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�� Introduction

In this paper� we study a special case of the weighted polynomial approximation prob�
lem on the real line� In the general setting� this problem was investigated by S� Bernstein
and M� Riesz� and later by N� Akhiezer� L� de Branges� L� Carleson� T� Hall� P� Koosis�
B� Levin� P� Malliavin� S� Mandelbrojt� S� Mergelyan� H� Pollard and many others �for
an extensive discussion see the survey papers �	� 	�
 and the book �	�� Chapter VI
�� In
spite of signi�cant eorts� the general problem is still far from being explicitly solved�
In this paper we deal with a special case of the problem of density of the polynomials
in Lp��� when the measure � is supported by the zero set of an entire function of zero
exponential type� This problem appears in the indeterminate case of the Hamburger
moment problem ��� �� �� �
�

Given a �positive Borel� measure � on the real line such thatZ
R

jtjn d��t� ��� n � ��

we associate with this measure its moment sequence

sn �

Z
R

tn d��t�� n � �� �� 	� � � � �

The Hamburger moment problem consists in �nding� by a sequence of numbers fsngn���
a positive Borel measure � with moments sn� If the solution is not unique� we say that the
moment problem is indeterminate� Furthermore� measures � solving such problems are
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called indeterminate �� � �indet��� In other words� for a measure � to be indeterminate
means that there exists another measure �� � �� �� with the same moments�Z

R

tn d��t� �

Z
R

tn d��t�� n � �� �� 	� � � � �

Otherwise� the measure � is said to be determinate �� � �det���
R� Nevanlinna described in �	�
 �see also ��� Sections 	��� ��	
� the set of all solutions

to an indeterminate moment problem� He parametrized this set using the class �N � of
functions � holomorphic in the upper half�plane C � and such that

Im��z� � � for Im z � ��

This class includes real constants� and we add formally the constant � function� As a
consequence of the Riesz�Herglotz formula� every function f in this class possesses an
integral representation �see� for instance� ��� Section ���
�

f�z� � az � b�

Z
R

� � uz

u� z
d��u� � az � b�

Z
R

�
�

u� z
�

u

� � u�

�
�� � u�� d��u� � �����

for z � C � � where a and b are real numbers� a � � and � is a positive Borel measure

of �nite mass� If f is extended to the lower half�plane C � by f�z� � f�z�� z � C � �
then formula ����� holds for z � C n R� �Generally speaking� this is not an analytic
continuation��

For a �xed indeterminate moment problem there exists an entire matrix�function�
A�z� B�z�

C�z� D�z�

�
� AD �BC � �� ���	�

whose elements A� B� C� and D are real entire functions �entire functions with real
coe�cients� such that for every t � R � f�g�

�
C�z�t�D�z�

A�z�t�B�z�
� �N ��

The Nevanlinna formula

v�z� �� � �
C�z���z� �D�z�

A�z���z� �B�z�
� � � �N �� �����

gives a bijection between the class �N � and the set of the Stieltjes transforms

v�z� �� �

Z
R

d��t�

t� z

of all the solutions to the indeterminate moment problem�
�



A solution � to an indeterminate moment problem is called canonical if it corresponds
to ��z� � t� t � R�f�g� in formula ������ We shall also use the term a canonical measure�
Canonical measures correspond to self�adjoint extensions �without extension of space� of
symmetric operators with indices ����� associated with Jacobi matrices� see details in ���
Chapter �
� These measures enjoy important extremal properties �see� for example� ���
Theorem �����
�� Every canonical measure is a discrete measure with masses on the zero
set of the corresponding entire function A�z�t � B�z�� t � R � f�g� �To prove that all
the zeros are real we use that B	A is not a constant and B	A � �N �� This last inclusion
can be veri�ed in the following way� If �� and �� are the measures associated by �����
correspondingly with � � �� � � �� then the measure ��� � ���		 solving the same
indeterminate moment problem is associated with B	A��

Fix a canonical measure �� Since the matrix�functions�
A�z� B�z�

C�z� D�z�

�
and �

A�z� B�z�

C�z� D�z�

��
cos
 sin


� sin
 cos


�
correspond to the same indeterminate moment problem� without loss of generality we
can assume that the support of � coincides with the zero set of B� We denote this zero
set by �B � �B � R�

