]). Let ~ET . Then the fracti- 

on C4- c'~(7,,))C~-~"~,) -4 lles in ~Z(~) for some com- 

plex number C if and only if l~ ~@ If AC Ea then 

this C is in fact unique and is given by'C-~ovS(%A) . 

It should be noted here that Frostman's theorem (cf. [30]) im- 

plies that {} has radial l~mits on a set wider than E@ , na- 
mely on the set 

[ 

Let now %(~)={}(A [) ~- o~ , lo{I= ~ and assume~}~%ES; 

I =~I' " Then 

<kec,z,/) ~e<%A))=~e(A,A~= 'I-{}(~'i~(>,} = O (8} 
~- A-' A ' 
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This remarkable property was observed for the first time by D.Clark 

[29] and later (independently) by D.Georgijevi~ [37]. We are going 

to illustrate this property by an example; to do this we pass for 

some time to the upper half-plane. Let 0 ~ ~ £ Z ~  

~_~ ~K e ~oran ~ in ~ . ~ i d e n -  

fly ~(~)~---4 if and only if ~ is an integer. ~or 

X=nE ~ we have 

" =I ~ (~ 
~°(~' ~')-- i~(~-~,) 

and so the kernels ~ (', ~) are ~ourier-Laplace transforms of 

the classical orthogonal system of exponents ~ :~ ~ }. 

We see ( ! ) that the reproducing ke rne l s  {~8( . ,  ~¢)' ~/.~,} 

form a complete orthogonal system in ~ . 

It turns out that this example may be generalized to a class 

of inner functions ~ . The construction was performed by D.Clark 

[29] in connection with the investigation of spectra of one-di- 

mensional perturbations of the model operator T e • 

Let ~ be an inner function and ~ ~ . Substituting 

for % in the Poisson kernel I~- ~ I ~ we obtain a nonnega- 

tire harmonic function in the disc, which can be represented by 

a Poisson integral: 

~-[e(~)l ~ ~ ~-I~ I ~ 
- < ' I .  

The measure ~ is nonnegative and singular with respect to the 

T . On the other hand -o it is well-known that the radial limits 

of the Polsson integral of a singular measure are equal to + co 

almost everywhere with respect to this measure. Hence 

%,--~I- 0 
Thus measures 6v~ and ~ are mutually singular if o& =~. The 

equality (9) can be given another form: 

I - I 0 ( ~ ) 1  ~ 'Y-~ O(:~i ~, =If I 
T 

'%,--~ 1 - 0  
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the last equality means that the restriction map ~: 

~--~ ~I~p(~) from H $ to L~(~) preserves the norms 

of the reproducing kernels ~0(. ~ ~) , #~I<~ . In fact 

can be extended to an isometry of ~e onto h~(~) (see Clark 

[29] for the details). 

Let A C T  • Then the family ~k~(~,~): ~ E A }  is 
orthogonal in ge i f  and only if AcE@ and ~la~, ~cT.  
It turns out that every such orthogonal family is the family of 

eigenfunctions of a unitary operator ~ and that this ~ 

is a one-dimensional perturbation m) of the model operatcr~@~IK @, 

The action of this unitary operator is described by the formula 

ko 
~ =  ~ (÷ - (÷ ,  ~o) ) ,  ~(~, ~o) ili;ll ~ , 
where 

Ko-- = I - 8 ( 0 ) 6 ,  ko=~'~(e(~l-0(01), w =  
~-e(o) 
I- 0(o)~ 

Restricting this formula to the support set of~ and using the 

fact that ~=~ a°e. with respect to ~ we obtain 

Hence ~ is equivalent to the operator of multiplication by 

in L~( ~ ~ ) ° This reasoning proves the following theorem of 

Clark. 

THEOREM (D.Clark [29]). The space ~0 has an orthogonal 
basis consisting of reproducing kernels [kS(~,~):~A }, 

^ cV if and only i f  for some ~, ~ ~V the incase ~ is 
purely atomic. 

Unfortunately it is not easy to use this criterion. There 

exists, however, a simpler sufficient condition: if the set 

\ E~ is at most countable then for any o~ o ~ T ,  the faml- 

l Y l k ~ ( ~ , ~ ) :  ~(~) = ~  , ~ E ~ }  is a complete orthogo- 
nal system in K8 . This condition is also due to Clark. It is 

satisfied, for example, for inner functions 0(~) -- 

--e~p ~ ~ such that the set %~pp(~) is at most coun- 

m) It was the investigation of such perturbation that led 
D.Clark to all his results. A "vector-valued" theory of the same 
sort is developped in [ 71] , L72] • 
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table. 

Using orthogonal bases consisting of reproducing kernels cor- 

responding to points of the unit circle it is possible to const- 

ruct unconditional reproducing kernel bases with members corres- 

ponding to points of ~ . For example suppose that for a given 

o o n s t i t u t e s  an o r t h o g o n a l  b s ~ i s  i n  ~ . Choose ~or  e a c h  ~ a 

point ~ in ~ so close to ~ that 

Then ( k8 ('' ~ )) ~E ~ is clearly an unconditional basis in 

~@ . This method to construct bases is, of course, merely a ge- 

neralization of the Paley - Wiener method.. 

There exist however inner functions ~ such that the space 

~@ contains no reproducing kernels corresponding to points of 

the unit circle, but yet has an unconditional basis consisting 

of reproducing kernels. To construct such a ~ it is sufficient 

to produce a Blaschke ~roduct ~ whose zeros form a Carleson 

set ~-~-~ ~ : ~ ~  , but 

I -i l - -  

for ~ T  • (Given such a ~ take simply (~---~ • Then by Theo- 
rem A the family ( ~ (. ~ )) ~e~ is an unconditional basis in 

~ and by the theorem of P.Ahern - D.Clark the set ~ is 

empty). We shall show even that there exists a subset A of the 

unit disc such that /~ (C) and 

for all ~ ~ ~ T  o Let (~)~>/~ be a sequence of po- 
sitive integers with the properties 

(Take, for  example, k~= E ( ~ e ~ ) - ~ ] ,  [ ~ ]  being the grea- 
tes t  integer less than or equal to OO ). For each ~ choose 

~ equidistant points on the circle ~ 1  I~I=~ ~¢~ 

~- ~-~ ~ , and let A be the set of all choosen points. 
We claim that /~ has the desired properties. 
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The r a r i t y  condit ion ( i . e .  ~ ( ~ ; ~ ( ~ - J ~ J ) )  n A / 

s u f f i c i e n t l y  small £~ 6 > 0 ) as wel l  as the fac t  that 
~A (4-J~J) ~ is a Carleson measure (i.e.~(~-J~J)~ < 

<~CO4~$~ '~ for every rectangle Q=~:i-6~ J~ I<4) 

o . ' ~ 9 ' ~ I } , I c T ,  I I1-¢, 6>0) are easily checked. 

To verify (10) take ~ and estimate separately the s%mmm~ds 

with I%1=%, %= ¢-~'~ . ~ote that for every such A s~cept 

 oss b y we have -AI , and hsnce 

6. In terpo la t ion  b E K~-funct ions.  The H ~-- spaces 

In this section we are mainly concerned with applications of 

our results on exponential bases and bases of reproducing kernels 

to interpolation theory, and with some variants of these results 
for the ~ P-- spaces. 

We begin  wi th  the  second s u b j e c t ,  r e s t r i c t i n g  o u r s e l v e s  by 
the c a s e  ~ ~ p < co • For these values of p the theory turns 

out to be a duplicate (with minor variations) of the He-theory 

a l r e a d y  d i s cus sed ,  t he  r ea son  be ing ,  of  cou r se ,  the  J ,P -~on t i -  
n u i t y  of  t h e  Riesz  p r o j e c t i o n  P~ . We r e c a l l  t h a t  ~+ ~ act  

"~.~ ~'(~)~. o , and t~u;  P÷ maps L P =  LPCT) onto the 
~o p a ~  p 

(HP)- -- {~I.P:~'C~,)-O, ~o . ] .  we eee t~t for  p,~C'/,o~) 
L P is the ~rect s= of H R and H Z ,,~dsouslngthe d~- 

llty<~V>=~t~ we m~ idsnt~y (~ the anti-linear 
,--., , , .r) "~h. caj,,~ate space (HP)  ~ ~ t h  FIP~ + ÷ ~ - -  Y . ~t 
is clear that the main formulae of ~§ 1-4 remain rvalid in the 

H P -sett~ also. 
Define for an inner function 

KPe - (, (~HP') L k s (. A)-- 4- (~ cA) O , , ~ - ~  , 
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Then p^ ~e~ ~ ~ ~ is the projection onto ~ along ~HP) 
P ~ - , ,  H --- ~_u + ~H P and ke the reproducing kernel of the 

space KP/ (which may be naturally considered as the conjugate 

space @(KP) * -  ~P~(K P ) i -  ~p~O~p ); indeed, 

~d ke(., ~)c ~ ( I ~  D/ . It is also clear that 
k0(',hl=Pe(~ : 7~1 "I ~ D . 

We shall be interested mainly in the case when the functions 

k ~ <') ~V) "do not lie very far from rational fractions", 

i,e. 

As before we shall discuss u n c o n d i t i o n a i b a m e s 

of the form [k@(',~)'. ZeA } , A C 0 but now 

using the general difinltion of this notion which we have mentio- 

ned in the first pages of our paper (p. 217 ) 

L~RHA 6.1. Suppose that the famlly[km(.~):~] is.an 

unconditional basis of the subspace of HP it generates,q<p<00 

and assume that (11) holds. Then A~(C). 

PROOP. Note that, in H P , the Carleson condition (C) is 

still, neces~ry and s~fici~t for the syst~ ~-~(~-~Z)'~ : - -  
:A~/G A } to be uniformly minimal. It remains to apply to 

A = P(~ ' ~ - - -  ( 4 - 7 ~ ) - I  t he  lemma about  the  u n i f o r m l y  
mimlmal families proved in § 2 Part I. @ 

At this point some widely known facts concerning the geomet- 

ry of f~lies of rational f~ctions [(~-X~)-I: ~ ~ } 
in the H P -metric, 4< ~< CO , should be recalled. (For a more 

detailed exposition see [8], [4], ~17], D8]). One of these facts 
has already been used (namely, that the condition (C) is equiva- 

lent to the uniform minlmality), others (to be used later on) are 

as follows. The Carleson condition (C) is equivalent to each of 
assertions listed below: 

a) the family [(I-~,~)'I : ~ e A  } ls an unconditional 
basis of the subspace of H ~ it generates; 

conditional basis (in its closed linear span) isomorphic to the 

standard =it vector basis of 6 ~ ; I),/F: 
One more condition equivalent to a)-c) worth mentioning (se- 

em. to be present in  the l i t e ra tu re  only in an impl ic i t  form, i f  
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at all) : 

d) ~ H P D ~P , i.e. any interpolation problem #~ = 

with the data ~ in ~ has a solution in H ~. 

To verify that d) is equivalent to a)-c) note that the inclu- 

sion ~H P o ~P end the closed graph theorem imply that the 

problem mentioned is not merely solvable, but is solvable with an 

estimate: there exists a constant C so that V~E~ V ~ H  Y" 
, I H, <- o . a, 

vectors of the space .{,P we obtain the uniform minimality of the 

f~y { ( ~ _ ~ ) - 1  A~GA} in HP ~ : , i.e. the Carleson 
condition (C). @ 

Also well-known is the general duality between the problems 

concerning bases and interpolation, cf. ~7], [18] for the de- 

tails. In our setting it is expressed by the following lemma. 

L~A 6.2. Let A C D , G be an inner function,~< p<oo. 

The following assertions are equivalent. 

1. ~ e  f ~ t l y  ~ ~ k e c . , A ~ ) : A ~  A ~ ~ is an uncon~t io-  
nal basis of the subspace of ~P it generates. 

