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0. INTRODUCTION

In this paper, we study a special case of the weighted polynomial approximation prob-
lem on the real line. In the general setting, this problem was investigated by S. Bernstein
and M. Riesz, and later by N. Akhiezer, L.. de Branges, L.. Carleson, T. Hall, P. Koosis,
B. Levin, P. Malliavin, S. Mandelbrojt, S. Mergelyan, H. Pollard and many others (for
an extensive discussion see the survey papers [2, 28] and the book [21, Chapter VI]). In
spite of significant efforts, the general problem is still far from being explicitly solved.
In this paper we deal with a special case of the problem of density of the polynomials
in LP(u) when the measure p is supported by the zero set of an entire function of zero
exponential type. This problem appears in the indeterminate case of the Hamburger
moment problem [3, 5, 6, 7].

Given a (positive Borel) measure y on the real line such that

/ P du(t) < 00,  n >0,
R

we associate with this measure its moment sequence

sn:/tndu(t), n=20,1,2,....
R

The Hamburger moment problem consists in finding, by a sequence of numbers {sy, },,>0,
a positive Borel measure p with moments s,,. If the solution is not unique, we say that the
moment problem is indeterminate. Furthermore, measures p solving such problems are
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called indeterminate (4 € (indet)). In other words, for a measure p to be indeterminate
means that there exists another measure v, v # p, with the same moments:

!/t”mdﬂ:i/t"m4ﬂ, n=01,2,....
R R

Otherwise, the measure 4 is said to be determinate (p € (det)).

R. Nevanlinna described in [29] (see also [3, Sections 2.4, 3.2]) the set of all solutions
to an indeterminate moment problem. He parametrized this set using the class (N) of
functions ¢ holomorphic in the upper half-plane C; and such that

Ime(z) >0 for Imz > 0.

This class includes real constants, and we add formally the constant oo function. As a
consequence of the Riesz—Herglotz formula, every function f in this class possesses an
integral representation (see, for instance, [3, Section 3.1])

1+ uz

<uiz - ) (1+u?) do(u), (0.1)

1+ u?

da(u):az+b+/

R

f(z):az+b+/

R U—Z

for z € Cy, where a and b are real numbers, a > 0 and o is a positive Borel measure
of finite mass. If f is extended to the lower half-plane C_ by f(z) = f(z), z € C_,
then formula (0.1) holds for z € C\ R. (Generally speaking, this is not an analytic
continuation.)

For a fixed indeterminate moment problem there exists an entire matrix-function

A B
< () B(2) ) ,  AD-BC=1, (0.2)
C(z) D(z)
whose elements A, B, C, and D are real entire functions (entire functions with real
coefficients) such that for every t € RU {oo},

C(z)t + D(z)
A+ Be) €W

The Nevanlinna formula

_ Cr)elz) + D(z)
v(z,v) = A)o(x) T Bl2)’ v € (N), (0.3)

gives a bijection between the class (N) and the set of the Stieltjes transforms

o(z,v) :/Rdz/(t)

t— =z

of all the solutions to the indeterminate moment problem.
2



A solution p to an indeterminate moment problem is called canonical if it corresponds
to p(z) =t, t € RU{oo}, in formula (0.3). We shall also use the term a canonical measure.
Canonical measures correspond to self-adjoint extensions (without extension of space) of
symmetric operators with indices (1,1) associated with Jacobi matrices, see details in [3,
Chapter 4]. These measures enjoy important extremal properties (see, for example, [3,
Theorem 3.4.1]). Every canonical measure is a discrete measure with masses on the zero
set of the corresponding entire function A(z)t + B(z), t € RU {co}. (To prove that all
the zeros are real we use that B/A is not a constant and B/A € (N). This last inclusion
can be verified in the following way. If vy and v, are the measures associated by (0.3)
correspondingly with ¢ = 0, ¢ = oo, then the measure (v + Vo )/2 solving the same
indeterminate moment problem is associated with B/A.)

Fix a canonical measure p. Since the matrix-functions

and
<A(z) B(z)> < Ccos o Sina>
C(z) D(z) —sina  cosa
correspond to the same indeterminate moment problem, without loss of generality we
can assume that the support of i coincides with the zero set of B. We denote this zero
set by A, Ap C R.
By a theorem of M. Riesz [3, Theorem 2.4.3], the elements of the matrix-function (0.2)

describing the solutions of an indeterminate moment problem are entire functions of zero
exponential type. Furthermore, we have

n+1 (A) 1
EA: w0 S EA: - \/ 20y \/ DVB N1+ 1)

<[ 2GR 13 oo iw] <= nee

AEAB AEAB

Here the sum of the series in the first square brackets is just the moment of order 2n + 2
of the measure vy whose Stieltjes transform is equal to —D/B. The sum in the second
square brackets converges because A(A)D(A) =1, A € Ap, and —A/B € (N). We need
only to use an immediate consequence of formula (0.1) which says that since the function
—A/B in the class (A) is meromorphic in the plane and has poles only on the real line,

AN
géisz?zxﬂiipxgj<:oo. (&4)



Definition. The Hamburger class $) consists of all transcendental real entire functions
B of zero exponential type with only real (and simple) zeros A € Ap such that
Al

lim
IAl—=oo |B/(A)]
AEAB

=0, n > 0.

Without loss of generality, we always assume that the origin does not belong to the
zero set Ap. A Hamburger class function is uniquely determined (up to a multiplicative
constant) by its zero set.

Thus, entire functions involved in the Nevanlinna formula (0.3) belong to the Ham-
burger class. Furthermore, if

p= Z B0

AEAB

is a canonical measure, where 0y is the unit point mass measure at the point A,

_ by 1
=By T AnBy e

then the functions A and D can be reconstructed by the formulas

A(z)_az AN T 1 IR 1 11
B(z) +ﬁ+>\§BB’()\)[)\—z ,\] +6+A§Bu>\[3’(/\)]2[)\—z ,\]’

()
D(z)
B(z)

D) 1 15\
Yz 40+ E BV A — 2 Yz 40+ E P
AEAB AEAB

where a,y > 0, 3,0 € R. Estimate (0.4) ensures here that

1
2 S BOPaT ) <

AEAB

In 1944 H. Hamburger claimed the following statement to be valid.

Statement (Hamburger [18], [3, Addenda and Problems to Chapter 4]). A positive
measure (1 1s a canonical solution to an indeterminate moment problem if and only if for
some function B € $ we have

(i) w= ) mrdx; > APuA <00, n >0,
AEAB AEAB

.. 1
W 2 HmEa T <
L
W 2 SmmE
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In particular, for the masses px = [B'(\)]™2, A € Ap, conditions (i)—(iii) are fulfilled,
and as a result, the zero set Ap of an arbitrary entire function in $) should be the support
of a canonical measure.

In 1989 a gap in the proof of Hamburger’s Statement was found by C. Berg and H. Ped-
ersen. Soon P. Koosis [23] constructed a counterexample to Hamburger’s Statement.

What was the source of Hamburger’s mistake? We have already pointed out that if p
is a canonical measure, then conditions (i) and (ii) should hold. On the other hand, if
@ is a measure satisfying conditions (i) and (ii), then p € (indet), see [3, Addenda and
Problems to Chapter 4, Lemma 2]. Furthermore, a theorem by M. Riesz, [3, Sections 2.3,
2.4], asserts that the following conditions are equivalent:

(a) The set of polynomials P is dense in L?(1u),
Clos LZ(N)P = Lz(u). (05)

(b) Either p € (det) or p is a canonical measure.

Thus, a measure y is canonical if and only if conditions (i) and (ii) are fulfilled together
with (0.5). Hamburger believed that when conditions (i) and (ii) are fulfilled, condition
(iii) is necessary and sufficient for completeness of polynomials in L2(u). It is indeed
necessary. Consider a function ¢ defined by c(A) = [uxB'(A\)]~!, A € Ap. If

1
2 BIEOP <

AEAB /1})\[

then the function c is an element of L?(x), and it is orthogonal to P,

P\ _
ZB =0, Pep,

by Lemma 3 in Appendix 3.
However, condition (iii) is not sufficient for completeness of polynomials. In [23] a
entire function B € §) is constructed such that for the measure p =Y, [B'(A)]” 25 A

Clos LZ(N)P 7é Lz(u),

and hence, p is not canonical.
The above described situation was the reason for writing this paper. Here we consider
the following problem.

Problem. Let B € $, 1 < p < oo, and let 1 = Y 5., #a0x be a (positive) measure
such that P C LP(u). When
Clos rp(uyP = L¥()?

In Appendix 1, we prove that in the so called “singular case” of the weighted poly-
nomial approximation in LP(u), the measure p must be supported by the zero set of a
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Hamburger class entire function. This gives another motivation for studying the above
formulated problem. As a counterpart to this abstract result we show in Appendix 2 how
our methods can be applied to yield the complete solution of the weighted approxima-
tion problem in a very concrete model case. Our main results are presented in Section 1.
Making use of an approach suggested by de Branges [9], in Section 2 we give a solution to
the above described problem (Theorem A) and derive a correct version of Hamburger’s
Statement (Corollary 1.2). In Theorems B and C, proved correspondingly in Sections 3
and 4, we give concrete sufficient conditions on a set in R to be the support of a canon-
ical measure. Another sufficient condition, Theorem D, is formulated in Section 1. An
example given in Section 5 shows that the conditions of Theorems B and C cannot be
essentially weakened. Some results on Hamburger class functions we use in our paper
and a lemma on divisors of entire functions constructed by regular subsequences of zeros
are contained, correspondingly, in Appendices 3 and 4.