By a theorem of M� Riesz ��� Theorem 	����
� the elements of the matrix�function ���	�
describing the solutions of an indeterminate moment problem are entire functions of zero
exponential type� Furthermore� we have

X
���B

j�jn

jB����j
	
X
���B

j�jn��

s
D���

B����

s
�

D���B������ � ���

	

� X
���B

��n��
�
D���

B����

������ X
���B

�
�

D���B����

�
�

� � ��

����
��� n � ��

Here the sum of the series in the �rst square brackets is just the moment of order 	n�	
of the measure �� whose Stieltjes transform is equal to �D	B� The sum in the second
square brackets converges because A���D��� � �� � � �B � and �A	B � �N �� We need
only to use an immediate consequence of formula ����� which says that since the function
�A	B in the class �N � is meromorphic in the plane and has poles only on the real line�

X
���B

A���

B������ � ���
��� �����

�



De�nition� The Hamburger class H consists of all transcendental real entire functions
B of zero exponential type with only real �and simple� zeros � � �B such that

lim
j�j��
���B

j�jn

jB����j
� �� n � ��

Without loss of generality� we always assume that the origin does not belong to the
zero set �B� A Hamburger class function is uniquely determined �up to a multiplicative
constant� by its zero set�

Thus� entire functions involved in the Nevanlinna formula ����� belong to the Ham�
burger class� Furthermore� if

� �
X
���B

����

is a canonical measure� where �� is the unit point mass measure at the point ��

�� �
D���

B����
�

�

A���B����
� � � �B�

then the functions A and D can be reconstructed by the formulas

A�z�

B�z�
� 
z �  �

X
���B

A���

B����

h �

�� z
�

�

�

i
� 
z �  �

X
���B

�

���B����
�

h �

�� z
�

�

�

i
�

D�z�

B�z�
� �z � � �

X
���B

D���

B����

�

�� z
� �z � � �

X
���B

��
�� z

�

where 
� � � �� � � � R� Estimate ����� ensures here thatX
���B

�

���B����
��� � ���
���

In ���� H� Hamburger claimed the following statement to be valid�

Statement �Hamburger ���
� ��� Addenda and Problems to Chapter �
�� A positive
measure � is a canonical solution to an indeterminate moment problem if and only if for
some function B � H we have

�i� � �
X
���B

�����
X
���B

j�jn�� ��� n � ��

�ii�
X
���B

�

���B����
��� � ���
���

�iii�
X
���B

�

���B����
�
� ���

�



In particular� for the masses �� � �B����
��� � � �B � conditions �i���iii� are ful�lled�
and as a result� the zero set �B of an arbitrary entire function in H should be the support
of a canonical measure�

In ���� a gap in the proof of Hamburger�s Statement was found by C� Berg and H� Ped�
ersen� Soon P� Koosis �	�
 constructed a counterexample to Hamburger�s Statement�

What was the source of Hamburger�s mistake� We have already pointed out that if �
is a canonical measure� then conditions �i� and �ii� should hold� On the other hand� if
� is a measure satisfying conditions �i� and �ii�� then � � �indet�� see ��� Addenda and
Problems to Chapter �� Lemma 	
� Furthermore� a theorem by M� Riesz� ��� Sections 	���
	��
� asserts that the following conditions are equivalent�

�a� The set of polynomials P is dense in L�����

Clos L����P � L����� �����

�b� Either � � �det� or � is a canonical measure�

Thus� a measure � is canonical if and only if conditions �i� and �ii� are ful�lled together
with ������ Hamburger believed that when conditions �i� and �ii� are ful�lled� condition
�iii� is necessary and su�cient for completeness of polynomials in L����� It is indeed
necessary� Consider a function c de�ned by c��� � ���B

����
��� � � �B � IfX
���B

�

���B����
�
���

then the function c is an element of L����� and it is orthogonal to P�

X
���B

P ���

B����
� �� P � P�

by Lemma � in Appendix ��
However� condition �iii� is not su�cient for completeness of polynomials� In �	�
 an

entire function B � H is constructed such that for the measure � �
P

���B
�B����
�����

Clos L����P �� L�����

and hence� � is not canonical�
The above described situation was the reason for writing this paper� Here we consider

the following problem�

Problem� Let B � H� � 	 p � �� and let � �
P

���B
���� be a �positive� measure

such that P � Lp���� When
ClosLp���P � Lp����

In Appendix �� we prove that in the so called �singular case� of the weighted poly�
nomial approximation in Lp���� the measure � must be supported by the zero set of a