2. The space of restrictions ~ I A is an ideal space 

(that is, from {~ K~ [ and l~@l~ l~t~ ~I • ~ A it 

follows that there exists a function ~ in ~pr interpolating 

{~}, ~(~)=~,~ Z,~eA). o ~ e 
In fact (and this will be the essence of theorem 6.3 below) 

an ideal space mentioned in the lemma will turn out to be simply 

a weighted 6P-space (just as for the problem of free interpola- 

tion in the whole/space,~D H P )- Now we mention only that the inter- 

polation by ~ -functions is nothing else as the interpolation 

by functions analytically continuable trough the points of 

% 5p6G e and satisfying some estimates in C \ ~ , cf.[73], ~8]. 
That is why the condltion. ~#~  d~ (A, 6pe, C. 6.)= 0 

26 ~ " necessaryA~A'lAl+4 mentioned on p. o iS for the family ( % kS(.; A): AgA} 

to form an unconditional basis (see also the next corollary and 

theorem 6.3). 

Por p = Z no additional work is needed to give a precise 

theorem connecting interpolation and reproduciI~ k%x,lels bases. 
We present both a general assertion concerning the spaces ~8 - -  

Z end an assertion concerning the most interesting parti- 
cular case 0 : ~, connected with exponential bases 

[ e ~x~ ~ ( o , ~  : A~ e A } • 
COROLLARY D. Let A ~ 0 , ~ be an inner function. The 

following assertions are equivalent. 
F i -- 

A~A 
"I 
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basis of the subspace of  --H ~ i t  generates. . / A - I ' ~  ' Z ' I  I^ I i~ "i 

If the condition (11) satisfied, then we have another equivalent 

assertion: 

3.  sgeo  
COROLLARY ~+ . Let Oj> 0 , Ac~E ' ~>0 • The follo- 

wing assertions are equivalent. 

1. The family [ ~$A~F(O;@) ,' ~ ~e A -} is an uncon- 

ditional basis of the subspace of ~,~( 0~ ~) it generates. 
2. ~ ~ =  ~Z , where ~ is the space of all en- 

tire functions of exponential type less than or equal to 0~/Z and 
square summable on ~ , and ~ de~ ~C~(~Hw): ~ ~} 

To check these corollaries one needs only to add to what has 
already been explained the (evident) fact that for any uncon- 

ditional basis ~ ~g} i n  a H i l b e r t  s p a c e  t h e  s p a c e  o f  P o ~ . r i e r  

coefficients [(~,   /II  II)1 coincides with ~Z 
Passing to the main result of this section we recall the 

MuokeD/loupt condition~m (~p) in terms of which the reproducing 

kernel bases in ~ will be described. This condition, im- 

posed for ~p<O0 onU a positive function ~/ on T , looks as 
follows : 

z P z z din) < oo (Ap), 
where the 6~p is taken over all intervals (arcs) of ~. 

THEOREM 6.3. Let ~p<oo , Ac ~ , ~ be an inner func- 

tion in ~ and suppose that the condition (11) holds. The fol- 

lowing assertions are equivalent. 

I. The family { k$(. ~).. A } is unconditio- 
nal basis of ' an 

2. The family [~@C. ~ ~)~¢-I)~I) 4/P': ~k~ ~ A } is a basis 

of K~ equivalent to the standard unit vector basis of ~P. 

3 "~ k ~ (C)  and the operator  Pml ~ is  an i so -  
morphism of K~ onto K P (here B v__.fl J~A , the Bla- 

schke product corresponding~to the set A). A~ A 

4. A ~ Q 0) and there exist real functions ~/ and 

ir and a real number C so that $$ ~ ~T) and 
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then ~ ~ O. e 
PROOf. I t  i s  c l e a r  tha t  3<~->2 - ->1 ,  2<=>5 and t h a t  the i m p l i -  

c a t i o n  6 -----> 5 has i n  f a c t  a l ready  been proved ( the  reverse  im- 

p l i c a t i o n  5=>6 being evident). It remains to check that I-->2 

and 3<-~-----> 4. 
--> ~ ~f { ~} is an uncon~tional basis in ~-.et- 

rio then "integrating over signs" we obtain 

the symbol ~ means that each of the integrals majorizes another 

one multiplied by a constant independent of the coefficients ~, 

Setting ~--- ~e ('; ~ ~ ) and taking into account the condition 

(11) , Le~..a 6.1 and the assertion b) concerning unconditional 

bases of rational fractions we get 

x IP( -Ix  I) "P/P' 

This relation between the first and the last term Just means that 

the assertion 2 holds. 

3<2>4. Similary to the case ~-~ (see~ 3 , Part I) the 

_~$ I K ~  has the same metric,,m properties as the To- operator 

eplitz operator I~ in the space Hr . The criterion of the 

form (12) for such an operator to be invertible is the subject- 

-matter of the paper L53J. • 
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Of course, the material of this section suggests some natu- 

ral questions. We have skipped them in the hope that they have 

been noted by the reader who had the patience to reach this point. 

May be, the reader even knows already how to answer them. 
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PART III. 

EXPONENTIAL BASES AND ENTIRE FUNCTIONS. 

I. Generating functions, BMO and theorems 6~ 7~ 8. 

In this section we investigate some properties of the gene- 

rating functions corresponding to subsets of the upper half-pla- 

ne and give the proofs of theorems 6, 7, 8. First recall some de- 

finitions from the theory of entire functions. 

Let F be an entire function of exponential type. The ~T~- 

-periodic function ~F defined on ~ by the formula 

is called the indicator of F • 

The indicator diagram of F is by definition the convex 

set GF such that 

LFC ~) = ~ F ~ e  C~ e-~). 
The set G F ={~ :~ 6 GF} is called the conjugate 

diagram of F • 

The background material concerning the above notions is con- 

tained in [13] (oh. I, ~@15-17 and ~19-20). We have already 

explained the reason for our interest in the class~^#>0of all en- 

tire functions F of exponential type with ~F -- L ~ ~g~J in 

Section 5 of Part I. More precisely we shall be interested in the 

subclass ~ of the class ~ ~ consisting of functions F , 

F ~ ~ ~ , satisfying the Muckenhoupt condition (~) on 

I 
Here ~ is the set of all .b°unded intervals of the real axis 

Recall that the condition (~£) is equivalent to the Helson- 

-Szego condition (HS) , see Part I, ~ 4. 

LEMMA I.I. Let VJ be a positive function on the real axis 

satisfying the Helson-Szego condition (HS). Then there exists a 

number p = p~ , ~ < p < co , such that 

t~P(oc) 
- ~ +--~~-i-~ 



280 

PROOF. The hypothesis implies that ~J = e~ (%t t ~) 

where I~ , iT ~ L ~° (~) , II~Iloo < ~/~ . It remains to 

use the following well-known theorem due to A. Zy@mund (see [91 , 

oh, YII ~ 2, th. 2.11 (I)). if IIvII~ ~< ~ and 0 < ~ < 9%/~ , 

then 

We denote by C the set of all entire functions ~ of 

exponential type such that 

I+9£ i 

where i~ +/~ ~a/3c (I~, 0) . From lemma 1.1 it follows that 

for F ~ ~ 0~ > 0 . Hence by the M.Oartwright theorem 

(see ~13~ , ch~ Y,'~4) we may conclude that ~ C C . 

The class ~ can be characterized as the set of all enti- 

re functions ~ of exponential type with ~ I~ + , ~ I~_ be- 

longing to the Nevanlinna classes in the corresponding half-pla- 

nes (i.e. to the images of the usual Nevanlinna class in the 

unit disc D under the conformal mappings C+_ -~ D ). Hence, 

if ~ ~ ~ then 

where C ~ , I Ci = ~ , ~e is an outer function in ~+, B 

is the Blaschke product corresponding to the zeros of ~ I~+ 

and ~ is the quotient of two singular inner function in ~+ • 

Because of the analyticity of the function p on the real 

axis we have S =eo~ ~H , ~ 6 ~ (to see this recall the 

formula for the singular inner function from ~ I, Part I). An 

analogous factorization formula holds also in the lower half- 

-plane ~_ . 

We state now a useful connection between the class 7~ and 

unimodular Helson-Szego functions on ~ . 

THEOREM 1.2. Let h (A C 05 , ~'2 O) be a B l a s c h k e  

set, let B denote the corresponding Blaschke product and 

let ~=eo~ (i@z) , gb > 0 . The following assertions are equi- 

valent. 

I. There exists a function of the class d~ with simple 
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zeros whose zero-set is 

2. The restriction ~ #c~l~ is a Helson-Szego function, 

i.e. there exists a unimodular constant C and an outer (in ~+ ) 

function ~ such that I~II~ ~ CHS) and 

~ aoe• on ~ • 

~OOF.  1 ~ 2.  Le t  F be an e n t i r e  f u n c t i o n  m e n t i o n e d  i n  t he  
assertion I and let ~ be the outer function in C+ with 

I~(%)I = I FCoc)I , ocC~ . By the definition of the class 

~ ~F (~/~)= 0 and hence the canonical factorization of F 

in Cv contains no singular inner factor, i.e. 

FIC+= c,B.h,, Ic+l=~. 
An analogous reasoning for the half-plane C_ shows (take into 

account that ~F ~- ~/~) = CL ) 

0~ ~ = FIC_ c_ , Ic_l ~ 

where ~-(~3 ~ - - ' ~ ( ~ )  (the outer function in C_ with 1~*(~)1 = 
=IF(~)I , : cE ~ ). Comparing the last equality with the prece- 

ding one we obtain the assertion 2. 

2 ~ I. Let ~ be the function from the assertion 2. It is 

useful to note that ~(~+~)-~ @ m~ because of lemma 1.1. We 

define a function F on C \ ~ by the equalities: 

f Bk Con C+), 
F = e~ on 

In fact, however, the function F admits an extension onto 

the whole plane C as an entire function. This is an immediate 

consequence of the following simple lemma. 

LEnA 1.3. Let ~÷ and ~_ be analytic functions in the 

upper and lower half-planesmspectively, let ~ be an interval, 

and let 

0 4 & - 

can  oe a ~ l y ~ i o a l l y  c o n t i n u e d  t h r o u g h  ~ , t h e  o Q n t i n ~ t i o n  c o i n -  

c i d i n g  with ~_ . 

The proof is easy• It can be found for example in ~42~ . 
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theorem is proved in [48~ • formula and the 
A more generalthat ~ ~ we use the Cauchy ~t~ vO , 

To prove ~ ). We 
fact that I~ (~)% ~ ~ ~ i O~t :~ ~. definition of 
(this inequality'f°ll°WS easily from ~ 

have I ~ ( ~)I : 1 ~" (OC) 1 = 

for % e ~ • )-~ ~ 6 ~: and the ,,arc length" on the 

SinCe ( E + C + ~ ~ I~- %1 = I} is obVioUslY a Carleson measure then from 

carleSOn imbedding theorem ( [18~ ) it follOWS that 

C÷N~I: -~I=:~ Schwar z's inequality imply that 

~< %~ facts~that ~ is real, ~u,~- function in ~+ 
~rom the a 

and the function ~ 1 ~ e ~ I is harmonic 
representable as a poisson integral it follOWS that 

f o r  ~; 6 C~ • 
Therefore (I) 

/F~ ~/-~°~/~*~/' : ~ o .  

similarly we can prove that 

/ E ~ / - ~  ~o,~/~-~/~ ?[~/:~/'~ ' 
The inequalities (I) and (2) imply that 

function of exponential type. Hence on ~ . To prove that ~ 6 ~ it remains to show that 
G ~ = [ 0~- ~ @~ . It follOWS from (I) and (2) that 

G~C [O,-~a: . But 

is an entire 

because IFI=~I 
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=A,, 

and therefore ~F = ~ 0,-$~] . 

The function F does not vanish on ~_ and its zeros in 

C+ are in ~ . Let us show that F does not vanish on ~ . 

Sincethe functionslFl~l~ and IF-~II~ satisfy the Helson-Szego 

condition it follows from lemma I. I that 

<+oo 
IF(%)1 ~ ~+~ 

Hence F does not vanish on ~ . @ 

From theorem 1.2 it is easy to deduce theorem 7 stated 

in ~ 5, Part I. 