A part of the results proved in this paper and an intrinsic relation to de Branges’
theory of Hilbert spaces of entire functions and to results by Akhiezer and Gurarii [1,
16] are described in [8].
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1. MAIN RESULTS
Fix B € $. Let us consider a function w on the zero set of B such that w(\) > 0,

lim |[A|"w(A) =0, n > 0. (1.1)
[A] =0
AEAB

We introduce the Banach spaces /P (w, Ap), 1 < p < oo, of functions a on Ap, with norm

lalinm = 3 WV PlaMP,

AEAB
alle= (w,a5) = sup w(A)|a(A)].
AEAB
Since £*°(w,Ap) is not separable, we consider, as the natural limit case of the scale
P(w, Ag) for p = +o0, the space ¢o(w, Ap) of functions a on Ap such that
lim w(A)|a(A)| =0,

[A| =00
AEAB



with norm
lalleo(w,ap) = sup w(A)]a(A)]-
AEAB

Thus we obtain the scale of the spaces /£ (w,Ap),

P(w,Ag) = P(w,Ap), 1<p< oo,
0 (w,AB) = co(w, Ap).

Their dual spaces are

2w Ap)] =0 A5), 4 =11<p<oo,

1.1
b q
with the usual pairing: if a € £ (w, Ap), b € £1(1/w, Ap), then
(a,0) = Y a(\)b(N).

AEAB
Since B is of zero exponential type, condition (1.1) implies that
,PCE{:(’LU,AB), 1 SPSOO

Theorem A. The polynomials are dense in 05 (w, Ag) if and only if for every function
F € $ such that Ap C Ap, we have, for 1 < p < oo,

Z 1 p/(p—1)
_ = +00, (1.2)
2o [wF )
and forp =1,
lim inf w(A)F'(A\) = 0. (1.3)
[A| =0
AEAFR

The case p = oo (with agreement p/(p — 1) = 1) in Theorem A is a special case of a
remarkable theorem by de Branges [9, 21, Chapter VI| which gives one of the solutions
of the Bernstein weighted polynomial approximation problem. The proof of (the general
case of) de Branges’ theorem uses extensively geometric properties of the dual space to
co(w). Another proof found recently [32] uses ideas that go back to P. Chebyshev and
A. Markov. None of these proofs seems to work for the spaces ¢?(w, Ap). However, in
the special case under consideration, when the weight is defined on a discrete set that
does not accumulate too fast at infinity, the polynomial approximation problem in the
spaces £P(w, Ap) can be reduced to that in the space co(w, Ap), see Appendix 1.

The quasianalyticity theorems given in Chapter I of J. P. Kahane’s work [20] may be
interpreted as statements on weighted polynomial approximation on zero sets of entire
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functions of Hamburger class when the weight is log-concave. In the opposite direc-
tion, de Branges’ theorem and its extension given above provide results on the kind of
quasianalyticity problems considered in [20]. In the recent paper [4], J. M. Anderson,
D. Khavinson and H. Shapiro study the following problem: what rate of decrease of the
coefficients ¢, of Dirichlet series with negative exponents —\,,

§ : Cne—)\nz

AEA

(absolutely convergent in the closed right half-plane) guarantees that such a series cannot
represent a function which vanishes with all its derivatives at the boundary point 0
of the half-plane? This problem might be reformulated as the weighted polynomial
approximation problem on the discrete set of exponents A. Their main results pertain
to the case when A = {n®}, n € N, a > 2. In this case, A is the zero set of a Hamburger
class entire function. In Appendix 2, we show that in this special “model” situation the
results obtained with the help of de Branges’ theorem are stronger than results of the
papers [4, 20].

Theorem A immediately yields a correct version of the Hamburger statement:
Corollary 1.1. To make Hamburger’s Statement correct, condition (iii) should be re-
placed by the following condition:

(iii") for every F € $ such that Ap C Ap, we have

1
}\;\:F W = +00. (1.4)

Remark 1.2. In the letter of October 5, 1997, A. Bakan informed us of his recent results
concerning the Hamburger moment problem. In particular, he formulated

(a) an analog of our Corollary 1.1 where the condition F € $) is replaced by the condition
that F' s just an entire function of zero exponential type.

Furthermore, he claimed that Hamburger’s Statement is wrong in the following strong
sense:

(b) for every B € $), there exists p satisfying the conditions of Hamburger’s Statement
and such that p is not a canonical measure.

Let us describe how to derive these results from our Corollary 1.1.
(a) If A is a divisor of B € $), such that A ¢ $3, and for a sequence {pix}ren,

1
)\;A m < 00, (15)

we choose a rare subsequence of zeros of A and construct a divisor F' € $ of A by this
sequence such that for some ¢, n

|A'(N)] <A™, A€ Ap. (1.6)
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This is possible due to Lemma A3.4. Then

> _ (1.7)

2 PP

since |A"(A)| = o(|F'(N)]), |A| = oo, A € Ap. Applying Corollary 1.1, we conclude that
the polynomials are not dense in L?(y). O

(b) Given B € $), take an arbitrary divisor F' of B such that F' € $ and B/F is
transcendental. Our problem now is to find a sequence {cy}xea, such that

70)\|>\|n 0. @) n
1

DN U 9
> i = 00, (1.10)
AEAB

1 [B'(\)]?
2 SEoE <% (L11)

fu A2[B/ ()
() = max(l, 7[17,()\)]2 ), A€ AR,
1, A E AB \AF

Then (1.8) is satisfied because B € $, F' € §), and the fact that (1.9)—(1.11) hold follows
immediately. Now, setting uy = cx [B’(\)] 72, we obtain a finite measure supported by
the zero set of B which according to Corllary 1.1 is not a canonical measure. [J

The following Corollary explains the importance of the special case of Theorem A with
w(A) = |B'\)|71, A€ A, B e $:

Corollary 1.3. If v is a canonical solution to an indeterminate moment problem, B €
9, suppv = Ap, then the measure p =Y, [B'(N)] 7205 is also a canonical solution
of an indeterminate moment problem.

Proof. If x4 is not a canonical solution to an indeterminate moment problem, then by
Corollary 1.1 for some divisor F' € $ of B we have

> |70
!

AEAR F ()\)

Clearly, B/F is not a constant function. Pick a zero w of B/F and consider Fy(z) =

F(z)(z —w). If v = Y ycx, ¥A0x is a canonical solution, then by condition (ii) of
Hamburger’s Statement, for some C' we have

2
‘<oo.

:7 < CIB' (21 + 22).
9



Now,

2 1+ A2
2. VA[F’ =€ Z‘ ‘ A —wr =%
AEAFR

and again by Corollary 1.1 we obtain that v cannot be a canonical solution of an inde-
terminate moment problem. [l

Thus, Koosis’ example [23] shows that there are B € $) for which no canonical measure
i exists with supppu = Ap. This implies, in particular, that not every function in
$ can be an element of the matriz-function in (0.2) parametrizing the set of solutions
for an indeterminate moment problem. Our discussion in Introduction shows that the
description of canonical solutions to the Hamburger moment problem and the description
of the first row of Nevanlinna matrices parametrizing all solutions are basically equivalent
problems. It is worth to mention that Krein [24] and de Branges [10, Chapter 2| described
(in different terms) the first row of an arbitrary Nevanlinna matrix, see also [31].

Corollary 1.4. A Hamburger class entire function B(z) can be included into a Nevan-
linna matriz parametrizing the solutions of an indeterminate moment problem if and only
if the polynomials are dense in the space L* () with =Y cp  [B'(X)]7?0x.

This is just a reformulation of Corollary 1.3.

In what follows, we restrict ourselves by the special case w(\) = |B’'(\)|~! and try
to give some reasonable sufficient conditions for the completeness of the polynomials. It
seems to be quite hard to find explicit necessary and sufficient conditions.

Generally speaking, in order to apply Theorem A one needs to verify condition (1.1)
(or (1.2)) for a rather large family of “Hamburger divisors” F. Nevertheless, we show
below that this theorem can be efficiently applied (compare with recent applications [30]
of the original de Branges’ theorem).

Let us introduce some notations. A set A C R is said to be M-separated, if for some
C < oo,

A= N[ >CA+N)"MN, AN eA X#N.

Frequently we deal with the case when M is just a constant function.

In a recent paper [13], A. Fryntov considered the situation when Ap C R; is an (R)-
set in the sense of Levin [26, Chapter II, Section 1]: for the counting function n(t) of the
set Ap there exists the limit

1m@:A, 0<A<oo, (1.12)
t— o0 tp(t)

where p(t) is a Valiron proximate order (i.e. lim; . p'(t)tlogt = 0), 0 < limy_, p(t) =
p < 1/2, and the set Ap is (p(t) — 1)-separated. Then the function B is of completely
regular growth in the sense of Levin-Pfluger, and there exists the limit

. log|B'(A)]
)\li)n;o e = mA cotmp > 0.
AEAB

Therefore, in this case B € §).
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Theorem (Fryntov [13]). For the entire function B satisfying the above listed conditions,

1
2
C].OSez(lBlll 7AB)P =/ (W

) AB) .