�



Hamburger class entire function� This gives another motivation for studying the above
formulated problem� As a counterpart to this abstract result we show in Appendix 	 how
our methods can be applied to yield the complete solution of the weighted approxima�
tion problem in a very concrete model case� Our main results are presented in Section ��
Making use of an approach suggested by de Branges ��
� in Section 	 we give a solution to
the above described problem �Theorem A� and derive a correct version of Hamburger�s
Statement �Corollary ��	�� In Theorems B and C� proved correspondingly in Sections �
and �� we give concrete su�cient conditions on a set in R to be the support of a canon�
ical measure� Another su�cient condition� Theorem D� is formulated in Section �� An
example given in Section � shows that the conditions of Theorems B and C cannot be
essentially weakened� Some results on Hamburger class functions we use in our paper
and a lemma on divisors of entire functions constructed by regular subsequences of zeros
are contained� correspondingly� in Appendices � and ��

A part of the results proved in this paper and an intrinsic relation to de Branges�
theory of Hilbert spaces of entire functions and to results by Akhiezer and Gurarii ���
��
 are described in ��
�
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�� Main results

Fix B � H� Let us consider a function w on the zero set of B such that w��� � ��

lim
j�j��
���B

j�jnw��� � �� n � �� �����

We introduce the Banach spaces �p�w��B�� � 	 p 	 �� of functions a on �B � with norm

kakp�p�w��B� �
X
���B

�w���
pja���jp�

kak���w��B� � sup
���B

w���ja���j�

Since ���w��B� is not separable� we consider� as the natural limit case of the scale
�p�w��B� for p � ��� the space c��w��B� of functions a on �B such that

lim
j�j��
���B

w���ja���j � ��

	



with norm
kakc��w��B� � sup

���B

w���ja���j�

Thus we obtain the scale of the spaces �p��w��B��

�p��w��B� � �p�w��B�� � 	 p ���

��� �w��B� � c��w��B��

Their dual spaces are

�
�p��w��B�

��
� �q

� �

w
��B

�
�

�

p
�

�

q
� �� � 	 p 	 ��

with the usual pairing� if a � �p��w��B�� b � �q
	
�	w��B



� then

ha� bi �
X
���B

a���b����

Since B is of zero exponential type� condition ����� implies that

P � �p��w��B�� � 	 p 	 ��

Theorem A� The polynomials are dense in �p��w��B� if and only if for every function
F � H such that �F � �B� we have� for � � p 	 ��

X
���F

���� �

w���F ����

����p��p��� � ��� ���	�

and for p � ��
lim inf
j�j��
���F

w���F ���� � �� �����

The case p � � �with agreement p	�p� �� � �� in Theorem A is a special case of a
remarkable theorem by de Branges ��� 	�� Chapter VI
 which gives one of the solutions
of the Bernstein weighted polynomial approximation problem� The proof of �the general
case of� de Branges� theorem uses extensively geometric properties of the dual space to
c��w�� Another proof found recently ��	
 uses ideas that go back to P� Chebyshev and
A� Markov� None of these proofs seems to work for the spaces �p�w��B�� However� in
the special case under consideration� when the weight is de�ned on a discrete set that
does not accumulate too fast at in�nity� the polynomial approximation problem in the
spaces �p�w��B� can be reduced to that in the space c��w��B�� see Appendix ��

The quasianalyticity theorems given in Chapter I of J� P� Kahane�s work �	�
 may be
interpreted as statements on weighted polynomial approximation on zero sets of entire






functions of Hamburger class when the weight is log�concave� In the opposite direc�
tion� de Branges� theorem and its extension given above provide results on the kind of
quasianalyticity problems considered in �	�
� In the recent paper ��
� J� M� Anderson�
D� Khavinson and H� Shapiro study the following problem� what rate of decrease of the
coe�cients cn of Dirichlet series with negative exponents ��nX