THEOREM 7. Let ~= ~ : ~E~} C C~ , ~>0 , and 

~b>0 . The family of exponentials ~ e ~ a c } , ~  is an un- 

conditional basis in ~ (0,~) if and only if ~E (~) and 

PROOF. It is sufficient to check (see theorems I and 4 in 

part I) that ~£ E ~@ if and only if the Tceplitz operator 

T~ B is invertible. By theorem 5 T~ B is invertib- 

le if and only if @ ~ is a Helson-Szeg~ function. It 

remains to apply theorem 1.2. 

One more application of theorem 1.2 permits us to p r o - 

ve the necessity part *) o f theorem 

6 f o r m u 1 a t e d i n § 5 P a r t I. Recall the 

statement of this part of theorem 6. Let ~ C ~ , ~> 0 , 

and ~ be a Blaschke product with Simple zeros whose zero-set 

coincides with ~ and ~£ be a continuous branch of the argu- 

ment of ~0 ~ defined by 
% 

0 

*) Recall that the sufficiency of the same conditions for 

a family of exponentials to form an unconditional basis was 

already noted in § 6, Part I immediately after the statement of 
theorem 6. 



284 

LE~A 1.4. Let the family 

ditional basis in ~ (0~&) , 

f e i ,  k~x~ ,  
. L k, J ~ Z  

be an uncon- 

. Then 

PROOF. If { C } ~Z is an unconditional basis in 

L ~ C0,g) then the Toeplitz operator m~a B is invertible, 

and therefore ~a is a Helson-Szego function. By theorem 

1.2 ~ = C ~a~ where ~ is an outer part of an enti- 

re function of the class ~a in the upper half-plane. Since 

functions of the class ~a do not vanish on ~ ~he functi- 

on ~ F-~ % I~I(%)I is infinitely differentiable. The Hilbert 

trannssfo~ preserves the local smoothness and thus the function 

~ I  is continuous on ~ . It remains to use the fact 

that two continuous branches of the argument of a unimodular 

function differ by a constant function. • 

The generating function ~A is uniquely determined by 

its zero set (it was noticed in @ 5 of part I). Moreover there 

exists a simple formula which expresses ~ in terms of A . 

LE~MA ON ZEROS OF FUNCTIONS OF CARTV~RIGHT CLASS (cf. [13] , 

[27] ). Let ~ ~a ' ~={ ~C:~(~)=0} and let all 

zeros of ~ be simple. Then 

I. ~ ~+{~ _ ~  ~-c~) ~. 
~+oo % ~t-~- oo % - ~ ~ (3) 

where ,%.{~.) ~ Ca~&{a~_f',: I~,/.<%,~X',o}, ru('v)-~--~-~Ca~d{~,~/X:l~,l-<'c, 
tea<o}; { 

e. There exists ~ X -~ (4) 
't++~ IkI.<%X~A 

The proof of this lemma uses delicate methods of the theory 

of entire functions and we refer for the proof to the books [131 , 

~27] . Note that the conditions (3) and (4) can be considered as 

simple necessary conditions on /X~{),,~:lcv_~}},~C 0 for {e/')xlcX}~¢~.7 - 
to be an unconditional basis in 0~) . Let us suppose 

that ~ satisfies the conditions (3) and (4) of the lemma. 

Integrating by parts we obtain from (3) that ~ I~I -~ < t co . 

Therefore it follows from the K.Weierstrass Xf~c~o~0r~ization theo- 

rem (cf. [13] , ch. I, ~4, lemma 3) that the infinite product 

XO~ (I-~) e ~/X converges absolutely and uniformly on com- 

pact subsets of the complex plane. It follows from (4) that there 

exists a limit 
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R~÷~ XeA,IAI.~R 

It is known that QR = ~t-~ , ~ ~]  i f  ~ is  the 

zero set of a function of class ~ . This implies the following 

formula for the generating function FA 

= 

~ote  that  i f  & c C a  , %~0 , and & s a t i s f i e s  the 
B l a s c ~ e  c o n d i t i o n  C~) then  the  i n f i n i t e  p roduc t  i n  the  fo rmula  

f o r  ~ converges  i f  and on ly  i f  t h e r e  e x i s t s  a l i m i t  

R-~ X~A,i~l.~ R 

To prove this it is sufficient to use the fact that the 

condition (6) and the condition A C- C~ , ~ > 0 , imply the 

convergence of ~ I kl -~ . This remark permits us to weaken 

the hypothesis of the if-part of theorem 7. The condition ~A~J~& 

can be replaced by conditions (3), (4) and the following condi- 

tion: the function 

I keA 

satisfies the Helson-Szego condition on the real line. Toge~er 

with the condition A ~ (C) this implies that F~ ~ ~L& where 
& is defined by (3). 

To prove theorem 8 we need the following lemma. 

LEMMA 1.5. Let { ~} be a sequence of real numbers 

such that ~ I~-k~} ~ ~ > 0 and let ~>0 . Then 

the function 

belongs to BMO(R~, . .  
PROOF. Put ~{X~:Ix6JJ -~I<~}, ~Z . By the 

hypothesis of the lamina ~ (&~,&~,) >/~ if ~t~t . If 

OC~ / A~¢ then ~i((~C-X~)i÷ ~)-~ ~4¢~(~t1~a) -I . There 

exists a number C > 0 depending only ~n ~-~ such that 

that~ ( { - { )  >~ - C{ for  0 %{~ O~+~ ~ . ~Whence it fo l lows 
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y, b (l- ¢ 
It is clear that 

C0¢-X,.) ~ + ~ 

..< 

K=O 

These estimates imply that 

where ~ E L ee C R) The function ~ *  • ~ belongs to BMO 
and the distances between the supports &~ of its translates 

~n~ + ~ are at least ~ . It follows that the sum 

) + a belongs to BMO . To prove this we 

use the ~escription of BMO in terms of mean oscillations. 

If ~ E J and I~ I < ~ then g ll = ~ + ~ I for 

some ~E2 . If I~I ~ ~ then 

II-I " cL~ < + o o .  • 

THEOREM 8. Let ~E ~ , G E~ . The family of expo- 

nentials ~{ei~I~6~" is a Riesz basis in ~ (0,~) if and 
only if 

/~" 

PROOF. The "only if" part. Let L~~e~k'~ Z be a Riesz 

basis in ~CO,@) . Then ~+~ ~ (C) for any ~>0 and 

SO ~ I X ~ - X ~ I  >0 . Since { e~ ~k''k}~EZ is a Riesz b a - °  
sis then there exists the generating function 

& 
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Let F A + ~  be the generating function for the set A+¢M 

The functions ~ and FN+i~ ~ obviously satisfy 

F~+~ (~) F~, l-~)--F~ ~- ~ ,  

Our first purpose is to prove that the function OC, ,~tF~coQI 
belongs to BMO. To prove this we consider the difference 

The sum on the right-hand side of the formula belongs to BMO by 

lemma 1.5• The function 0c~+~l~A+A,C~)l~belongs to ~0 becau- 

se IFA+ ~ I ~ I~ ~ C HD~ by theorem 7 ~herefore ~01~I~I~ 

Let now t be a complex number such that I01 = ~ and 

F/~ C'b)c > 0  Them 7 = F ~ ' c  is  an outer f, mction and 

I ~, ~ .  

~his f o r m ~ a  enables us to compute the "~lues of  P ~  I~, l  ~ on 
the real  l ine .  Note that  

O- 
It follows that 

P¢~): ~ I F~coo~l~+'~(<~ + <~gc- ~-~ N ~c~)). 
Thus 

By theorem 7 IFA(0o+t~)l ~ C A%) for any ~>0 . 

~ais ~plies that N^C~) ~ ~ ~i~ . 
The "if" part. The most difficult step of the proof is to 

show that the generating function corresponding to ~ exists. 

Suppose that the function &C0C) = ~ ~- ~ N&C ~)- c belongs 

to ~/4 . Here ~ is a complex number such that the harmonic 

continuation of & to the half-plane C+ (we denote this con- 

tinuation by the same letter & ) vanishes at the point $ . 
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It is obvious that ~L~ ~ ~ 0 . Using the fact that the Hil- 

bert transform preserves the local smoothness it is easy to see 

that ~ is infinitely dlfferentiable on ~\~ . In a neighbo- 

urhood of a point k £ ~ the following equality holds 

(6) 

where ~k is a differentiable function in a neighbourhood of 

k . 

Consider an outer function on ~+ 

F = e ~  (-~, + t , ) .  . l l  
It is easy to see that the function ~(2) F(z')e -'~Z~ tC = e is 

real on ~ and differentiable (cf. (6)). By the symmetry prin- 

ciple ~ can be analyti@slly continued into ~_ and so ~ is 

an entire function. 

Let us show that F ~S~ . From the fact that & 6~14 

it follows that there exists a positive number ~ such that 

the restriction of I F %} to the line ~ C  : ~ =~} sa- 

tisfies the Helson-Szego condition (HS). The equality ~(Z)=~) 

implies that I~)I=I~i(~)IC~& if I~=-~ • Hence the 

restriction of IF ~) to the line [~ :~=-~I also satisfies 

the Helson-Szego condition. It is also clear that FIC+, FIC_ 

belong to the Nevanlinna classes in ~+ and ~_ . Therefore 

F IC_~ belongs to the Nevanlinna class in C ~ • The inner 

part of F in C_i has no singular factors because F C+ is an 

outer function. Lemma 1.1 applied to ~_~ implies that the func- 

tion (~ + Z$~)-4 ~ belongs to the Hardy class H ~ in C_~ • 

Applying the method used in the proof of theorem 1.2 we obtain 

that I ~(~)I ~< ~ }~ +~I if ~ ~ >/0 . Since 

F(~) = F ( ~ ) e  e , I ~  < O. (7) 

We obtain that IF(7..)I 4 oocb~ }~ ,~le__, ~[]['m'~l - . These inequali- 

ties show that F is of exponential type. Moreover it is clear 

that ~F (~/Z) =0 (because F IC+ is outer) and that ~F(-9-u/Z)= 
=A, (c f .  (7 ) ) .  Thus L~@ _ Put F*(~)=F(~-,Ld,).F(-~) -~. 

It is easy to see that ~ is the generating function for 

I i ~ satisfies th# Helsqn-Szego + ~ . Moreover, I * % "" 

condition. By theorem 7 we can conclude that t~ ~(A~+¢~)~~ j~ziS a 
Riesz basis in [,% ~0,~) . • 

REMARK. Let m c R , ~ I~-X~l>0 and 
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of the function 

the following condition: 

for any positive ~ there exist a real number C and 

St, ~ ~ ~ (~) such that 

IZ C~ + t ~ )  = c + ~ C~) + ~ (~) 

and il~li~ < 4/~ . 
Indeed, if the above equality holds for some ~>0 , 0£~, 

%,~ ~ ~ ( ~ )  & then it follows from (2) thatI~(~+~)Ic(~%) 

and so IF, (~)I E (~-). Since the translation ~+£~ ~+~N~ 
• A + ~  ~ ~ ~ u o 
induces an isomorphism in ~ (0,@) , IFm+~(m)/ ~ ( ~ )  f o r  
any q > 0 .@ 

° ~X~ " ~ }  unconditional basis in If {~  , ~Eo,~] ~ ~ is an 

(0,~) (~CO# , ~>0) then, as we saw in ~ 2 #f part II, 

the angle between the subspaces KO~ and K5 of H+ is non- 

-zero and they span H+ . Consider the subspaces ~ H = z & ~ - 
= H ~ K~ and ~H~ . Now it is possible to obtain an 

explicit formula for the projection Unu~ ,,au£ , o onto ~ -  
along O ~+  using the generating function m-----F~ . 