A similar situation was considered by H. Hamburger in [18], where he produced a
false statement. A correct formulation (without proof) is contained in [3, Addenda and
Problems to Chapter 4, Subsection 5] where the credit is given to B. Levin. However,
the late Professor Levin told the second-named author that in his proof he had used the
Hamburger statement (see above). Fryntov’s proof of this theorem is rather ingenious
and involved. We show here that a little bit more general result follows easily from
Corollary 1.1.

Theorem B. Let B € $, Ap C Ry. Suppose that B is of normal type with proximate
order p(t) — p < 1/2, t = oo, and the indicator function hg. If

. log|[B'(N)| _
AEAB
then .
ClOSeg(B;’lyAB)P:££<®,AB>, 1 <p§OO, (]_]_4)

Remark 1.5. Note that as a consequence of Theorem A, for every Hamburger class
function B(z),
1

Clos p1(1/1B/|,A5)P # ¢ ( | B'|

7AB>7

since condition (1.3) is violated already for F' = B.

Remark 1.6. Note that since the Phragmén—Lindelof indicator of the derivative does
not exceed the indicator of a function, condition (1.13) means that the derivative of B
grows maximally rapidly along Ag. The condition of the maximal growth of the derivative
on the set of zeros occurs in the entire function theory, namely in interpolation theory
(see [26, Chapter IV, Section 4; 15] and references therein) and in the theory of Dirichlet
series with complex exponents (see [25, Theorem 8.3]). Conditions of Theorem B yield
that B(z) is a function of completely regular growth in the Levin-Pfluger sense (see e.g.
[11]; this follows easily from the proof of Theorem B given in Section 3) and therefore
the asymptotic relation (1.12) holds. K. Malyutin proved (see [15, Theorem 9]) that,
for entire functions of completely regular growth, condition (1.13) is equivalent to the
following separation condition:

1 ozl Ty (#) — 1
lim sup ———— / () =1 oy (1.15)
§—=0 ec |z|PUzD ), t

where n,(t) is a number of zeros lying in the closed disc of radius ¢ with center z.
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For Hamburger class functions of completely regular growth, condition (1.13) is not a
necessary one for the density of the polynomials (1.14). For every v, 0 < v < 1, there
exists a Hamburger class function B(z), Ap C Ry, of mean type and completely regular
growth with respect to order p < 1/2 such that

log | B’
liming 108 18" W)
[A| =0 p
AEAB

= vhp(0). (1.16)

and the polynomials are still dense. On the other hand, a simple modification of Koosis’
example [23] produces Hamburger class functions B with positive zeros and of completely
regular growth satisfying (1.16) with arbitrary v not exceeding 1/2 and such that the
polynomials are not dense in all spaces % (|B’()\)|_1,AB), 1 < p < oo. A gap remains
here: we do not know any example with these properties for v > 1/2.

Another possible approach to the problem under consideration is to use the method
by Fryntov [13] of constructing supporting polynomials for the Riesz—Hall-Mergelyan
majorant. In this direction we obtain the following result.

Theorem C. Let B € $ be such that

> % < 0. (1.17)

Denote

B*(r) = [ (1 + ﬁ)

AEAB

Suppose that, for some constant M < oo,

Ap is M-separated, (1.18)
e log | B'(A)

.. og

1 f———— > 0. 1.19

Almsce log BF(JA]) (1

AEAB

Then equalities (1.14) are fulfilled.

Comparatively to Theorem B, we impose here a much weaker condition on the growth
of |B'(A)|. In particular, we do not insist anymore on the asymptotic relation (1.12)
which, as was explained above, follows from the assumptions of Theorem B. However,
we must add an additional condition (1.18) which, locally, is much stronger than (1.15).
An analysis of the example constructed by Koosis in [23] shows that condition (1.18) in
Theorem C cannot be omitted. Furthermore, using Theorem A, we construct in Section 5
an entire function B € $) of convergence class (1.17), with M-separated Ap, such that
condition (1.19) holds with the upper limit instead of the lower one and nevertheless the
polynomials are not dense in ¢4 (1/|B’|, Ap).
12



Remark 1.7. If the zero set Ap is a subset of Ry, then B¥#(r) = B(—r) = M(r, B).
Here, as usual,

M(r,B) = |m|ax |B(z2)] .
In the general case (we assume for simplicity that B(0) = 1), a standard estimate of the
canonical product of genus zero gives

*° log M (t, B)

ot (1.20)

log M (r, B) < log B¥(r) <r /

r

In general, we do not know whether B# may be replaced by M (-, B) in the conditions of
Theorem C. Of course, if B has only finite number of zeros on one of the semi-axes, or if,
for some p < 1, the function r +— r=PM (r, B) decreases for big r, then B¥ is equivalent
to M(-, B). The last statement is a consequence of (1.20).

Remark 1.8. Lemma A3.5 shows that, under conditions (1.17) and (1.18), the property
(1.19) is equivalent to a lower bound for |B(z)| which holds outside exceptional discs
around the zero set: for some n > 0, M < oo,

log|B(2)| = nlog B¥(|2), =z ¢ [J D(AIATY).
AEA

In particular, conditions (1.17)-(1.19) imply that B#(r) < M/"(r, B).

By no means, we try here to squeeze from Fryntov’s approach everything it can give.
Our goal was rather to demonstrate that his approach works far beyond his original
assumptions. This fact was not evident at all since, from the first look, his proof in [13]
is rather rigid.

Here is another sufficient condition for the density given just in terms of A. Consider
a function V(r) = rP(") where p(r) is a proximate order, p(r) — p, 0 < p < 1/2,
rP(r) = o(r'/?) as r — +o0, and without loss of generality assume that V(r) increases
for r > 0. Denote by ® the inverse function to V.

Theorem D. Let A = {\,} C Ry and A\, /®(n) increase. Then A is the zero set of a
Hamburger class function B, and

1
ClOSEQ(B;”’A)’PZEQ(@aA)v ]-<p§00

Conditions on A of such type appeared in similar problems in Kahane’s thesis [20,
Chapter IJ.

2. PrRoOOF OoF THEOREM A

We start with a proposition which goes back to Koosis, he considered in [23] the case
p=2,w(A)=|B' (M| "
13



Proposition 2.1. The polynomials are not dense in £5(w,Ap), 1 < p < oo, if and only
if there exists an entire function f # 0 of zero exponential type such that

1 1
feéq( B AB) St =1 (2.1)
and Fiy)
) o fGy) (]
o[zl =0 ez -

Proof. If such an entire function f does exist, put ¢(A) = f(\)/B’(A). Then ¢ €
09(1/w,Ap). Let us verify that the functional on ££(w, A g) defined by ¢, is not identically
0, and vanishes on all polynomials. By (2.1) and the Holder inequality,

Z‘B, ‘|A|”—Z‘ ‘|)\|" \) <oo,  n>0.

This implies that

n+1f

Z A"c( , n>0, z¢ Ap. (2.3)
AEAB

The reason is that the difference of the left-hand side and the right hand-side is an entire

function of zero exponential type tending to zero along the imaginary axis (compare to

Lemma A3.2). The Phragmén—Lindeldf principle yields that this difference is 0.
Equality (2.3) shows that ¢ # 0. Furthermore, setting z = 0 in (2.3), we obtain

D A"e(A) =0

AEAB

and the polynomials are not dense.

Arguing in the opposite direction, assume that there exists a non-zero functional
c € ﬁq(l Jw, A B) which vanishes on the polynomials. We define an entire function f by
the Lagrange interpolation series

/() ()
Bl = 2

(2) AeABz_)\

The series in the right hand-side converges absolutely:

c(A)| w(A
3 [c(N)] w(A)

= < o0,
e z—A e w(A) |z = A

z ¢1\B-

Therefore, we easily obtain that f is of zero exponential type and satisfies conditions
(2.1) and (2.2). O

Applying this Proposition with f(z) = B(z)/F(z), we obtain
14



Corollary 2.2. Let 1 <p<oo, 1/p+1/qg=1. If F € $ is a divisor of B such that

1
w|F'|

1e£‘1< ,AF),

then
Clos g2 (i, a )P # th(w, AB).

This gives necessity in Theorem A.
For the case p = oo, this corollary as well as the much more delicate converse theorem
is proved by de Branges. Here we formulate a special case of his theorem:

De Branges’ Theorem (see [9, 21, Section VIF, 32]). If

Clos co(w,AB)P # co(w, Ap),
then for some F' € $ which is a divisor of B,

1
w|F|

1e£1< ,AF).

Now, our aim is to extend this converse theorem to all p.

Definition. An exponent p, 1 < p < oo, is normal (for the pair B,w) if

1

=1.
w|B’|

1¢£‘1( ,AB), +

1 1
p q

If p is a normal exponent, then all r, p < r < oo, are normal exponents as well. For
normal exponents, the entire function f in Proposition 2.1 is automatically transcendental
(since there is an infinite subsequence {\,,} C Ap such that f(A,) — 0asn — oo), and as
a consequence has infinitely many zeros. Dividing it by an arbitrary polynomial divisor,
we get another function satisfying the conditions of Proposition 2.1.