THEOREN 1.6. For {~£k~x} ~e~ to be an unconditional 

basis in ~%(0, ~) it is necessary and sufficient that ~(0), 

~Ht + ~H. is dense in ~£(~) and the projection 

~H £ II 8~ is boiuded. If F = Fh and ~ is the mul- 

tiplication by ~ operator on ~ (~) then 

II = p- • 

PROOf. The first part of the theorem easily follows from 

corollary 2.2 of part II. It remains to prove the formula for 

the projection• It is easy to see that the operator ~F~_~/F 

is bounded in d ( ~ )  i f  and only if P_ i s  bounded in the 

weighted space ~ (IFi£d~) and this is equivalent (by the 

Hunt-Muckenhoupt-Wheeden theorem) to the fact that IFI ~ ~ (~) . 

we check the formula on a dense~subset of ~(~) . Since the 

function (~+$)~ is outerH+=%p~ (¢~ (~+~)-I : ~>0) by 

P.Lax's theorem. Denote by O~ the linear span of functions 

e £ ~  (z  + ~,) -~ , ~ > 0  
where c~ >0 i f  ~ Z  

I IF(~)I~ ix + 

R 

• Then the harmonic continuation r~(~) 
~-~ ~ into the upper half-plane satisfies 

• It is clear that i~(x)i4 C~ 

Since IH~(AO- - 

f If(~)l-Z &3¢ z+oo 
'1 +~z  
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At last by theorem 1.1. 

where k ±s an outer f~ction. Let ~ = B 9 where ~ ~ or.. 
We have 

J.L F P- ,bL~I~ ~ = J.L ~ ?_ ~ = o because 

obviously, ~k. -~ ~ H~ . 

If ~ = e ~  where ~ e_ ~10 then 

= ? I 

2. Theorems on perturbations of unconditional bas~s. 

We begin this Section with the deducing the theorems of 

S.A.Avdonin and V.E. Kacnelson (for the statements see ~ Patti). 

The following lemma reduces the general case to the examination 

of bases of exponentials with only real frequencies. 

LEMNA 2.1. Let ~= ~ ~b~Z 1 C ~ and let (~)~£Z 

be an arbitrary bounded sequence of real numbers. ~urth~r, let 

us assume that the set o~ is separated and let ~*~------~ 
&e 

~ : ~ }  , ~ ~ ~ v ~ . Then the family 

of exponentials,~ - . ( ~ ~ Z  forms a Riesz basis in the spa- 

ce ~~(0,@) if and only if the family C~h~t)~X does. 

THE PROOF can be easily obtained from theorem 7. Let 

~0~ 10~l . We shall examine the following ratio 

It is clear that 

Since 

Further, let ~ be the point of ~ nearest to the fixed 
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point ~ , ~ ~ R , and let 4 = ~  I \ K - X ~ l  • Then 

t '~  4 J 

4" 4 ~ 
÷~. 

This yields 

Let C~)~e~[ be a bounded sequence of real numbers 

and ~= [ka ~ ~I C ~ . We denote 

~-R.< Xr,..< :r._ + R 

and let C = k a  +~'a, , ~*= { ~*~ ' ~ Z ]  i,9 a " rea l  
perturbation" of the set A . 

Lemma 2.1 allows to phrase the Avdonin's theorem as follows. 

THEOREM 2.2. Let ~ = {k~ : ~6Z 1 be a separated sub- 

set of the real line. Suppose that A is a zero set of a STF 

with the width of the indicator diagram equal to ~ . Let us 

assume that the set ~* is separated and 

~ ~R <~ ' 
• 

Then the family " ~A~t. L ~ CO, Z~) . [e )~6Z forms a Riesz basis in the space 

THE PROOF of the theorem in its essential features follows 

that of the Kadec I/~ -theorem expounded in Section 5, Part I. 

Let ~ be a generating function for the set ~ . The 

following formula is true (see ~I) 

~IFA(~,~)I =-~&A+~I (~)+c, 

where C q ~ , 

STF the function 

and therefore &A+%~ 

6, let us compute the 

~W~>O. According to the definition of the 

IF~ (x+~)1 ~ C ~ )  is bounded 
E L ~ + C . In order to use Theorem 

difference 
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0 

By the mean value theorem we have 

uniformly with respect to ~c , oc~ ~ . 

v e r i f y  t h a t  

It remains only to 

• ,-f  ~ _  IR \ / x , ,  

This expression obviously tends to zero as ~oo . • 

FRO0~ OF THE V.E. KAC~ELSON'S THEOREM. W~ shall deduce this 

theorem from Theorem 2.2. Lemma 2.1 permits to consider only re- 

al frequencies in this case also. Let ~ be a subset of the 

real line. Suppose that ~ is the zero set of a STF with the 

, then 
1-oo 

0 o 

Le t  ~o be a such p o s i t i v e  n ~ b e r  t h a t  ~ 
~.~ ~R 

if ~ >i~ . Then we have 
o ~ oo 

Ro~-~ o 

and IR -~ 

0 



293 

width of the indicator diagram equal to ~ . Let ~= 

.  nthe  aonelson'stheorem 

"perturbations" ~ were supposed to satisfy the condition 

IQI.< L.p  , w h e r e  
' 14 ' 

Lemma 2.3 (see below) shows that for zeros of a STF the sequence 

~t~Z must be bounded, say by a constant ~, 2~0 . 

B the inequality 

obviously is valid, if ~ ~ . • 

LEMNA 2.3. Let ~=~ ~ ~L~I be a subset of the 

real line coinciding with the zero-set of a STF, and ~ = 

=~{l~-~otl~I. Then the sequence (~)~ is boun- 

ded. 

PROOF. Put S = ~] C~- ~ ~e2 ~-~ and suppose the width 

of the indicator diagram of ~ is equal to @ . Then 

~ S C~,~ -~, (8) 

uniformly with respect to ~ , ~ ~ ~ . A simple proof of 

this fact can be found in an interesting paper of B.Ja.Levin and 

I.V.Ostrovskii [ 151 , containing many other useful facts concer- 

ning the structure of zero-sets of STF's (see the remark to lem- 

ma 2 on the page 89 in ~ 15 ] ). Computing the imaginary part of 

the equality 

we obtain from the formula (8): 

X • I=0 (9) 

If the sequence C2~)~e.~. is unbounded, then for any R , 
R ~ 0 , there exists a number tb , ~7/ , such that 

2 ~  . In this case the interval C~-~+~) con- 

tains only one point of the set ~ . Let 3c~-~ ~+~) , 

~ = ~  . Then 



294 

Since ~ ~_! - ~ 

~(~'~-- R,X~+R) m,~z ~ '  C~_XMz~z 
for ~ =~f-~ . But this contradicts (9) if 

, we have 

is large enough.~ 
We consider now a "perturbation theorem" for unconditional 

bases of exponents in a more general setting dropping the assump- 
tion ~9 ~I~ ~ < + 

LetX~us introduce some'notation. Suppose_ that A={X~:~6Z}C 

C P%~, ~> 0 , and the exponentials ~k~ )~6Z form an 
unconditional basis in the space ~(0,@) . For every integer 

consider the disc 

We shall be interested in the restrictions to be imposed on 

(~)~Z ensuring that any family (e *~t )~£~ with ~aED(~,~) 

forms an unconditional basis in L ~ (O ,&)  . Denote by the sym- 

bol (LQ the Poisson kernel ~ i~_tl~ , 

THEOREM 2.4. Let (e~k~0c)~6~y be an unconditional basis 

in the space D (0~) and 

* ~ )  ~'bEZ , and Suppose also that ~ D (k~, 

{ ~(*~t : Tb~Z}  E (C) Then the family (,e ~k*~- 
an unconditional basis in the space ~ (0 ,&) )*.EZ forms 

THE PROOF is based on Theorem 6. Let ~ C C $ (i.e. 

D (~,~) C ~+ ), and estimate the difference 

t~ , * - t  i ~ i~-tl • 
o o 

To do this we note "~he formula 

o 
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where the right hand side is meant as principal value of the lo- 

garithm.Taking imaginary parts we obtain 

r ~ - ~ l  ~ il--~l ' 
0 

Let us consider two cases. At first let ~ X* = ~ X , 

~ = ~ ,  l~I~ . Then 

~ I , m , £  4f~ {' ] i~  j ~ _  o c - ~ *  • ~ ,-~ , ~,-~ 
o 0 

It is not difficult to see that 

I -xl  = I -xl  ' 

= nc. , . °  h=ve . 

Hence the convergence of the series ~. O.,i~.'~A,4, implies 

oLA;-~ A ~L® +C • ,,.,~-z Im-X.,P 
Now let I m ~  * =  I f r~X , i . e .  )~*=)k+~ , ~ e ( - $ , $ )  . 

Then ~c i -  ~ 

o o o -~ 
or. 0 

- I  IX-tl ~Imk ~t_ I I~ ~t 
~.-~ -~ 

Clearly, 

uniformly with respect to ~c , 0c ~ ~ . 

Let now arbitrary perturbations X~ be given. It is easy 

to see that any of them can be obtained in two steps: at first we 
I 

shift the point ~ along the real axis up to some point kfb 

and then along the imaginary axis up to the point ~*~ . Taking 

a number ~ large enough, we have 

For the shifts along the imaginary axis the inclusion ~.,-&, 

g L, ~ t C is valid. It remains to refer to Theorem 6. • 

COROLLARY 2.5. Let ~ C ~, ~>0, and suppose the family 

of the exponentials (~ ~kt )X~ ~ forms an unconditional basis 
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in the space ~[ 0, ~) . Then there exists a number ~ , 

~ 0 , such that any choice of a single point ~*~ from 

every disc ~(k~, ~) gives rise to an unconditional basis 

in ~ ( 0~ ~) . 

PROOF. Obvious• 

Note that Corollary 2.5 is a generalization of the Duffin 

and Schaeffer theorem [ 35] , cited in Section 7, Part I. 

3. The set of frequencies does not lie in a strip of 

finite width. Complementation up to an unconditi- 

onal basis. 

Are there unconditional bases in the space ~ (0~@) con- 

sisting of exponentials (e~k~)KE~ , if 
9 

The affirmative answer to this question was obtained by S.A.Vi- 

nogradov. His reasoning was improved later on by V.I.Vasjunin. 

One more question which naturally arises is as follows: it is 

possible to complement any unconditional basis of exponentials 

( c~\~)k6~ (in their linear span) up to an unconditional 

, ~ , in the w h o 1 e s p a c e basis (e{~x) k~k' A' 
~%(0~0~) ? We do not know now (I980), whether this is true, 

but we shall find a sufficient condition (V.I.Vasjunin), ensu- 

ping abu[aS.m[nty fZ~ p (8£k~c)Aa" " A"en~dgS"ctohd :a:inS 
to io 

hC C~ , [>0 and ~Igtk=+oo can be complemented up 

k.~ A .... tials to an unconditional basis or expu~n in the whole space 

Before we shall formulate and prove the corresponding theo- 

rems let us descuss some heuristic considerations. For an affir- 

mative answer to the first formulated question it is obviously, 

necessary and sufficient the existence of an i n t e r p o 1 a - 

t i n g B 1 a s c h k • p r o d u c t ~ (i.e. such that 

the set of its zeros is a Carleson set) and an outer function 

such that II0 BcFII<  Icl=  . But then 

the set {~ E ~o : II ~m~-~ II~ < ~] consists of functions of 

the form C~ , where CcC , I C'I:~ and ~e is 

outer (see Remark 1 after Theorem 4 ~ from Section 2, 

Part II). Consider functions ~ ~ ~ ~oo , such that the 

module of the difference ~o~ ~ - ~ is a constant o~0 on 

. It is well-known that such functions ~ exist if 
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& > 0 ~  ( ~ ,  H ~)  (see [ 18 ] p.262 o r [  I ] ). I f  
le tuP-F/  ~ on R ,  then e~ BF &B ~ B* = - = , where is 

a Blaschke product. The S.A.Vinogradov's idea is to inverse this 

reasoning. Let us take a suitable Blaschke product ~ whose 

zeros form a Carleson set, and let 0<&<l . Then 

where ~ is an outer function. In this case the Toeplitz ope- 

rator m@~ is invertible, of course, and Theorems 2 and 3 may 

be used; but the main difficulty is to show that the Blaschke 

product ~ is interpolating if the product ~ is. Zeros of 

can be controlled by means of Rouch~'s theorem. Therefore 

if the imaginary parts of zeros of the product ~* are unboun- 

ded, then the zeros of the product ~ are unbounded too. Let 

us turn now to the exact formulations. 