Corollary 2.3. Let p be a normal exponent. The polynomials are not dense in the space
(w, Ag) if and only if for every n < oo there exists an entire function f # 0 of zero
exponential type satisfying condition (2.2) and such that

wNIB V)]

, A€ Ap.
1+ A B

[f(A)] <
In particular, we obtain

Corollary 2.4. The equality

Clos glj(w,AB)lp = E{k’(w, AB)
15



holds simultaneously for all normal exponents p.

Combining this result with Proposition 2.1 and de Branges’ theorem, we obtain suf-
ficiency in Theorem A for normal exponents p. It remains to note that for exponents
p that are not normal, the polynomials are not dense as a consequence of Corollary 2.2
(with F' = B). This completes the proof of Theorem A. [

We finish this Section with a proposition needed in Section 4. For the sake of simplicity
assume now that Ag N (—1,1) = (). Consider the Riesz—Hall-Mergelyan majorant

My (2) = sup{|P(2)| : P € P, |P(\)|w(A) < AV}, N > 1.

For normal exponents we can improve the Mergelyan theorem [17, 28] a little bit.
Proposition 2.5. (compare to [13]) For the polynomials to be complete in /£ (w, Ap)
with normal p it is sufficient that for some N < oo, z € C\ Ap,

Mp(z) = +o0, (2.4)

and it is necessary that (2.4) holds for all N, z € C\ Ap.

Proof. To prove sufficiency we write the Lagrange interpolation formula for Pf, where
P is a polynomial and f satisfies the conditions of Corollary 2.3 with n = N + 1,

P(2)f(2) _ 3 P

er. B'(A)(z—A)
This equality is verified like formula (2.3). Furthermore, it implies that My is finite
outside Apg:

POVYw(A) FOOANTL 1
2. oW B' N w(\) Mz — )

AEAB

The necessity follows from the usual LP-version of the theorem (see [6, 27, 28]). O

3. ProoFr orF THEOREM B

If the polynomials are not dense for some p, then by Theorem A,

3 ‘ B'()\) ‘p/@—l)

Oy < +o00, (3.1)

AEAFR

for some Hamburger divisor F' of B. Then, for some positive constant c,

[ (M| = c|B"(A)], (3-2)
16



and for every € > 0 and sufficiently large A,
|F'(\)| > exp[(hB(O) — 5))\p(>\)] , A€ Ap.

Since F' and B are canonical products of genus zero with positive zeros, on the circle
|z| = r they achieve their maximal and minimal values on the negative and positive rays
correspondingly. In particular, F' also has a mean type with respect to the proximate
order p(r): for some positive constant Ct,

log |F(2)] < log |F(~|2])| < log |B(~2])] < Cu[##0D).

As a result, we obtain a lower bound for F' on a sequence of circles: there exist sequences
rn — +00, g, — 0, n — oo, such that

[F(rae®)| 2 |F(ra)| 2 exp[(hp(0) — en)rf"™)]. (3.3)
Indeed, if
log |[F(A+t)| < (hp(0) —e)A"N), te[-1,1], M€ Ap,

then the theorem on two constants applied in the domain
{zeC:lz=AN <1\ (A=1LA=1/AJUX+ 1/ +1])
to the subharmonic function z — log |F(z)| — log |z — A|, implies that, for big A € Ap,
log|F'(A)] < (hp(0) —e/2)A) |

that is impossible. Thus there are sequences r,, and &, such that (3.3) holds.

The lower bound (3.3) extends to the whole complex plane outside the union of small
exceptional discs around Ag. Let H be an arbitrary entire function of completely regular
growth in the sense of Levin—Pfluger (see [26, Chapter III]) (with respect to the same
proximate order p(r)) with the constant Phragmén—Lindeldf indicator function hg () =
ho < hp(0). Then the integrals

1 H(¢) d¢

2mi Jy¢1=p, F(C) 2—¢

tend to 0 as n — oo for every fixed z, and the residue theorem yields the Lagrange
interpolation formula

H(:) H() .
P~ 2 Pge-w FECVe

Our estimates on F” ‘A r and H imply that the series in the right-hand side of this equality
converges absolutely and for some constant c,

IF(2)] > c|H(z)],  dist (2, Ap) > 1.
17



The entire function G = B/F satisfies the estimate
c|H(2)G(2)| < |B(2)]

on the set {z € C: dist (z,Ap) > 1}. Since H has completely regular growth, hgyg =
hg + hg, and since every ray {argz = a > 0} eventually does not intersect exceptional
discs, hga(a) < hp(a). We conclude that

hc;(a/) = h,H(;(a’) — hH(a) S hB(a) - ho,

and, by the continuity of the indicator functions and the choice of hg, we obtain hg(0) =
0. Since G is of order less than 1/2, we conclude that G is of minimal type with respect
to the proximate order p(r).

Let us recall that, by (3.2), G is bounded on Ap. Therefore, we can use an argument
due to Ganapathy Iyer (see [14] or [22]). The Lagrange interpolation formula applies to
G™ and B for every integer n > 1:

G"(z) _ G () .
B - 2 Fove-n CCC\e

We obtain that G is bounded on the whole complex plane: if |G(A)| < M, XA € Ap, and
if

1
X6 = 2 pmew FEC\A

AEAB

then
G(2)] < M|B(2)X (2)|Y" < M.

As a consequence, G is a constant function that contradicts (3.1). O

4. PROOF OF THEOREM C

The proof of Theorem C uses the following factorization lemma. A similar lemma was
also used by Fryntov [13, Lemma 2]. Since the proof is rather standard, we give it in
Appendix 4.

Lemma 4.1. Let I' = {v,} be a real M-separated sequence (possibly, finite) such that
I'n(-2,2) =0 and

21:L<oo. (4.1)

yel v

f(z) = H(1_i).

yel 7

Put

Fiz m > 2, take an arbitrary sequence of entire numbers {rs}, 0 < ry < m — 1, and

consider ,
fu(2) =TT (1 - ).

s ’Ysm‘i‘rs
18




There exist numbers C = C(L) > 0, K = K(M) > 0, which do not depend on I, m and
{rs}, such that

! () p s
ST ) S pm <COTEN. 2 E Upbhi™, 6

L U gx
hiE < T <O €D (e}, (4.3

and
T A0 [
C sm-—rr . .

ChIE = T (m = Y v € {voman, (4.4)

Proof of Theorem C. Since exponents p > 1 are normal for the weight w = 1/|B’|, to
prove Theorem 4.1 it suffices to verify that the Riesz—Hall-Mergelyan majorant My (0)
is infinite for some N depending on M and 7.

We work with the zero sequence A = Ag. Without loss of generality, we assume that
Ap N (=2,2) = (. There are two steps in the proof: “Thickening the zero sequence”
and “Rarefying the zero sequence”. As a result, for every sufficiently big m, we obtain a
finite set A,, C A such that

lim inf {|A\|: A€ A\ A} = o0, (4.5)
m— 00

and “supporting polynomials”

satisfying the property
(PN < AMIB' V)], A€ A\ Ay, (4.6)

with N = N(n, M) which does not depend on m and .
Furthermore, property (4.5) and estimate (4.6) imply that there exists a sequence ¢,
of positive numbers, lim,, . ¢, = 00, such that

el PuN] < WNTUB'(N], A€ Al

Since P,,,(0) = 1, the definition of the polynomial majorant My (see Section 2) gives
that
Mn+1(0) > sup ¢, = +00,
m

19



and finally, by Proposition 2.5,

1
1,’AB)’P:££<@,AB), 1<p< 0.

|B

Clos g

Step 1 (“Thickening the zero sequence”). We choose inductively two sequences of
numbers {Ny} and {N},

1=Ng<N)<Ni <N;<...<Np<N_<...,

such that the following set of properties holds for k& > 1.

(a) N]; Z 2Nk, Nk+1 Z 2N];;
(b) For every A € A, k> 0,

dist (N, |A]) =

dist (Ny, [Al) >

(¢) The function n, defined by dn(t) = kdn(t), Ny—1 <t < Ng, k > 1, n(t) = 0,
t <1, belongs to the convergence class

< n(t
/ n()dt<oo;
0

t2

> n(t 1
(@) N;;/ M0 g < L
N, 1 2
(e) 2kn(Ng)logr < nlog B¥#(r), for r > NI, where 7 is the constant from the con-
dition of Theorem, and K = K(M + 1) is the constant from the conclusion of
Lemma 4.1.

Let us introduce a “thickened” sequence A C A. On both intervals [—Nk+1, —Ng],
[Nk, Nk11] we add by k new points between every two consecutive points A and X of
A. The same thing is done for consecutive A and X such that Ny < A < Npyq < X
or N < —=Npi1 < A < —Ng. Roughly speaking, the density of Ais k + 1 times bigger
than that of the original set A on [—Ng41, —Ng]U[Ng, Ni41]- Moreover, we add the new
points in such a way that

(f) they lie not far away from the old ones, namely for every pu € A \ A there exists
A € A such that

> Al and |p— Al < ——
lul = Al and [p |_4|/\|M,

(g) the set A is (M + 1)-separated.
20



Since N}, > 4* by (a), conditions (f) and (g) are compatible (without loss of generality,
M > 1). Furthermore, we can choose new points in such a way that

(b') For every A € A, k > 1,

. 1
dist (Nk7 |)\|) Z |)\|M—|—17

[y

dist (N, ) 2 Ty

As a consequence of property (c),

If 7 = ng, then property (d) implies

MQAQ/M Mﬂﬁgl.

2
Ngi1 t
Using the “thickened” sequence A we define an entire function B of zero exponential

type,
§(z):H(1—§>.

PYTN

The main result we obtain on this step is the estimate

IB' (V)| > c[B*(A))]", A€,

(4.7)
for some ¢ > 0, which implies, in particular, that Be $.
First, however, we need to state two auxiliary estimates.
Lemma 4.2.
1 B#(r+1)
W = ( __> i L
(2 ) >~
AEA
Proof.
BH*(r +1) 1+ ( 1 1
= — = 1+ >§ <1+ )gexp( —) U
B#(r) g 1+ N g |A| + 7 H |A| Z |A|

21



Lemma 4.3. If B satisfies the conditions of Theorem C, A € A, and z is such that

1
N< =
then, for sufficiently big |A|, we have
B(z)
poe < |28 < poyp (1.8

Proof. Consider the function h,
B(z)
(2) = log| —

harmonic in the disc D = D(A, 1/(2|A\|M)). Since B € $, Lemma A3.2 implies that

IZI” L
n>0
Z < |z = A[[B"(A)]’
Therefore,
m q-1
[B(:)| > |2 min |z — Al | |
A;A ey
and, as a result, for z € 9D and some positive c,
B
25 = el

Hence, for sufficiently big |A|, the function h is positive and harmonic in D. Finally, in
the twice smaller disc D(X,1/(4|A\|™)) we have

Slog [ B'(N)] = Sh() < h(z) < 3h(\) = Blog |B'()

which is equivalent to (4.8). O

Now, fix y € A, Ny, < |p| < Nj,. For sufficiently big k, we are going to get a lower
estimate for

_ 1 1
Bwl= T -5 =0 T -5 -4 -5
| 22 ALy
el AEA AEA A£L AeA
AFp A<Ng-1 Nk_1<|)\|<Nk+1 A>Ng41

22



The first and the third products can be dealt with easily:

I] ‘1 - %‘ >1 since N._; > 2Nj_,, (4.10)
YN
A<Np_1
I =410 f d’ 4.11
— 5| 2 3 because o property (d'). (4.11)
AEA
A>Ng 41

The difficult part here is to estimate the middle product. There are two cases: Nj_; <
|| < Ny and Ny < |u| < Ny,,. We consider only the first one; the second one does not
require essential modifications. Without loss of generality assume that p > 0. Put

Ap={N€A: N, <\ < Nij1}, k>0,
Ap={reN: Ny <|A < Npys b, k>0,

and
z
mi(z) = [] (1— A),
)\EAk
z
ae= I (1-3)
AEAL _1U(AK\Ag)
Then 1
b
o I =5 = ek g, (4.12)
XEA, A#p

Ni 1 <|A|<Ng41

It remains to estimate two terms in the right-hand side. Denote by A, the point of A
closest to p (possibly, A, = p).
First, we verify that

z N T v -4 O W | e
[ (2)] = B(2) 1=+ L=<l 2 =T e, (413)
[g‘ A g | /\] ew " B#(|\,))
M| <N [A|>Ng 1

for z = pu. Indeed, if ;1 € A\ A, then Lemma 4.3 and properties (f) and (g) imply that
B = Pl =M HB (A2

Furthermore, as a consequence of property (d),

I] ‘1—§‘§6, (4.14)

AEA
[AM>Ng1

23



and by Lemma 4.2 (|p — A,| < 1),

] T (e 2 < W

[X] <Ny, X <Ny,
If w € A, then

B(z)

2 =B,
po lz=p

IT (1+]%]) < B*(2D)
A= wl)

AEA

A< N

and we get even better estimates. This proves (4.13).

To estimate |Q.(x)| we use Lemma 4.1. The set of zeros of Q, Kk_l U (Kk \ Ag), is a
k times “thickened” set Ap_1 U Ag. Therefore, if 4 € Ax_1, then

air> [Bgu ] =[G | -5 gl
AN <Nk-1 IA|>Ng11

By property (e) we have

p po "N /k
I -4 < (1+Nk_1) < p®e-) < [B# ()],

and using estimate (4.14) we obtain, for sufficiently big k, that

B/ ()] ]
eC|ulX [B#(|u))]""

B @MY B e e o g e
= ]  ag E e 2w

Q)| > [

The last inequality is a consequence of condition (4.1) and the inequality

| B’ ()|

n
O 2 exp| L log B (|u]) — log(eC) — K log|ul| = 1, |u| = N,

which follows from property (e).
24



If, on the opposite, u € Kk_l \ Ax_1, then, again by Lemma 4.1,

|Q;(u)|z{'H’“‘lé’fingk(“)'r:[%'[ [T -5 1 \l—ﬁ‘]_lrﬂ

AEA AEA
IA<Ng—1 IA>Ngt1

and by Lemma 4.3 and property (e) we get like before that

: LG N
Q1> [ o G

> |B/ (A (4.16)

for sufficiently big k.
Gathering together (4.9)-(4.13), (4.15) and (4.16), we obtain that

| B (A [/

> |B' (ML) [F/® > |B#(X,)["™/5

for sufficiently big k. Lemma 4.1 implies now estimate (4.7).

Remark. Actually, we have proven that the function B satisfies all the conditions of
Theorem (with M = M + 1 and different 7).

Step 2 (“Rarefying the sequence”). Here we follow [13].

Let us enumerate the elements of A = {Aj}jez in such a way that [Ag] < |A|, X € A,
and
...<)\j_1 <)\j <)\j_|_1 <....

For every positive integer m, choose a sequence
A(m) = {)‘km—i-rk(m)}, 0< T'k(m) <m-1, ke€Z,

in such a way that
(ll) K(m) N [_Nm—la Nm—l] C AN [_Nm—ly Nm—l];

(V) K(m) N ([_Nmy _Nm—l] U [Nm—laNm]) =AN ([_Nmy _Nm—l] U [Nm—laNm]);
(w) A(m) N ((—oo, —Np | U [N, oo)) DAN ((—oo, —Np | U [N, oo))
Ihe fact that we are able to make such a choice follows from the construction of the set
A. Furthermore, we require additionally that the numbers r(m) satisfy the property

mlgnOO inf{|Al: A € ANA(m)} = 0.
Put

Apm = A\ A(m).
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To prove Theorem we need only to verify that the “supporting” polynomials

z
Pm - ( N _>7
=T (-2
AEA,
satisfy estimate (4.6). Put

w =g I 0-3)

AeANA(m)

Using Lemma 4.1, we can estimate |F), (p)| from below at points 4 € AN K(m)
Case 1, |u| < N/,_;. By properties (d’), (u) and (v), we have

1 7 1 W
Fawl=— [T p-%=— II [-%|

|4 = Al T elul

AEANA(m) AEA(m)
AFEp AFEp
Applying Lemma 4.1 and using (4.7) we get
L ()] = ——— | B (1) /™ > —— [BH#(Jul)] "™ (4.17)
T Celpl® ~ Celp|¥

Case 2, |u| > N/,_;. Our first inequality

_ LA AP _K
mawl= I =5 I -Slzp - I -5

x - |14
AEANA(m) AEANA(m) AcA
IN<Npm 1 A4, IA> N —1 AZ 1 [A[>Nm —1

Y

holds because all factors in the first product are bigger than 1; to rewrite the index set
in the second product we use properties (v) and (w). Therefore, by property (e) and
condition (4.1), we have for big m:

By ()] > B/ ()] H = %\]_1 > [B#(“Z/)(]‘ff/'(m_l) > [BH(u)]™™.  (4.18)
IAN<Np—1

By (4.17) and (4.18) we obtain that in both cases

c /m
B0 2 e (B ()]
Thus, for big N,
B'(n
Pal)] < o <WIMIB Gl ne A\,



Now, (4.6) is proved and the theorem follows. [J

An analysis of the proof of Theorem C shows that it runs under the following condition
imposed on the M-separable zero set A of a Hamburger class function:
there is a sequence 0 = Ry < Ry < ... < Ry — 00, Ry, > C(Rg_1,A), such that every
(M + 1)-separable sequence A, obtained by adding k points between every consecutive
AN € A with Ry < |\ < Rgy1, |A] < |N|, is the zero set of a Hamburger class
function.
In particular, if an increasing sequence of positive numbers { A, } satisfies these conditions
and {/n} is an increasing sequence of positive numbers, then {u, A, } also satisfies these
conditions. This leads to Theorem D. We leave the details to the interested reader.

5. AN EXAMPLE

Here we produce an example which shows that condition (1.19) in Theorem C cannot
be relaxed.

Example 5.1. For every p, 0 < p < 1/2, there exists a function B € $ of order p and
mean type, with zero set {A}r>1 such that

1
ClOSee(ﬁyAB)P#ég(m,AB>, 1 SpSOO,

and, for p > 0, there exists 0 > 0 such that

0< X1 <A —0N" k>, (5.1)
log | B’
lim sup log |B'(A)| >0; (5.2)
A—00 AP
AEAB

for p =0 for every 6 > 0 and for sufficiently big k

0 < Ap—1 < A — )\]16_6.