Let ~ be a Blaschke product with zeros &~, ~= ~,~.. , 

and let ~ - ~ ~ ~-~ ~* ~ ~* ~-! . For a gi- ~-~ = {_--~, ~ ~ ~ ~ 

ven pair of numbers ~ , ~6 C0?~) , consider a set ~(&,$) 

of Blaschke products ~* satisfying the following conditions: 

I~ 

Im m~>--~- • (II) 

Let the symbol D~ denote the disc {~6<:I~(<)I_< ~} . It 

is clear that the set J~(~t,S) consists of interpolating Blaschke 

products,whose zeros lie high enough above the real line. The 

less is the constant [ , the higher have zeros to lie. 

THEOREM 3.1. (V.I.Vasjunin, S.A.Vinogradov). Let B~(m,~), 

and ~ ~ >~ . Then the function ~-&~* has exactly 

one zero in each disc ~ and admits the factorization ~-A~= 

= ~ ~ , where the function ~ is outer and 6 is a~in- 

terpolating Blaschke product. In particular the family {e~AX; 

C~)=O] forms an unconditional ~asis in the space ~CO~). 

PROOf. Obviously IB~C~)I~T , ~f ~ ~D~ • Hence 

on t h e  b o u n d a r y  
D~ " Let m =C+ \ 0 D~ . Then I~* %f{the 

disc 

by the minimum principle. 

The lower point of the di~ [~T~Cm'I(~-~)/(~_~)I.<~/[] 

lies at the distance l~t0~ ~ ~/ - --5 above the real 
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s~___ s,/s.~ ~- . line, therefore D~ C {~ : ~ >/ S} 

Let ~ ~ 9D~b . Then 

l%c~/:e -~'~ .~e <~.-~ <~lJ~c<)l 

(because e < ~- when 9>0 ), hence by Rouche's theo- 

rem the function 8-~bS W has exactly one zero in the each disc 

DcL, ~L = ~ ~ .... This estimate shows also that the Blaschke 

product B has no other zeros in the half-plane {~ :~4 >S} 
Let us check now that the product B has no zeros in the 

strip {~ : 0 < ~t~ < b~ ~/&} . Indeed 

I }  _ 1 i f  < ~ t  z • 

So non-controlled zeros of B can lie only in the strip 

{%; ~0~ ~/@ ~ 11'14~ ~ 5 1 . Note that if ~ I~ ~ +oo , 

this strip d o e s contain infinitely many zeros (see Theorem 
2.4, Part II, Section 2). 

Let us suppose now that S(~)=0 and ~ ~/@ %l~Fb~< s 
From the system of equations U 

we have 

Let ~k= B ,~ ;  ~ , then ,~]~d.~IE~'c/~)I=I~kC~,)I 
ful to remember a trivial estimation 

Summarizing this information we obtain 

= B ct,}l 

• It is use- 

because ~ I/& > ~/~i . Therefore the inequality taking 

part in the Carleson condition holds at every zero of B con- 
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tained in the ~ G~3~ ~ . Since the re- strip ~ ~/~ % ~  4 

maining zeros are in the discs ~ ~nd ~ is an interpola- 

ting Blaschke product, the product ~ also is interpolating.@ 

Now we shall show that refining the reasonings from the 

proof of the preceding theorem we can obtain that the generating 

function ~ , ~= {~ :~(~)=0} will be a GSTF (S.A.Vinogra- 

dov). Note that it is not difficult of course to give examples 

of GSTF with the zero-set contained in no strip of finite width. 

However, it is much more difficult to combine this property 

with the carlesonity. But at first we give an auxiliary defini- 

tion. 

Let ~ be the set of all unimodular functions ~ on 

representable in the form 

where C ~ , ~ is an invertible element of the algebra H ~ 

(~ Q H~ ~) . It is clear that ~ is a group with res- 

pect to the pointwise multiplication of functions. It is easy 

to see that the mapping (C, k)~-~C~ -4 is an isomorphism of 

the group T x ( ~ I  onto ~ 

LEMMA 3.2. Let ~ C C~ , ~> 0 , and S be a Blasch- 

ke product with the zero set ~ . Then the generating functi- 

on 5~ is a GSTF with the _ width of the indicator diagram equal 

to ~ iff the function B ~¢ belongs to ~.~ . 

THE PROOF of the lemma is provided by Theorem 1.2 and the 

definition of a GSTF. • 

THEOREM 3.3 (S.A.Vinogradov). There exists a set 

~CC+, such that ~E(C) , ~ ~t~=~oo and F N 

is a generalized sine-type function. 

PROOF. Let & ~ (0, ~) and let be an auxiliary 

Blaschke product, whose choice will be specified later. We find 

the required Blaschke product from the equation 

where ~e is an outer function and @ = @ . Note that 

I because o= Since 

IB~-&QI=I0-&~*I on R , there exists a Blaschke product 

such that 
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The first equality yields 

and the second one provides 

~ - ~ ' ~  : ~ 'c f~ .  

Hence 

Therefore to get the inclusion ~_~ ~oo we have to find a 

B ~ Blasc~e product such that ~C ~ ~ . In addition 

must be interpolating. By Theorem 3.1 it is really so if 

~'E ~ C&,~) and ~ ~j~ > ~/~. 
B ~ Let C@~).>~ be a sequence of zeros of the function 

We suppose that ~t~t~=+oo and the discs D~--{~ 

~- ~ I ~ ~/~} do not intersect. Since ~,~ ~ 7 ~ implies 

< , we have 

in the domain G ~ ~+ \ ~., D~ . Hence the product C has 

no zeros in ~ . By Rouch~'s theorem the product C has 

exactly one zero, say C~ , in each disc ~. The Rouche's 

theorem allows to control the behaviour of the points C~ as 

~--~o . In fact l~(~)I~ ~/~ if ~D~. Therefore the 

estimate 

1 I 1 

is valid in 

Hence 

D~ . on the other hand 

~D~ 

So by Rouche's theorem we have 

~ a  r ~ -  Ct, -~-~I, Q S implies I ~ - C~l ~ -~ O~ and Since L 
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~ -4/SI,~ta. ~ - ~  ~ ~ , we get 

time, 
5" Writing the explicit expressions for and 0 

~-~ ~ ~=~ ~- ~/~ .,-~ t -  :~/~,~, ' 

we have 

so it is sufficient to check that the argument of the product 

~=~ ~-~/C~ belongs to the space : 

This follows from the formula 

which implies that the logarithm of our product belongs to H~ if 

REMARK. The method used for the proof of Theorem 3.3 allows 

in fact to obtain a stronger result. Namely, one can construct 

such Blaschke product B with Carleson set of zeros ~ , 

k~ ~¢ ~ = +oo , that the unimodular function ~0 belongs 

to /h • subgroup of H ~ ®  consisting of functions of the form 

~ , ~ eoc~ C ) {~:~ =~ ~ ~ ~ ~} • In this case 

the logarithm of the outer part of the generating function ~A 

will be uniformly bounded in the upper half-plane. To prove this 

it is sufficient to note that in the preceding example G~ ~*CE 

~Re m ~ H ~ 

(the equality holds on R and obviously implies go,~e~°C~)).~ 
In conclusion let us prove the theorem on the "complemen- 

ting up to a basis" mentioned at the beginning of the Section. 

THEOREM 3.4 (V.I.Vasjunin). Let (Cb~)~ be a Carleson 

sequence of points of the upper half-plane satisfying ~ I¢~@~= 
~t 

= + co . Then for any positive number Ob the family CG~)~ z 

can be complemented up to such a family C~)~eZ that the expo- 
nent a a ba nentials (e )%a][form n uncondition 1 sis in the space 

t~ ( o ,~) 
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THE PROOF follows immediately from Corollary 2.5. Let us 

remember that by Theorem 3. I for the Blaschke product with zeros 

~0~)~E Z there exists a number & , ~ E CO,~) , such 
that 

- B ' F ,  

where ~ is an interpolating Blaschke product and F is an 

function. Let ~ ~ be a zero of ~ , which is close to outer 

the zero ~ . Then ~tl~-~l=0 because ~y~ -~÷oo 

(@ee the application of Rouch~'s theorem in the proof of Theorem 

3.~). Therefore by Corollary 2.5 we can return the zero ~ into 

the point ~ for each ~ , may be except for a finite set 

of Yb . But a finite set of zeros causes no difficulty be- 

cause we can move them into any free place. • 

4. The equicgnver~ence of harmonic and non-harmonic 

Fourier series. 

Suppose that ~= [~: ~E~IC C~ , ~E~ , and the 

family of exponentials (e~K~)~Z forms an vnconditional 

basis in the space ~ ~,~) . Let ( ~ Z  be the "coor- 

dinate family" (the dual sequence) for this basis: 

C ~  ~=~-~le~ ~(~) ~= I ] ,  ~=~" 

Then to each function ~ , ~ C~ (-~,~) corresponds the 

non-harmonic Fourier series 

( e 
~,~7/ 

It is natural to consider together with the non-harmonic Fourier 

series the harmonic one: 

The main theorem of this Section demonstrates that as to the 

convergence inside the interval ~-~, ~) ,a non-harmonic Fouri- 

er series behaves in the same way as the corresponding harmonic 



303 

one. 

THEOREM 4.1. Let ~ = {~: ~ C C% , ~E~ , and 

let a family of exponentials C ~k~ J ~eZ form an uncon- 

ditional basis in the ~ace ~i(-~,~). Then the equality 

holds for each function ~ , ~ E D(-S, ~) 

REMARKS. 1. The initial formulation of the Theorem guaran- 

teed only the equiconvergence of the harmonic and non-harmonic 

~ourier series uniformly on compact subsets of the interval 

C-~, ~L) . A.M.Sedletskii has amiably informed one of the 

authors that proposition (12) was recently proved by him assu- 

ming the set of frequencies lies in a strip of finite width 

parallel to ~ . Our method turned out to lead to this more 

general proposition too. The method of A.M.Sedletskii differs 

from ours. 

We refer the interested reader to the paper [ 24 1 contai- 

ning a lot of other useful facts about bases of exponentials. 

In particular it is shown there that it is impossible to impro- 

ve the weight (~%-I'~I) 41'% in (12). 

2. Without loss of generality one may suppose that ~CC~. 

Indeed, suppose Theorem 4.1 is proved for such sets ~ . Con- 

sider then the set of frequencies h-~ , ~ 7 0 . It is 

clear that the dual sequence for the family of exponentials 
- t 

~e ~(x~- ~)~)~ coincides with the family (e ~ ~(~))~Z" 

Then the non-harmonic Fourier series for the function f with 

respect to the new family is 

By assumption this g~ies is equiconvergent with the Fourier 
t s ~ t  

series e~ ~. ~ ~-~ (~) 6 . Let S N (f,~) de- 

note the partial sum ~ A,~.(.)e~t of the Fourier seri- 
,~ I~I~N 

es of . Then we have 

e~ tSN (~e -~s ,~ )  - S N (~,]c) : 
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=et~g 85&¢ ~-s --0(9. @ 

3. By technical reasons it is convenient to replace the 

partial sum in the formula (12) by the integral 

($) ~ . Simple estimations of the Di- 

richlet kernel show that the such replacement causes an error 

at most 0(~)' ll~II i ( ~ ~ + ~o) • 

4. Since the family of o _exp°nentials (6gk~x),eZ forms 

an unconditional basis in ~~(0,@), h is a Carleson set. 

Then there exists a positive number ~ , so small that discs 

are disjoint. Let ~ be an arbitrary positive number, D(0,~)= 

= {~ EC . I~I < R1 , and ~ be a closed curve forming 

the boundary of the domain D (0,~) O {D~:D RND(0,~)~I . 

(see the diagram below). 

OR D~ 

-R R 

A t t h • e n d of the section w e s h a 1 1 d e - 

m o n s t r a t e that it is possible to replace the sum 

(~ ~) e ~ by the sum ~ (~, ~) ~ 

not violating the condition (12). 

THE PROOF OF THEORE~ 4.1 follows in its idea a plan, pro- 

posed by N.Levinson [ 48 ] . Though we prove a more general re- 

sult, than the Levinson's one, our proof is technically simpler, 

because we use estimates of entire functions satisfying the con- 

dition (~i) on ~ ~ . We have chosen the interval (-~,~) 

instead of (0~ ~) , for the sake of symmetry. Let F be 

the generating function for our set of frequencies. Then 

G ~ = [-~, ~i] and 
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C lea r l y  (see [ 4 8  ] ) 
'X 

F t I ett~ 
(~-X<bF'~x~) =TE kd{) &k, 

~bET/ . (~3) 

Let S be the Blaschke product with the zero-set ~ , 

let ~ be the outer part of F IC ~ and ~(~)~ ~(~) , 

[~ ~ < 0 • Then 

L e ~ k ' (~ )  , i f  I~,  t<O. 