Proof. Let us consider only (the more difficult) case p > 0. First, take the sequence
Ao = {orte>1, Aok = k'/P. We are going to add some points to this sequence to get
the sequnce {A;}r>1. By induction, we choose sequences {7, }n>1, {tn}n>1, {Zn}tn>1 of
points on the positive axis and finite sets of points A, = {A\n k }1<k<m,, , such that

(a) r <tn <rTpt1/2, n>1;
(b) m, <C-th, n>1;
(€) tn <Ak < (3/2)tn, 1<k<my;
(d) the set A = Ag UA; U...UA, rearranged in the order of increasing, satisfies
condition (5.1);
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(e) if Bn(2) =[1,ea, (1 = 2/A)s Bn = [lococn Bss Fo(2) = 1, Fo(2) = [[1c5< (1 —
z/xs), then for some N independent of n (and to be fixed later)

|Bp(z)| >1—-27", x < 21y, (5.3)
H Bs(a:)‘ > 1, T > Ty, (5.4)

0<s<n—1

~ F,_1(\)]Y/3

|Bl.(\)] > %, A€ N UA,, 1 <A< T, (5.5)

and for some z,, € Ag U A,
|§7/z(xn)| < |Fn—1(xn)|2/3- (5.6)

Condition (5.4) evidently holds for sufficiently big r,; properties (b), (¢) imply that
(5.3) holds for sufficiently big ¢,,. If A, is empty, then (5.5) follows from (5.4) and the
estimates on the original product By given in [26, Chapter II, Section 2],

(5.7)

log |By(A)| ~ C,N7, A€ Ao,
log | Bo(A)| ~ C,N?, dist (A, Ag) > 1.

Let us add to A,, groups of N new equidistant points between consecutive points Ag y,
Ao, k+1, beginning from Ag j closest from above to t,,. We stop at the first moment when
condition (5.6) starts to be valid for some point x € Ay U A,, and put z,, = . Since on
the previous step condition (5.6) did not hold, condition (5.5) is still fulfilled.

It remains to verify that if we add by /N points between all the points Aoy in the

interval [t,,, (3/2)t,], then condition (5.6) is satisfied for the point =, = Ao x closest from
above to t,. (Note that in this case m,, =< Ct?). Indeed,

|Br(Xok)| < exp(—N(2° — 1))‘8,k)'

Fixing N > C,/(2° — 1) we get |B!,(Aox)| < 1 for big n, and (5.6) holds.

Now, B = [],~, Bs is of order p and mean type because of properties (a) and (b), is
in $ because of property (e), satisfies condition (5.1) because of property (d). To verify
(5.2), we note that on the intervals [r,, 2r,] the quotient |B/Bjp| is uniformly bounded
from above because of (5.3)—(5.4) and then use estimates (5.7).

Put F(z) = [[,51(1 — z/25). Then the function F' is of zero order and belongs to $
by Lemma A.4. Finally, |F’(\)/B’(\)| tends to 0 more rapidly than any polynomial for
A — 00, F(A) = 0, because of (5.6). It remains to apply Theorem A. O
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APPENDIX 1. SINGULAR CASE

Here we give some general information related to the so called singular case of the
weighted polynomial approximation problem in the spaces ¢P(w) and LP(u). The facts
stated below provide additional motivation for the results discussed in our paper. Prob-
ably, most of these facts are known to the specialists.

1. Let w: R~ [0,c], ¢ < 400, be a function continuous on S, = {x € R : w(z) > 0}
and such that
lim |z|"w(z) =0, n > 0. (A1.1)

|| —o00

We consider the space Cp(w) consisting of all functions continuous on S, and such that

lim | f(z)[w(z) = 0,

|z|— o0

1fllco(wy = sup | f (@) |w(w).
z€R

Condition (A1.1) guarantees that all polynomials belong to the space Cy(w).
We are going to use de Branges’ theorem [9, 21, Section VIF, 32] in full generality:

De Branges’ Theorem. The polynomials are not dense in Co(w) if and only if there
exists an entire function F' of zero exponential type, with simple real zeros Ap C Sy, such
that )
2 o

Conditions (A1.1) and (A1.2) imply that F'is in the Hamburger class $ (and conse-
quently, by a theorem of M. Krein [26, Chapter V, Section 6], in the Cartwright class).

For every s € R, define a weight w,(z) = (1 + |z|)%w(x). We call a weight w singular
if the polynomials are dense in Cp(ws) and are not dense in Cp(w;) for some s < t.
Otherwise, w is called regular.

The next result improves somewhat a theorem by Mergelyan [28, Subsection 24].

Proposition Al.1. If w is a singular weight, then S,, coincides with the zero set of a
Hamburger class function.

Proof. Since the set S,, does not depend on s, without loss of generality we may
assume that the polynomials are dense in Cy(w) and are not dense in Cy(w;). Then, by
de Branges’ theorem, there exists F' € $ such that Ap C S, and

1
Z < o0.
v, (L PNwM)[E (V)]
If Ap # Sy, then we can choose a point Ao € Sy, \ Ap and set Fy(z) = (z — Ao) F(2).
Then Fy € 9, Ap, C Sy and

1
o .
. WOV
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One more application of de Branges’ theorem gives us that the polynomials are not
dense in Cy(w), and we arrive at a contradiction. Thus, Ap = Sy, and the proof is
completed. [

For singular weights w, the set S, is discrete and has no finite limit points, therefore
we interpret the space Cp(w) as a space of sequences and we for it our previous notation

co(w).
2. Given a positive measure g on R having finite moments of all orders we consider the
spaces LP(u),

L) =S 1oy = [ I @Pdute) <00}, 1< o0,

Set dus(z) = (1 + |z|)P*du(z), s € R. A measure pu is called p-singular if the polyno-
mials are dense in LP(us) and are not dense in LP(u;) for some s < t. An analog of
Proposition Al.1 holds in this situation.

Proposition A1.2. If p is a p-singular measure, then supp p coincides with the zero
set of a Hamburger class function.

In the case p = 2, this assertion follows from classical results related to the Hamburger
moment problem [3, Chapters 3 and 4].

Proof. First, using Mergelyan’s argument [28, Subsection 24], we prove that supp p is
a discrete set and
card (supp p N [—r,7]) = o(r), T — 00. (A1.3)

As in the previous proof, assume that the polynomials are dense in LP(u) and are not
dense in LP(pq). Pick an arbitrary point xzy € supp p, and choose a function ¢ € C'(R)
with compact support such that ¢(xp) = 1. Then there exists a sequence of polynomials
P, such that ||t — P,||zr(u) — 0, n — oo. Therefore,

sup || Pl ey < C.

On the other hand, since the polynomials are not dense in LP(uq), the Riesz—Hall-
Mergelyan majorant

M, . (2) =sup{|P(2)| : P € P, ||P||Lr(u < 1}
is finite and, moreover, [21, 27, 28|
log My, (2) = o(lz]),  |z[ = oo
This implies that {P,} is a normal sequence in C; a subsequence { P, } converges locally

uniformly to an entire function ¥ of zero exponential type. Furthermore, ¥ = ¢ p-a.e.
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Varying xp and 1 we obtain that A = supp p is discrete and satisfies estimate (A1.3).
Thus,

p= Z HAON,
AEA
where

Z |A|" pa < o0, n >0,
AEA

1
P
2
2 [T+ A
We introduce an auxiliary weight w,
VP —AeA
w(a:) — /1’)\ ’ T S )
+00, x & A,

satisfying the conditions given at the beginning of Subsection 1. Then for every f with
compact support,

||f||co(w) = max|f MWpy < Z [F)[Pux = ||f||€p(u)

AEA
1 1
< max | [f(A)[P(L+ A - < A% o TN
AEA ] )\ZE;\ (14 |A])? o(w2/p) ze;\ (1+ |A])?2
As a result, we get continuous embeddings
co(wqyp) = LP(p) — co(w). (A1.4)

Therefore, p is p-singular if and only if w is singular. An application of Proposition Al.1
completes the proof. [

3. Now, we are able to characterize the supports of singular weights and p-singular
measures. Let us call B € $ a good Hamburger class function if it has no divisors G of
zero exponential type bounded on Ap such that B/G is transcendental. Observe, that if
such a divisor G exists, then F' = B/G automatically belongs to the Hamburger class.

Proposition A1.3. The following conditions on a subset A of R are equivalent:
(i) A = supp p for a p-singular measure ;
(il) A = Sy for a singular weight w;
(iii) A = Ap for a good Hamburger class function B;
(iv) A = Ap for a Hamburger class function B satisfying the following property: every
entire function S of zero exponential type such that

y" S (iy)
B(iy)
1 equal to a constant provided it is bounded on the set Ap.
31

lim
ly|—o0

‘:m n>0, (A1.5)



The equivalence of the properties (i)—(iii) follows from Propositions Al.1, A1.2 and
Theorem A. The equivalence of the properties (i) and (iv) follows from Koosis’ argument
[23] (which was already used in Section 2). Observe that condition (iii) looks much
weaker than (iv): if B € $ and G is a divisor of B of zero exponential type bounded
on Ap, then S = G satisfies condition (A1.5) which yields that G is a constant function.
However, we cannot see how to prove directly the equivalence of these two conditions.

Theorems B, C and D give sufficient conditions for a Hamburger class function to be
a good function. We think that the class of good Hamburger functions deserves a much
better understanding than that we have achieved in this work.

4. Let X be one of the Banach spaces LP(u), 1 < p < oo, or Co(w), and let
ox (P) = dim P+,

where

PLt={z*c X*:2*(P)=0, VPcP}
be the annihilator of the polynomials.