Note that l~l~I R satisfies the Helson-Szego condition. The 

Blaschke product S satisfies the following condition 

I Ig   l>o. 
R>O R 

This inequality is an immediate consequence of the Carleson con- 

dition ~IB~ (~)I >0 . Our choice of O~ is aimed 

just at the lower estimate of ~ (O~t CR) . 

The "algebraic" base af our proof is the following lemma due 

to N.Levinson which may be derived from the book [ 48 ] • 

LE~I~A (N.Levinson). For an arbitrary function ~ , 

E L £(-~-~,g%) , for any positive number ~ and for each 

t , I t l < 9% , the following formula holds: 
R 

tC ' o-u t -s  
-R 

F(~ 

Here t(3c)=~! e-_ fC~)cL~ is the Fourier 

transformation of 

REMARK. Theorem 4.2 will follow from Levinson's len~na, if 

we prove the inequality 

FiY,) [ J  ~ ) 
OR 
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Indeed, then 

It remains to note that "S~cl"Yt'~ei'k~'m%[-g,g] ' Y L C ~ I ~ L  .- = 

and the equiconvergence holds for the exponentials e ~x, ~bEZ, • 

PROOF OF LEVINSON'S LE~B~A. According to the Cauchy's formu- 

la 

~ I e~ e~t e~>~ e ~  ~i G{~c~-<~ 4<~ %G'~%~Cx-~,j Gc~,) %I-R, R]C~ 
C~ 

(assuming Oc ~ +_ ~ ). Hence 

k~[,~tC~ G'c~.)(~c-k~) - ~'[-R ,R] Coc) ; 
C~ 

this implies, in particular, that the left part of the preceding 

formula belongs to [%( ~ ) . Computing the Fourier transform 

of the left and right parts and using the inversion formula we 

get 

e ~i e ~ ' ~  s c' i,~(.~-s~z 

R -R 
Multiplying this by ~ ~ (S) , integrating over the interval 

[-F~, ~] and interchanging the integrals we obtain 

Now we need only to note that 

I 
Let us justify now the interchanging of the integrals. The 

function 0C ~-~ IG (0c)1% , oc ~ i , satisfies the Mucken- 

houpt's condition C~) and hence (OC-~)-IG(0c) ~ ~C~) if 

~ ~ . If we remove ~ the preceding formula the part of C R 

lying in the strip ~8 = {~C : I I~I 4 ~} , the formula 

will follow from Fubini's theorem. Now we use an estimate which 

can be easily verified: 

' ~--:-g- I) C:, 0 
I ~l-~ o G¢~) C~-~) ' ' 

C~n~ 
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and note that according to the Sohotski's formulae the function 

O ~-~ ~ is uniformly bounded on C R and has only 

tw~o points of discontinuity (jump-points) namely ± R . The 

passage te the limit 8--~ 0 completes the proof. 

We shall need estimates of the Poisson's integrals P~CW) 

of functions W satisfying the Muckenhoupt's condition C~) . 

Let us denote by ~ the outer function (in C~ ) satisfying 

I ~ C ~ ) I = W c ~ )  , o c e R  . 
LE~E~A 4.2. The following ~ssertions are equivalent. 

2) There exist functions t~ and ~ , tb,~L'(~) 

with 

3) The outer function ~ maps the upper half-plane into 

an angle with vertex at the origin and with size less than 

; 

5) There exists a constant 0 , O > ~ , such that for 

The proof can be found in the known paper [ 40 ] (see 

Theorem 2). Note that the assertion 3) of Lemma implies that the 

restriction of the outer function ~ on any line {~$~=~} , 

> 0 , satisfies the Muckenhoupt's condition if the restric- 

tion of ~ on the real line does. 

The proof of the following lemma is contained in [40] also. 

LEM3~A 4.3. Suppose that W ~ C ~ ~) . Then there 

exists a constant C , 0 >0 , such that for any ~ , ~C+ , 

the ineguality 

£ I 
is valid. 

Now we prove the inequality (14). fo~this aim we divide 

the contour C R into two parts C~ ~ 0 R ~ C+ and 
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0E /~ 0 R ~ C_ and prove (14) for each contour separa- 

tely. Let us begin with the estimate for the boundary CR (the 

case of OR being analogous). 

If I*%~ <0 , then the function (~-~)~ ~ obvious- 

ly belongs to the Hardy class m ~ in the strip {~6C 0<~<~): 

So according to the Cauchy formula we obtain 

R R 
from which the inequality 

,I II 
la:.-CZ;-~)}~ 

R R 
follows immediately. 

Remind, that ~ is the outer part m IC+ 

the assertion 5) of Lemma 4.2, we obtain 

c 
I IL(a>~lz d, ac ,< }h,C~+~)l  ~. 

lac-(~-~)l ~ l+ l I 'm~l  
R 

Hence 

c; R 

"< ~'l l~lla'(*-l~:l)~/zl Ih,'~c~;~l ,4t+lZm~l 
observing, that CR 

, t / z r ' - ( ~ - I h ) l I m ~ I  id, z;I - e -I]7'm'~l 
<-I:1) 5e ~ - I  ¢ ~  , la'41=0(O, 

we see, that it is sufficient to prove the inequality 

iLc~i,+g)l.acmMIk*c,~)l, I,m,~; 4o. 

the identity 

. Applying 

(z5) 

It is obvious, that 

k ( ~  = e . F(~ B-~(~ , 

is an entire function: 

~ C . Since zeroes of the pro- 
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duct 8 lie in the half-plane ~i , the function 

proves to be outer in ~_~ . Further, if ~ ~ ~ , then 

I~(~-~l= ~ .e ~lk*C~-bl. 
IB(~-~i 

The function il , l ~ * ( I - ~ ) l  £ satisfies the condition (~l) 

(see assertion 3) of the Lemma 4.2). Zeros of the product 

satisfy Carleson's condition (C) , outside small discs ~ , 

~E~ , lying in the half-plane ~_ , the inequality 

I~(~)}~ >0 , 11~¢~ ~0 is valid. According to the 

symmetry principle ~(~)= ~ ~ < 0 . Hence B(~) 

and t therefore,~ the function %1 
condition (A~) as well. 

Consider an auxiliary function 

half-plane: 

• I h , ( I - . ~ ) l  'z satisfies the 

defined in the upper 

Remembering, that ~*C~]= ~(<) , we can rewrite ine- 

quality (I5) in the following way: 

To prove this inequality let us use Lemma 4.3: 

(the inequality 5) of Lemma 4.2 is used in the last inequality). 

Thus the inequality (15) is proved. 

Some words about changes needed to estimate the contribu- 
+ 

tion of the contour C R into the integral~in the left-hand 

side of (14). Since the function C~-~)-4~ belongs 

to the Hardy class H ~ in the strip {~ -4 ~ I~% < 0} for 

e C+ , we have 

i I  F(m)t(m)x_1 a~l= Es-;:X< 
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Since F= Be-~k ~n the half-p~ane C+ 
0 on ('JR ' an estimate 

e~<~ J_ Z~ 4< I 
q 

-.< IIl I1~" cmM'su9 Ih.(<)l 

holds. 

F(~)~'(~) 4~_I 

and IBI ~ ~"> 

e I[~<%1 I 441 
(~_l [ i )  ~/~ f IBc~)l e~: '~ ~ I ~ ' 4  

To finish the proof of Theorem 4.1, we have to prove the 

assertion from Remark 4. 

LEMMA 4.4. If ~ L~ (-~,~) , then l(f, ~)I~ 

~c, orM ~ e -~1:~'~'~, I l fh • 
PROOF. From the formuls (13), Parseval identity and Schwarz 

inequality we have 

[ ~ I~,~ ~ 4~] ~/'~ '1 

~urther, F = k B e -~ in the half-plane ~+ . Hence 

= k~. e . Now we need only 

to note that 

I B'C%)I = C~]MX~) -41B,~c~,~'~I >, ~ (~ . I~ ,~)  -~ 

and applying the assertion 5) from Lemma 4.2 completes the pro- 

of. • 

For any positive number R consider the set N R of 

integers % such that k~ ~DC0,~) but D(0,~) DDa~ 

~ . Let us show that 

,~i~<.~ l(~-'tl~j~" C[, ~ )  e ~ k ~  I ~ c'oce-~ ' lJ~ II~ • 
~N~ 

Due to Lemma 4.4 the inequality .Jl[ ~ , -(~-l[l)[~ka 

  .IIIll  c - to e 
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is valid. The discs ~ are disjoint and their radii are pro- 

portional to the distance from the centre ~ to the real line. 

Therefore the number of indices ~ , ~b E N R , with ~K 

I~ ~ ~ ~K+~ , K = 0~ • .. , is uniformly bounded. We 

need only to prove an elementary inequality: 

p>0 ~_ " ~.9.~) ~/~ e -P~  < + oo 

It is clear that without loss of generality supremum in this 

inequality can be taken with respect to the set { ~" ~ = ~, 

.  hen 
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PART IY. 

THE REGGE PROBLEM IN THE THEORY OF DIFFERENTIAL 

OPERATORS 

An investigation of the completeness and bases problem for 

a family of eigen-functions of a differential operator containing 

the spectral parameter in the boundary condition is our main task 

in Part IY. As we shall see, the approach, which has been utili- 

zed in the preceding parts, is useful in this part as well. We 

intend here to demonstrate the approach in one more special si- 

tuation rather than achieve results of maximal generality. Subt- 

le results of differential operator theory form only a scenery 

for our exposition. So this Part can be addressed to the reader 

who is, possibly, for the first time, getting acquainted with 

the problem of eigen-function expansions. 

L e t  ~ > 0  and  l e t  / be a p o s i t i v e  f u n c t i o n  o n [ O , ~ ]  • I t  

is assumed that /(~C) ----__ ~ if ~> ~ for some number 5/ 

i n  (0 ,  @) and t h a t  

0 0 
Let  

o 
Now the spectral problem (t h e R e g g e p r o b I e m ) 

for a second order differential operator ~, ~-~'~ ~ 
,p 

in ),~p (0~ ~) containing a spectral parameter in the boundary 

condition can be stated as follows. Let 6~(~) be the set of 

all oomplex numbers K such that the equation 

(2) 

h a s  a n o n - z e r o  s o l u t i o n  ~ (  ~ ) . The q u e s t i o n  i s  - d o -  

e s  the family (~(0c,~))K~6~(/)~ of all sucho solutions form 

a complete family or even a Riesz basis in ~~~(0~ 5) 9. This 

problem came from the scattering theory on a "transparent" com- 

pact barrier for acoustic waves spreading in a medium with a 

constant refraction coefficient. 

The plan of our exposition in Part IY is the following. In 
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§I we give a brief outline of the Lax-Phillips approach to the 

scattering theory for wave equation. In ~ 2 the relationship of 

this theory and the Regge problem is discussed. In conclusion in 

§3 we formulate our main result and consider an important examp- 

le. 

In what follows we assume the reader's familiarity with 

beck@rounds of the theory of self-ad~oint operators. A detailed 

exposition of the theory is given in E67] , ~8] . 

I. Lax-Phillips approach to the scatterin~ theory. 

It is well known that the wave equation for the semiinfini- 

te string with the free end %----- 0 and the local propagation 

speed jp-4 , f ( X , )  ~-- 4 

~C*,O) = %C~) 

for 0O ~ ~ , is defined by 

is called " t h e 

(3) 

To be more precise we are to consider the space E as a space 

of equivalence classes identifying ~ and ~ iff t~ I ~ ~IW , 

I~ O- Ir 0 ~ const, co 
now ,o t j  i~ ~ .  r, . . ~ ~.- ~ ~|'~I~X<+O0~ be a Hilbert space Let 

cO 

with the inner product ~ , t ~ 1 ,  ~ ~--- I ~ X  . 

LEw& 1.1 The operator ~, ~_ _i0~@ "--~__~ with the domain 

(4) 

E- -  : 
0 

co 

0 

~he~ir ~ (0 ) - - (%,~ )  Oauchy 
d a t a ", or simply "data", of the problem (2). T h e e v o - 

I u t i o n o p e r a t o r ~$ of (2) transforms (by defini- 

tion) the data ~(0) into the data ~(~)=(t~(OC,~),t&~(~%~)) re- 
lated to the moment $ . A natural Hilbert space of data is a 

Hilbert space E of all data with finite energy: 
O0 
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Z 
is a self-adJoint non-negative operator .~in Lj 

PROOF. The set ~(h) is dense in ~ . Indeed, if ~ is 

any smooth function with a compact support in (03+ 0~) then 

~O~D(~, ) because according to (I) we have 

<<' i I ~°''j'~ '~.J~ ~ <~x..+:<, ,~1 hq> ~ g ×  - - F  J,x ,," = ~ ~u,£, I~ (~)1 - F  • 

Olearly, "~1 EeLs/t" °°)~LL~(CLp,+°°),~://l~lbs~cg)eLl~+°°) i f  ~ E ~ ( i , )  
(~(JC):---d for 96 ~ ~.p ) . It follows from the well- 

i 

-known inequality 
C0 

eO O0 

I I (I ( l  I 
(take the Fourier transform for the proof) that ~{~';$ ~06)~ 0 

~-* +o0 
for any ~ in ~(~) . 

It is also clear that I:I ~ff($)I ~-- --- < +0~ for any 

in ~ (G)  and for  X~(O)+Oa) . Indeed, 

0 0 0 0 

The i n t e g r a t i o n  by par t s  shows now the operator  ~, i s  s y m m e t -  

rio. 

TO prove L =  C it is sufficient to check that ~ ( L ~ ) C  
C. 3tl,.I) . Let e e  ~ ( h * )  . Then 

eo 

• This means, in particular, that 

I< '~,~ >L$1= 
for-a~ ~ in 3(b) 

and therefore the distribution '1/F coincides with a 

nite measure ~L on [0~ ÷ co ) . Then 

7 
¢ 0 

~-fi- 
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" ~ ~ = p~9 is absolutely continuous with and therefore 

f~Ip,~ <+O0 . it is clear mow that:$~/~ . 

To prove that I/~0) = 0 we should only remark that 

0 o 0 

This, obviously, implies that 

tip b o 
Therefore the assumption ~/~0)~ 0 implies that the functional 

~-~(0) is bounded in L~ . • 
TWROREM 1.2. The operator 

is self~djoint. The f~-~ly(U,)~~ of evolution ,, .°Perat°rs 

coincides with the strongly continuous unitary groupU~--8~p~$~). 

For every ~ ~ (~0~I) in ~(~) the formula~(~) u~.~-- " - -  ---de_ 
fines a function ~0(~) satisfying (3). 

PROOF. Our first task is to check that the operator ~ de- 

fined above is self-agJcint. A simple calculation shows the ope- 

rator ~ is symmetric on a dense set of smooth data: 

o~ 0 0(9 0 

0 0 

Let ~ 2 (~) . Then, clearly, 

for every ~ in ~ } ( Z )  . Let ~: ( '1 ,~0~,0)¢  ~(Z) . Then 
co co 

0 0 
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Then it follows that 
co 

Since the operator L is self-adjoint in ~ (see Lemma I 1), 

we have ~I.Y OE[,J:, , '!3"J(0) : 0 and th'e~refore ~ - ~ C  ) • 
By the Stone theorem the opera to rs  U$=eXp( '~ )  are u n i -  

To prove the last statement of the theorem one should only re- 

mark that ~(~)c~ _ _~(~) (see theorem YIII.7 of ~7] ) 

and therefore ~--~(tl=~(~l. • 

THEORE~ 1.3 (Huygens principle, see [47] ). Let I : ( ~ , ~ )  
be an i n t e z v a l  on ~ +  , l e t  Xo~-I-  and l e t  ~ ~ ] ( ~ )  
and ~ I T ~ 0 • Then "~L(~)(~) = 0 for sufficiently small 

t 
T PROOF. According to (1) jD(,:)C,)~ 0 a.e. on ~ . SO the 

I~(5) ~ is, obviously, function 

o~ c #o 

[4 (::r,) ----- I~ ,p(,) ~ ~ 

strictly increasing and the function 

i ~(~) ~5 decreases. A point C on 

the picture can be found from the equation 

~ 5 : C f ( $ ) 4 6  • Let  

for C~<0~<0 and let ~(O0)= Ioc~(~)~ 

f o r  C < ~ c ~ G  . At last,T= l~fCC> = ~}~(c) . We show that the 
energy of the wave with the boundary values ~ vanishes in 

the d~in GC~0) • ~o do thi~ let $~(~,I=~0 = ~(ZZl • We 
have 

@ ( t  o) . . 
C l e a r l y ,  f o r  O < ] ~ < ~ o  ' 

- - t .  1~ .%4 X ~X , X , 
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But 

~C~o} ~, 

• 

G(to).-~, 

t~Cf01 
We get the~fore 

A remarkab le  p r o p e r t y  o f  the  u n i t a r y  group (U~)~ ~ 

that it has a pair of orthcgo~al imv~riant subspaces (~, 

in E satisfying 

For example, let 

is 

~-) 

44 
Then ~0(~$) is called an i n c o m i n g w a v e 

and ~o(06-$) is called an o u t g o i n g w a v e . Clear- 

ly 
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if ~O(~)~G0%~t for gO< ~ , and if t •0 . So we may 

~magine the space ~_ as the space of incoming waves and ~+ 

as the space of outgoing waves. It were P.l~x and R.Philllps who 

have stressed the importance of these invariant subspaces for the 

first time E47] . They advanced a new approach (L-Ph-approach) 

to the scattering theory for unitary groups which have invariant 

subspaces of this type [47] . Let ~ ~ E (~ . (~  ~- } . The 

scattering matrix arising in L-Ph-approach turns out a cha- 

racteristic function for the strong continuous semlgroup of con- 

E69] 

The following lemma describes the data in K • 

LMMMA 1.4. Let ~ ~ . Then ~ ~ if and only if 

~0(~)~- ~Od45t forOC~ ~ and ~i(~) ~ 0 for ~ ~ • 

for 06~ ¢b~ . Then clearly 

Therefore ~ ~ if and only if 

for every $ in G~ . The du Bois-Reymond lemma implies that 

this is equivalent to the statement of the lemma. • 

semi oup ( Z t ) t >- 0 is ,,  tary eq va- 
lent to the semigroup _~K~ 6~×t I K~ , ~ ~ 0 . Here ~ is 

function ~ is called a c h a r a c t e r i s t i c f u n c- 

t i o n for (~t)t >0 . ~m the scattering theory is 

known as a reflection coefficient. We shall return to its physi- 

cal meaning a bit later. 

It is remarkable that the unitary correspondence between 
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the semigroups can be given by explicit formulae. To do this we 

have to find a family of generalized eigen-functions for(~)t~ 

or equivalently for ~ . In its turn this can be done with the 

help of so-called J o s t s o i u t i o n s ~(~ ~) : 

-~'~ ~2~, ~¢~,~)=~, ~,'(~s,~)=-~A. 
The existence and uniqueness of the Joet solution ~ ( ~ )  is 

implied by the standard existence theorem of the differential 

equations theory. Moreover, the well-known iteration method le- 

ads, obvio~I~ to the conclusion that A ~ ~, A) is an e~- 

tire function for every X in ~ . Let now ~>@~ . Then a 

Jost solution corresponding to a point G~ is defined by 

~C~,A) ---- e ~A(~'~)' ~(~,A).  

Clearly, 

and ~ C ~ , ~ ) : ~  -~A{~'~) for ~>~ . 
It follows from the uniqueness of the Jost solution that 

A linear combination of the Jost solutions 

(~) 

satisfies the boundary condition ~(0~ ~)= 0 if 

~',, (o, Al ~j'(o,A~ 
"rt ",s olear that I : ~ ( ~ ) 1 =  1 for ~,~ 1~ (~ee (5)) .  A s~p-  
le computation shows that ~ ~( ~,~)__--_ ~ ( ~ ( X , , ~ )  for 

Let E o be a dense subset of data in  E 
compact support in ~ . We define a mapping 

which have a 

~_ by the folio- 
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wing formula. ~ o r ~ E 0  let  
oo 

<fg s ~  o 
oO 

0 

THEOREM 1.5.  The c l o s u r e  o f  the  o p e z a t o r ~ - : E ¢ - ~  h g ( ~ )  
oo 

g l ~ -  zgf£ $ %(x,,~)~,× 
0 

d e f i n e s  am isometz~¢ of E onto g ( ~ )  . The following fozmtLlae 

hold 

H_ , SLH  

The function ~¢ is an inner function in ~+ and 

PROOF. Let ~¢~. ~ E o . Then ~ = ($O, 1J') and$~(a~)-------O 

for 05 ~0~ . It follows that 
+oo 

52_1,= 
g 

+m 
{ 

O~ 

r a - - ]  1,1, - - - -  . 

~ O~ 
Hence, by the Parseval theorem and by (3) we have 

+m )~/~,  

An a~lo~o~, oomputation shows t~t for ~ e  ~ ,  n E o 
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Paley-Wienerand again we t~eo~m ' I ~ "  I I r~ l l~ {e?  Ilull ~ . , o - , ,  ,o , ,o- .  , ,  , ,o 

Let now ~ be a smooth function in 

< ~, ¢~(., A)> E = A<~, %(. 

and consequently 

Eo . Clearly 

'~)>E 

Therefore the boundary condition ~0 ~ I 

<U~ l~e,~ >E = e~t < ~,¢~> E 
By theorem 1.2 

implies 

Therefore ~_ maps the space E isometrically onto [, (/]~) ~ . 

I% follows, 0 I f r o m  Ut ~ ,  C~+ for 1)>0 that 6%~$'~¢~'~+ C 
C~' HZ. , for every $ > 0 • By P.I~x theorem 1-18] this means 
~ ~ ~.. ~..o~ ~=c~o. (I L~>I=~; x-~ ) • 

REMARK. The function ~ being a quotient of entire func- 

tions, it is clear that 

Here ~ denotes a Blaschke product in ~+ 
limit points in ~ and 0 ( ~ ) =  e~p(~c~l 

The transformation ~_ Is called an 

spectral 

group (U~)$~ 

whose zeros have no 

, C > O  . 

incoming 

r e p r e s e n t a t i o n for the unitary 

• The spectral property of ~_ means that 
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~_ transforms the group (~)$~ onto the unitary group 

(e iAt)t~ ~ in L~(~} 
Let now discuss the physical meaning of the reflection coef- 

ficient ~ . It is clear that 

and that the evolution of the part of the "wave packet"--- -,~(~= 

-- ~ ~-~ in ~. e ~+ is defined by 

- 4~ a \ %(x,I) / 

T h e r e f o r e  f o r  O~ > 

+ - ~  

--~ C~+~)+ qSo~ ~ (~-t) . 

We see that the complex amplitudes g ~ . V ( ~ ) . ( ~ / ~ )  

of the spectrum of the incoming 

and outgoing waves are connected with the help of reflexion co- 

efficient. 