Proposition Al.4. For1l <p < oo andd €N, the following conditions are equivalent:

(i) dpr(P = d;

(ii) for every integer r, 0 < r < d, the polynomials are not dense in LP(u_,.), and
are dense in LP(pi_q);

(iii) the polynomials are dense in LP(p—q4), and for every a € R such that p({a}) =0
and every ¢ > 0, the polynomials are not dense in LP(p_q + cd,);

(iv) A. supp(n) =Ap, B€H;

B. for every F € $ such that Ap C Ap, card (A \ Ar) < d, we have

1
< +o00, 1 <p<oo,
2 O
and
lim inf py|F'(A)] > 0, p=1;
A—00
AEAFR

C. for every F € $ such that Ap C Ap, card (A \ Ar) > d, we have

1
= 400, 1 <p<oo,
2 T
and
lim inf py|F' (M) =0, p=1.
A—00
AEAFR
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A similar statement is valid for Co(w). In the L?-setting, the equivalence of conditions
(1)—(iii) is known, see [6] for references. Canonical measures are 2-singular. Moreover, a
measure 4 is canonical if and only if 67,»(,,)P = 1, and a special case of Proposition Al.4
with p = 2, d = 1 (and with g instead of u) coincides with the corrected version of
Hamburger’s statement given in Section 1 (Corollary 1.1).

Proof. The equivalence of conditions (i) and (ii) follows from the following simple ar-
gument from linear algebra. We use the pairing (f,g9) = [ fgdp for f € LP(u,) and
g€ L pu_,),1/p+1/q=1. Assume first that (i) holds so there are d linearly indepen-
dent vectors in L?(;) annihilating the polynomials. Then a linear combination v of them
annihilates d — 1 functions (i +2)~", 0 < r < d, or, what is the same, (i+z)"v belongs to
L7(p,) and annihilates the polynomials. Thus the polynomials are not dense in LP(u_,.),
r < d. Furthermore, the polynomials are dense in LP(;_4), otherwise, there is a vector
w € L9(ug) annihilating the polynomials and therefore d + 1 vectors w,zw, ... ,r%w
from L9(p) annihilate the polynomials which contradicts (i). Arguing in the same way,
we obtain the opposite implication.

The equivalence of conditions (ii) and (iii) was proved in the Cyp-setting by Mergelyan
[28, Subsection 28]; his proof works in the L? spaces as well. Assume first that (ii) holds.
Then there is a vector vy € L%(uq) annihilating the polynomials. By Proposition A1.2,
the support of p is discrete. Choose a point a € R such that p({a}) = 0. Then the
function v(z) = v1(x)/(x — a) belongs to LI(u) and, for every polynomial P,

P(a)/vdu:P(a)/Zl—SE;du(av) :/%du(aﬂ) :/deu. (A1.6)

Since the polynomials are dense in LP(), the function vy cannot be orthogonal to 1/(z —

a), thus
/vduz/vl(x) dp # 0,
r—a

and we can normalize v in such a way that [vdy = —c. Relation (A1.6) says that the
polynomials are not dense in LP(p + ¢d,), and (iii) is done. Reversing the argument, we
obtain the opposite implication.

The equivalence of conditions (ii) and (iv) follows from Theorem A. O

5. The weighted approximations by polynomials and by linear combinations of exponents
are rather similar [21, 27]. However, there are some differences. One of them appears in
the singular case [22, 23]. In weighted approximation by linear combinations of exponents,
the Hamburger class is replaced by the Krein class consisting of the real entire functions
C with real zeros, such that

r Z 1
= T
0~ 2 OG-
where the series in the right-hand side converges absolutely outside exceptional discs
around the points of Ag. By Krein’s theorem [21, 26], the Krein class is a subset of the
Cartwright class. In particular, the Krein class functions have exponential type.
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De Branges’ theorem claims that the linear combinations of exponents {e“m}_g<l<g
are not dense in the space Co(w) if and only if there exists a Krein class entire function

C' of exponential type o such that Ac C S, and

1
— < 4o00.
2w
The counterparts of Theorem A and Proposition Al.4 hold in this setting with Krein
class entire functions of exponential type ¢ instead of Hamburger class entire functions.
Furthermore, an observation by Koosis [22] shows that in this case the notion of a good
function is not meaningful: every Krein class entire function of mean type is good. Thus
the problem of description of supports of singular measures has a simple answer: a set
A C R is the support of a singular measure (or of a singular weight) if and only if A is
the zero set of an entire function of the Krein class having exponential type o.

6. Let us consider the situation where the set A = S, is discrete and does not accumulate
too fast at infinity:
card (AN [-r,7]) = O(rY), T — 00,

for some N < oo.

We introduce the scale of spaces £ (w) = £X(w,A), and assume, as before, that w
satisfies condition (A1.1) and hence, the polynomials belong to these spaces. The weight
w is called singular if the polynomials are dense in £4(ws) and are not dense in £%(wy)
for some t > s. Otherwise, w is called regular. Analogously to (Al.4), for s > N/p we
have continuous embeddings

co(ws) = 2 (w) — co(w).

Therefore, the notion of regularity does not depend on p, and in the regular case the
polynomials are dense or not dense simultaneously in all ££(w), 1 < p < +00. Now we
apply Proposition Al.1 and de Branges’ criterion of density of the polynomials in Cp(w)
to obtain such a result.

Proposition A1.5. If A is not a zero set of a Hamburger class function, then the weight
w 18 reqular, and the following two conditions are equivalent:

(i) the polynomials are dense in all /£ (w), 1 < p < 400;

(ii) there exist s < 400, ¢ > 0, and a Hamburger class function F', Ap C A, such that

wN[F'N)| > e+ A5, AeAp.

Correspondingly, in the singular case, A should be the zero set of a Hamburger class
function. This case is the main subject of our paper.

Finally, we note that the situation with general LP(u) spaces is quite different unless
some apriori conditions are imposed on the support of u: given 1 < r < oo, A. Kesarev
constructed recently a smooth measure p on R (which is automatically p-regular for every
p) such that for s < r the polynomials are dense in L®(u) and for s > r they are not
dense in L*(p).
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APPENDIX 2. A MODEL EXAMPLE

The Bernstein approximation problem on discrete subsets A of the real line can be
analyzed rather completely in the case when both A and the weight w(A) behave fairly
regular. In this appendix we show how de Branges’ criterion and the techniques developed
in the paper can be applied in the following concrete situation:

A= {nl/p}nENa p >0,
w(A) = exp(—cA™), ws(A) = A° exp(—cA\™), c>0,m>0,scR

Most of the results presented below are not new. Some of them could be extracted, for
example, from [20, Chapter 1] or from [4, Theorems 2.1, 3.1 and 4.1]. However, the
methods we use give the most precise results in this direction.

Following the previous appendix, we say that the weight w is regular if the polynomials
are dense or not dense simultaneously in all the spaces £%(w;), —0o < s < oo. Otherwise,
the weight is called singular. The discussion in the previous appendix shows that this
notion does not depend on the exponent p, 1 < p < oo. The results for regular weights
given below are presented on Figure 1.

iy
regular density region

121------- m=min(p,1/2)

regular non-density region
: =

12 0

FIGURE 1.

1. For m > 1/2 the polynomials are regularly dense in #£(w). To verify this fact, we
associate to every functional a on /£ (w;), a € £1(1/wy), 1/p+1/q = 1, its cosine-transform

F.(z) = Z a(\) cos(AY/22)

AEA

holomorphic in a neighborhood of 0. If a functional a vanishes on all polynomials, then
F, vanishes at the point 0 together with all derivatives, and correspondingly, F, = 0,
a = 0. This argument is given in [4, Theorems 2.1].
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2. For p < m < 1/2 the polynomials are regularly dense in £4(w). Otherwise, by
Theorem A, there exists a Hamburger class function F' such that

Ap C A (A2.1)

and
|[F'(A)] > c1A™% exp(cA™), A€ Ap, (A2.2)

with ¢; > 0, s < co. Let pp be the order of growth of F. The inclusion (A2.1) implies
that pp < p. Therefore, ppr = pr < p < m that contradicts (A2.2) because Ap is
unbounded.

3. For m < min(p,1/2) the polynomials are regularly non-dense in ££(w). Indeed, pick
my, m < my < min(p, 1/2), and choose a subset A; C A which is an R-set with respect
to the order my (see Section 1 for the definition). In this situation the canonical product

P = [[0-3)

AEA,

satisfies the asymptotic relation (like in Section 1)

log |F' (A
lim log | F"(A)] = ccot mmy, (A2.3)
A—00 A
ANEAFR

for some ¢ > 0. As a result, F' is in the Hamburger class, and by Theorem A, the
polynomials are regularly non-dense.

4. Let m = p € (0,1/2), ¢ > wcotmp. Like in Subsection 3 we use that the canonical
product

B,(x) = [[(L- ;)

satisfies the estimate

. log |B, ()]
)\lg{)lo = T cot mp. (A2.4)
AEA

Now, the proof of Theorem B may be easily modified to prove that the polynomials are
regularly dense in /% (w). Alternatively, this result may be derived directly from Fryntov’s
theorem.

If 1/p is an integer (> 3), then this result follows from [4, Theorem 4.1] where much
simpler methods are used. Apparently, these methods are insufficient to study the case
of arbitrary p > 2 which is left open in [4].