2. The wsve equation and the Re~e problem. 

A key to the connection between the Regge problem and the 

unitary group(U~ It~ is given by an explicit description 

of the generator A o~ the contractive semigroup(~$)~O • 
THEOREM 2. I. The generator A of the semigroup~ = e~tA= 

=PK 6~t~ I ~ is a max~m~l completely dissipative operator in 

K . Its do.in ~ (A) i~ 

andA~ ~ for~K 
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PROOF. The operator A is a maximal dissipative operator~ 

because(%)$~ 0 is a contractive semigroup (see theorem X. 48 
[68] ). Assuming that A has a non-trivial self-adjoint part, 

we see that there is a non-zero element ~ in ~ such that 

~C =V~ ~ fo r  every ~/>0 . Therefore "[J-~_L ~+ for 

every ~ >0 and~i ~_$ ~ for $ >O. But E=s~a~(U t~)+: ~ >0~ 
and so ~=0 • 

The computation of the domain for A is a more subtle prob- 
lem. Let ~0 be the set of smooth data in ~ supported on 

com~ct su~sets o~ (0,~; . ~.et ~o=~I~o • C~earl~,~0 ~s 
symmetric in ~ . Using Theorem 1.2 , one can easily prove 
that 

~0 ~---- ~13(~) . Standard arguments lead to the 8~Id that 

conclusion that the deficiency indices of ~0 are (1,1). 
Indeed, if, for example, 

for 

t~t i~ Ke~(~-~)='1 • 

By theorem 1.3 for any ~ in ~0 
if $ is small enough. Therefore ~C A 

mai,~ o f  A i s  co.rained in g(~[) . 

we haveU$~ ~ 

and also I oc  A~ . 
a n d  t h e r e f o r e  t h e  d o -  

Let, for the time being, ~ denote the restriction of 
onto the subset of data in 3(~) satisfying the bounda- 

ry condition ~L0f(~)+ ~(~) = 0 . Clearly, ~ is a closed 
operator. Moreover ~ is a dissipative operator in K , i.e. 

~ < ~ > E  >/ 0 . Indeed, for every ~@(~) 

< ; g ' g > E - -  ~ 1,%N ix = 
o o 

O~ o~ 

0 o 
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0 

~herefo~ J~<~'U.,~14> E = J ~.~CO.,)I%0 . 
The operator ~ is a one-dimensional perturbation of ~0 " 

so to prove B= A it is sufficient to check that ZtD(B)c 

C3~3) (see theorem X.49 E68] ), for $ >0 
Let ~ DCB) . Then ~ ~+.~= 0 for$'~O because 
U.t~_ C ~_ and ~I ~+ ~'~-~ . This means that outside of 
the inte ,r, val CO, ~) the solution U~ ~(x) is outgoing and therefo- 

~(U,~)'(~)+(U+~LCX) -- 0 for ~ ~ . ~ut 

[~+~)0 ~W~(O,a,~)and (Ut~)4C WI (O,~*t) and in particular~ 
these funct~ions are continuous. Therefore~/0(~)+(U$~)4(~)=0. 
To finish the proof it is sufficient only to remark that the 

projection of ~ onto ~ is a pair in ~ (~) 
v~(~)-~s$ , ~(~)~ 0 for ~ > ~ w~oh coincides .~th 

on (0, ~) • • 

REMARK. It is easy to see that for the generatorA/~--A @ 
of the conjugate semigroup the following formula holds 

 cK:UoGW (o,a,), 
Now we are in a position to describe spectral properties of 

the operator A . Let % (~) denote a point spectrum of an ope- 
rator ~ , i.e. the set of all eigen-values. Remind the reader, 
see lemma 1.4 , that a vector-function ~ in ~ is complete- 
ly determined by its restriction on the interval (0~ @) and that 
~ (X~ ~ ) denotes the Jost solution corresponding to a point 

THEOREM 2.2. The spectrum 6~(m) of the dissipative opera- 

tor A ise  l to 
~M~)=0} ~he resolvent(A ~I) -~ is compaot. ,or k~(A) 
the eigen-function ~ corresponding to the eigen-value ~ is 
defined by 

'B~ {.o~)= ~,-~- ~ , , {x ,~)  ~se [o ,  o,,,]. 

The spectrum ~4(A) is symmetric with respect to the imaginary 
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a~is. q(A~--0"~(--A) . 
PROOF. The first statement of the theorem is implied by 

theorem 1.5. To prove the resolvent of A is compact it is, ob- 
viously, sufficient to check that the operatorT~--_--]3 I 

I(s'o ~,* ~, 
is compact in K~@ . A simple, but important formula, connec- 
ting Hankel and model operators, (see E18~ , p.237) implies 

~'~ H-~, 4 - - T  e 

The function ~ being holomorphic on ~ , it is clear that 

~.(~+~)-I C0 (~) and therefore by the Hartman-Sarason 
theorem (see, for example, ~83 ) the operator ~ (~+$)-I is 
compact. 

We have by the definition of the reflection coefficient 
[ -I 

~(~)=--~(0~ ~ ) .  [ ~ (~)(0)-~)) and thereforeK~(A) 
iff "~,O,,( O, K) : V~, . It follows from the definition of the 
JostA. solutionA,that ~K E O(~) • Now the proof of the equality 
A'~K --- K'~I~ is reduced to a calculation. The last sta- 
tement of the theorem is an obvious consequence of (5). @ 

A completely analogous result holds for the adjoint opera- 

tor A* . Clearly, ~ ( ! ~) *= *~ C A_) *" Here is a formula for 

the eigen-function ~ A 'M,' K = K ~K : 

The following formulae will be useful in what follows: 

~ K , - ~ =  2, g~,~) , ~ - / 4 -  ~ ~('~) (7) 

It should be remarked that 

A t ~  ~.I,t,~ ~ ~ d , ( A ) .  
THEOREM 2.3. The following are equivalent: 
a) the family{~K~: : Kc6~ (A) } is complete in K ; 
b) the f ~ i l y ~ ( o C ,  k): Ke¢~ (A) }  of the ei~en-~c- 

*) ~he ope~tor A bein~ aissi~ti,,e, it follow, 3~K:'O. 
otherwise we would get an eigen-value for A in ~_ . 
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tions for problem (2) is complete in L>(~, 
PROOF. a)-->b) is obvious in view of (7)• b)----->a). It is 

sufficient to check that the completeness of the family 

{~%(~C~K): K~'~(A)} in ~,~(0~) implies its completeness in 

~(0)(b) • We have 

0 o 0 

f o r  satisfyi  = • • 
Henceforth we shall often assume the following technical 

condition is satisfied: 

I t  s h o u l d  be r e m a r k e d  t h a t  t r i v i a l  e s t i m a t e s  u s i n g  t h e  Oauchy 

f o r m u l a  
U ~ TITR, OREM 2.4. Suppose the family [~k)~: ~e~ (A)~ f o r m s  

an unconditional basis in ~ . Then the family of the eigen- 

-functions for the Regge problem (2) forms an unconditional ba- 
, 1 4 .  

s i s  in I,.[065)j__, " a n d  i n  --,,-W~ { O, / l )  simultaneously. The conver- 

ss is t~, if ~ (~ . 

PROOF. The family of 2-dimensional subspaoes spanned by the 

vectors '~K , -- ~ forms, clearly, an unconditional basis in 

. Therefore the first statement of the theorem is a conse- 

quence of (7). 

To prove the second one we remark the functions .~ and 

I~ K are othogonal for ~ =/=- K . Indeed, 

It remains to discuss the case ~= $~6 , %~> 0 • I% follows 

from ( ) that the angles between the vectors ~$t~. and ~ are 

bounded away from zero. To see this we use theorem 1.5. T~en the 

angle between ~'"V"~"('7,,,-{,'~)"~ (,.~+~)"L.~" coincides 

is a Blaschke product with simple zeroes in a half-plane 

~ fors~e 6>0 • 

THEOREM 2.5. Suppose the family (~$~06 "z~a u )~. ~2@rms an uncon- 

ditional basis in ~,Z(0~ ~) . Then the family of the eigen-func - 
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tions for the Regge problem (2) forms an unconditional basis in 

L } ( ~ )  ~d in W~(~,~ . ~he converse is t~e if~e(*J. 
PROOF. The first statement of the theorem results from theo- 

rein 2, Part I, theorem 1.5 and theorem 2.4. To prove the second 

statement one should simply inverse the order of theorems cited 
a b o v e .  @ 

3. Asymptotic properties of the reflexi0n coefficient 

and an example to the Rogue problem. 

It is assumed in this section that ~ C%~0j~] , 

0~_ .'~(',,~)~0 and that ~$~ f(~) =# ~( ' l~ ' l 'O)=  ~ . It follows 

from the formula 

l~rto~-/t) ' 
that all needed information about ~ 

Jost solution ~(~)~) corresponding to the point ~ 

We begin with an analysis of a "standard" equation 

c a n  be e x t r a c t e d  f rom t h e  

One can easily prove that the Green function ~(OCj'lP'jJ~J _ of 

the "standard" equation is defined by. 

f .-t/~, . . . .  ,,-1/, ~ A  I~j'(~d~ 
~cx, f~, l }= 0 , 4,÷ x~, ~ . 

Remind that by definition the Green function satisfies the equa- 

tion: 

-G/r+ pll~'(t'~l~j rt'6-- X ~ / ~  = d'C~-~) . 

Therefore for any solution W0 (I, i~ of the "standard" equation 

the solution ~(~, A) of the~integr~l eq~tion 

which, obviously, can be solved explicity: 

7(~1 = j , - v~ (~ .e~ I~ ' s  '¢~d~ ' 
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satisfies (2) with the boundary conditions 

~,( ~,~,, A~ = 7,o (~ ,e ,A)= ' l  ~ 7.Q %,,,b = 7~,<s,,,~ ) = -  , t .  
The following formula def ines the function 'lJ/O(~,~/~) : 

A well-known method of iteration can be applied now to investi- 

~te the as~ptotic be~vio~ of ~QO~ ~) I" )// 
,,et r ( , , f , , x ) ~ ' e c < t , b  ~pq~,(tj,p-/$(~ . Then 

az 
}; 

}~,+~(~,,X) = I"~Rx,f,,1)%{t)A) dt ,  ~ez~+ . 
The induction arguments imply 

] ~,,,(b>X)l~ c, *'q'- 
and therefore the series 

oo 

14,=0 

tial type: 
a S 

4 . e~p[Ir~ ill, ?(~)& }. 7,d;>X)-~oC1~,),) = 0 (4 ) .  I , t l  

6) d'j . A formal differentiation of the 

asymptotic formula gives 

d.lI~AI 

o f  t h e  e x p o n e n -  
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The proof is given by the iteration method. A simple computation 
leads to the following formula: 

Hen0e, 

• - ~  (IO) 

Clearly, 

and therefore ¢~(~-~3(0~e) -~ ¢0¢~ is a sine-type func- 

tion with the sequence of zeroes 

0 

where A= 0 if 2(~$)> ~ andA=~ if ~C~2)< ~ . One can 

easily check now that the sequence(A~)~ ~ of the zeroes of 

 r(0 satisfie  
o 

This implies the sequence ( ~ ) ~  is an interpolating one 

H for + . It follows also from (I0) that 

- "I+ $ ( a ,  e ) 
and therefore 

where ~ is a Blaschke product. 

THEOREM 3. I. I) If 0¢~<~~+ ~ then the famil~ of ei- 

gen-functions for the Regge problem (2) is complete in l~(O#6b). 

2) If Cb ~ ~#~% then the family of eigen-functions forms 

a Riesz basis in ~(0~ Cb) • 

PROOF. The function ~f(0~) being equal to zero at ~ 0 , 
-I [ o " 

we see that ~ ~ (0~ ~) is an entire function. It follows 
from the asymptotic formula (9) that i'{~F<0,~}e ~T~ . The 
width of the indicator diagram of this function is equal to ~ . 
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So we see that 

where ~ is an outer function for ~+ . On the other hand, we 

have by (II) 

and therefore ~ = ~IPi%-~) ~ ~ ~ ~ . ~s implies 

~' c ,k}=  e, = -  A e g  

It follows from A-4~Q0, X)e gTP that l£lte(HZ) and 
U 

therefore 

d~t (O ~ B, H+ )< q . 
We see t h a t  s t a t e m e n t  2) o f  t he  theorem i s  now a s i m p l e  c o r o l l a -  

r y  of theorem 3, Part I, theorems 2.3-2.5• 

To prove statement one we should use lemma 3-bis instead of 

theorem 3, Part I. • 
~= ~:$2(X)~06 has a nice p h y s i c a l  in%erpreta- The number 

M- 
ilch. Namely, it coincides with the time needed for the point 

perturbation of the end ~6= O of the string (2) to reach the 

point 06=6g~ (see theorem 1.3.)• 

An example discussed in this section is closely related 

with an interesting paper [69] 
L -J 
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