5. Let m = p € (0,1/2), ¢ < mcotmwp. In this case the polynomials are regularly non-
dense in /£ (w). Indeed, estimate (A2.4) implies that for some n > 0 and every s there
exists ¢; > 0 such that

ws(A)|B,(A)] > c1exp(nAf), A€ Ap.
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This gives immediately that all the exponents p are not normal for the weights wg, and
the polynomials are not dense (see Section 2).

This case is basically covered by Theorem 3.1 in [4]. A somewhat less precise result
could also be extracted from [20, Chapter 1].

6. The remaining case m = p € (0,1/2), ¢ = mwcot wp is the most delicate one because
the weights w, are singular. Our results are presented on Figure 2.

S
A non-density region
{(p,s):s>3/2—p/p} & {(1,3/2-p)}

7 )

/ _ _ s=3/2-plp
3/2—-p density region
{(p,s):s< 3/2—p/p} \ {(1,3/2-p)}

—& —

(1,0 0

FIGURE 2.

To apply our technique we need a more precise asymptotics for |B’p|. It follows from
the results of G. H. Hardy in [19] (see also [12, Section 3.3, Theorem 2]) that there exists
a finite limit

B
lim o(2)

, < 1/2. A2.5
2| 200 27 1/2sin(m2P) exp((m cot p)2P) larg 2| < 7/ ( )

Put f(z) = sin(rz), g = B,/ f. Since B,(A) = g(A) f'(A), A € A, estimate (A2.5) implies
that there exists a finite limit

i B,00)
A0 AP=3/2 ex ((mcot mp)Ar)
AEA p P

Therefore, for p > 1 and for every Hamburger class divisor F' of B, we have

!/
Z {;]q — Z A—q(s+p—3/2)‘BP7()‘)‘q
/ /
AEAR wa(A)[F(A)] AEAR F')
o) B/ l/p q 1 1
_ Zn’;q(s+p—3/2)/P % : -+ -=1, (A2.6)
k=1 F' (") b

37



where Ap = {n,lc/p},;"):l. Hence, if ¢(s + p—3/2)/p > 1, that is s > 3/2 — p/p, then the
exponent p is not normal for the weight ws, and the polynomials are not dense in £ (ws).
If p=1, and F' is a Hamburger class divisor of B, then we have

/ _ \s+p—3/2 F/(A)
WP O] = X490 s
Therefore, if s > 3/2—p, then p = 1 is not a normal exponent for wy, and the polynomials
are not dense in £ (wy).

On the orther hand, if p > 1 and s < 3/2 —p/por p =1 and s < 3/2 — p/p, then
the polynomials are dense in £4(w;). To prove this we apply the criterion in Theorem A.
Consider the case p > 1 and 0 = q(s + p — 3/2)/p < 1. If the polynomials are not dense,
then for some Hamburger divisor F' of B the series (A2.6) converges. Put G = B/F.
Then we have

anﬂG Pyja < (A2.7)

Now, an argument like in the proof of Theorem B (Section 3) shows that A\ Ag is finite.
Otherwise, we may add to F' some zeros of G in such a way that (3.1) holds, and as a
consequence, B = F', and we get a contradiction. Hence, G is a polynomial, and (A2.7)
cannot hold. The same argument works for p =1 and s < 3/2 — p/p.

APPENDIX 3. THE HAMBURGER CLASS

The properties of functions in the Hamburger class $ we need in our paper are given
here. For some of these and other properties see also [3, Chapter 4], [5].

Lemma A3.1. If B is a transcendental entire function of zero exponential type with real
zeros, then
ly["

lim =0, n > 0.
lyl—oo0 [B(iy)]

Proof. To prove this statement note that for all such functions B we have |B(iy)| >
|B(0)|, y € R\ {0}. Therefore, it is enough to divide B by (n + 1) terms (z — z), where
2k, 1 <k <n+1, are (different) zeros of B. [

Lemma A3.2. If B € $, then for every polynomial P,

_ B(z)P(N)
Pe= 2 BN

Proof. Denote the difference between the right-hand side and the left-hand side by R(z).
Then R and, as a consequence, R/B are entire functions of zero exponential type, and

by Lemma A3.1 the function R/B tends to 0 along the imaginary axis. The Phragmén—
Lindel6f principle yields now that R/B =0, R=0. O
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Lemma A3.3. If B € $, then for every polynomial P,

P\
Z B’()\) = 0.

AEAB

Proof. Without loss of generality assume that B(0) # 0. Then we apply Lemma A3.2
to the polynomial zP(z) and put z =0. O

Lemma A3.4. If 0 < 2\, < Apg1, 1 < k < 00, then F(z) = [[1»,(1 — 2/Ax) is an
entire function of order 0 in the Hamburger class. B

Proof. First,

Furthermore, for every n,

1 A 11 1

tim - JT(55-1) > i (+-+)=II+>0 O

koo AT Xs == AW Y
koos<k s<n s<n

Lemma A3.5. Let B be an entire function in the Hamburger class $ satisfying condition
(1.17). Suppose that the zeros of B are M -separated for some M < oo. Then the following
conditions on B are equivalent:

(i) for somen >0,
log|B'(A)| > nlog B¥(|A]), A€ A.

(ii) for somen >0,

log|B(z)] > nlog B¥(|z]),  z¢ |J D\ IA™
AEA

These conditions imply that, for some R < oo,

B#(r) < M(r, B)*/", R <r < oo.

Proof. Without loss of generality assume that AN (—2,2) = (). We show that (i) implies
(ii); the opposite implication and the last assertion are obvious. According to Lemma 4.3,
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log | B(2)| > nlog B¥(|z|) on the circles C = {|z — A] = |A\|7 72}, A € A. Consider the
function F' = log |B| — nlog B¥. Then, for x € Ry \ A,

neon 1 1
—F ("E)_Zi(a:—A)? _ngi(xntw)? >0.

AEA

Hence, F' is concave between the zeros of B and, consequently, is positive on Ry \UxepCh.
We argue similarly for x € R_ \ A. If B has no zeros on a half-axis, we just use that F
tends to 400 along this half-axis.

Therefore, log |B| > nlog B# on the boundary 9 of the domain

Q=C\ DO IATM).

Since log | B| is harmonic and bounded from below on 2, the function 1 log B¥ — log|B)|
is subharmonic and has zero exponential type on 2. Applying the Phragmén-Lindelof
principle, we conclude that log|B| > nlog B¥ on 2. The same argument works in the
lower half-plane as well. [

APPENDIX 4. PROOF OF LEMMA 4.1
Estimate (4.3) is an immediate consequence of estimate (4.2) written in the form

1 fn(2)
G+ %) = [7(2)[/m

1
=0l

[z =AY < O+ |25,

We need only to use that

and that the function
1 1
z > log | fm(2)| — —log |f(2)| + — log |z — 7|
m m

is harmonic in the disc D (v, |y|=*). Estimate (4.4) is proved in the same way.
To prove estimate (4.2), we consider the family of functions

z

fmr(2) = (1— ), 0<r<m-—1.
( ) 1:[ 7sm~|—r

The zeros of functions f, , and fy, ;, 7 # [, are interlaced, and by a theorem of M. Krein

(see [26, Chapter VII, Section 1]) the function

fm,r(2)

Im——<% - -Imz
fm,i(2)
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is of a constant sign for Imz # 0. By the Carathéodory inequality for the half-plane
(26, Chapter I, Section 6], every function g enjoying this property, Img(z) - Imz # 0,
Im z # 0, satisfies the estimate

[

| Im 2|’

mmﬁﬁ?'gmwﬂsmwm

1
— |z| > 1.
5

Applying this estimate to g = fy.»/fm, and using that |g(i)] < C(L), where L is the
constant in condition (4.1), we obtain

| Im z| fmr(2) C|z)?
< ’ , z| > 1. Ad.1
P =T | = Tz (A4
Multiplying these inequalities for [ = 0,1,... ,m — 1 and taking the root of m-th degree,
we obtain )
| _ e OB

Clzl> = [f(2)[M/™ = [Imz|’

Since the zeros of the functions f,, and f,, o are interlaced, we have an estimate like
(A4.1) for the quotient f,,/fm,0. Therefore,

[Imz* _ [fm(2)] _ Clz|*
< > 1. A4.2
CH = Tf/m = Thepr P12 S
This implies immediately that
1 [fm(2)] K 1
< <C(1 >1, |1 > A4.3
C(1+|Z|K) = |f(Z)|1/m = ( +|Z| )7 |Z|_ ’ | mz|_ 1+|Z|M+2 ( )

The function h = log|f,.| — (1/m)log|f| is harmonic in C\T'. For every v € T', there
exists ¢y, |cy| <1, such that h — ¢y log |- —v| is harmonic in D(vy, |y|~™). Making use of
estimate (A4.2) on the boundary of this disc and the Poisson-Jensen formula, we obtain
that )

h(z)] < Klogi— |z —7l=|y[T"",

kol

and henceforth

! m(2) -
CaTTE) S T SCATES,  l—al=hm (adg)

Consider the open set
. 1 o
0= szaﬂ—zy: ly| < W}U{zﬂd <2}] \ LJFD(%M M 1)‘
v€

The function A is harmonic on each connectivity component of O, and, by the maximum
principle, the estimate (A4.4) extends to these components. Taking into account (A4.3),
we get the statement of the lemma. [
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