���

cne
��nz

�absolutely convergent in the closed right half�plane� guarantees that such a series cannot
represent a function which vanishes with all its derivatives at the boundary point �
of the half�plane� This problem might be reformulated as the weighted polynomial
approximation problem on the discrete set of exponents �� Their main results pertain
to the case when � � fnag� n � N � a � 	� In this case� � is the zero set of a Hamburger
class entire function� In Appendix 	� we show that in this special �model� situation the
results obtained with the help of de Branges� theorem are stronger than results of the
papers ��� 	�
�

Theorem A immediately yields a correct version of the Hamburger statement�

Corollary ���� To make Hamburger�s Statement correct� condition �iii� should be re�
placed by the following condition�

�iii�� for every F � H such that �F � �B� we haveX
���F

�

���F ����
�
� ��� �����

Remark ���� In the letter of October �� ����� A� Bakan informed us of his recent results
concerning the Hamburger moment problem� In particular� he formulated

�a� an analog of our Corollary ��� where the condition F � H is replaced by the condition
that F is just an entire function of zero exponential type�

Furthermore� he claimed that Hamburger�s Statement is wrong in the following strong
sense�

�b� for every B � H� there exists � satisfying the conditions of Hamburger�s Statement
and such that � is not a canonical measure�

Let us describe how to derive these results from our Corollary ����

�a� If A is a divisor of B � H� such that A 	� H� and for a sequence f��g���BX
���A

�

���A����
�
��� �����

we choose a rare subsequence of zeros of A and construct a divisor F � H of A by this
sequence such that for some c� n

jA����j � cj�jn� � � �F � �����
�



This is possible due to Lemma A���� ThenX
���F

�

���F ����
�
��� �����

since jA����j � o�jF ����j�� j�j 
 �� � � �F � Applying Corollary ���� we conclude that
the polynomials are not dense in L����� �

�b� Given B � H� take an arbitrary divisor F of B such that F � H and B	F is
transcendental� Our problem now is to �nd a sequence fc�g���B such thatX

���B

c�j�j
n

�B����
�
��� n � �� �����

X
���B

�

c��� � ���
��� �����

X
���B

�

c�
��� ������

X
���F

�

c�

�B����
�

�F ����
�
��� ������

Put

c��� �

�� max
�
��
���B����
�

�F ����
�

�
� � � �F �

�� � � �B n �F �

Then ����� is satis�ed because B � H� F � H� and the fact that ������������ hold follows
immediately� Now� setting �� � c� �B

����
��� we obtain a �nite measure supported by
the zero set of B which according to Corllary ��� is not a canonical measure� �

The following Corollary explains the importance of the special case of Theorem A with
w��� � jB����j��� � � �B� B � H�

Corollary ���� If � is a canonical solution to an indeterminate moment problem� B �
H� supp � � �B� then the measure � �

P
���B

�B����
���� is also a canonical solution
of an indeterminate moment problem�

Proof� If � is not a canonical solution to an indeterminate moment problem� then by
Corollary ��� for some divisor F � H of B we haveX

���F

���B����
F ����

���� ���

Clearly� B	F is not a constant function� Pick a zero w of B	F and consider F��z� �
F �z��z � w�� If � �

P
���B

���� is a canonical solution� then by condition �ii� of
Hamburger�s Statement� for some C we have

�

��
	 C�B����
��� � ����

�



Now� X
���F

�

���F �����

�
	 C

X
���F

���B����
F ����

���� � � ��

j�� wj�
���

and again by Corollary ��� we obtain that � cannot be a canonical solution of an inde�
terminate moment problem� �

Thus� Koosis� example �	�
 shows that there are B � H for which no canonical measure
� exists with supp� � �B � This implies� in particular� that not every function in
H can be an element of the matrix�function in ���	� parametrizing the set of solutions
for an indeterminate moment problem� Our discussion in Introduction shows that the
description of canonical solutions to the Hamburger moment problem and the description
of the �rst row of Nevanlinna matrices parametrizing all solutions are basically equivalent
problems� It is worth to mention that Krein �	�
 and de Branges ���� Chapter 	
 described
�in dierent terms� the �rst row of an arbitrary Nevanlinna matrix� see also ���
�

Corollary ���� A Hamburger class entire function B�z� can be included into a Nevan�
linna matrix parametrizing the solutions of an indeterminate moment problem if and only
if the polynomials are dense in the space L���� with � �

P
���B

�B����
�����

This is just a reformulation of Corollary ����
In what follows� we restrict ourselves by the special case w��� � jB����j�� and try

to give some reasonable su�cient conditions for the completeness of the polynomials� It
seems to be quite hard to �nd explicit necessary and su�cient conditions�

Generally speaking� in order to apply Theorem A one needs to verify condition �����
�or ���	�� for a rather large family of �Hamburger divisors� F � Nevertheless� we show
below that this theorem can be e�ciently applied �compare with recent applications ���

of the original de Branges� theorem��

Let us introduce some notations� A set � � R is said to be M �separated� if for some
C ���

j�� ��j � C�� � j�j��M���� �� �� � �� � �� ���

Frequently we deal with the case when M is just a constant function�
In a recent paper ���
� A� Fryntov considered the situation when �B � R� is an �R��

set in the sense of Levin �	�� Chapter II� Section �
� for the counting function n�t� of the
set �B there exists the limit

lim
t��

n�t�

t��t�
� "� � � " �� � ����	�

where ��t� is a Valiron proximate order �i�e� limt�� ���t�t log t � ��� � � limt�� ��t� �
� � �		� and the set �B is ���t� � ���separated� Then the function B is of completely
regular growth in the sense of Levin�P#uger� and there exists the limit

lim
���
���B

log jB����j

�����
� �" cot�� � � �

Therefore� in this case B � H�
�



Theorem �Fryntov ���
�� For the entire function B satisfying the above listed conditions�

Clos ��� �

jB�j
��B�

P � ��
� �

jB�j
��B

�
�

A similar situation was considered by H� Hamburger in ���
� where he produced a
false statement� A correct formulation �without proof� is contained in ��� Addenda and
Problems to Chapter �� Subsection �
 where the credit is given to B� Levin� However�
the late Professor Levin told the second�named author that in his proof he had used the
Hamburger statement �see above�� Fryntov�s proof of this theorem is rather ingenious
and involved� We show here that a little bit more general result follows easily from
Corollary ����

Theorem B� Let B � H� �B � R� � Suppose that B is of normal type with proximate
order ��t�
 � � �		� t
�� and the indicator function hB� If

lim
���
���B

log jB����j

�����
� hB���� ������

then

Clos �p�� �

jB�j
��B�P � �p�

� �

jB�j
��B

�
� � � p 	 � � ������

Remark ���� Note that as a consequence of Theorem A� for every Hamburger class
function B�z��

Clos �����jB�j��B�P �� ��
� �

jB�j
��B

�
�

since condition ����� is violated already for F � B�

Remark ���� Note that since the Phragm en�Lindel�of indicator of the derivative does
not exceed the indicator of a function� condition ������ means that the derivative of B
grows maximally rapidly along �B � The condition of the maximal growth of the derivative
on the set of zeros occurs in the entire function theory� namely in interpolation theory
�see �	�� Chapter IV� Section �� ��
 and references therein� and in the theory of Dirichlet
series with complex exponents �see �	�� Theorem ���
�� Conditions of Theorem B yield
that B�z� is a function of completely regular growth in the Levin�P#uger sense �see e�g�
���
� this follows easily from the proof of Theorem B given in Section �� and therefore
the asymptotic relation ����	� holds� K� Malyutin proved �see ���� Theorem �
� that�
for entire functions of completely regular growth� condition ������ is equivalent to the
following separation condition�

lim
���

sup
z�C

�

jzj��jzj�

Z �jzj

�

�nz�t�� �
�
t

dt � � ������

where nz�t� is a number of zeros lying in the closed disc of radius t with center z�
��



For Hamburger class functions of completely regular growth� condition ������ is not a
necessary one for the density of the polynomials ������� For every �� � 	 � � �� there
exists a Hamburger class function B�z�� �B � R� � of mean type and completely regular
growth with respect to order � � �		 such that

lim inf
j�j��
���B

log jB����j

��
� �hB��� � ������

and the polynomials are still dense� On the other hand� a simple modi�cation of Koosis�
example �	�
 produces Hamburger class functions B with positive zeros and of completely
regular growth satisfying ������ with arbitrary � not exceeding �		 and such that the
polynomials are not dense in all spaces �p�

	
jB����j����B



� � 	 p 	 �� A gap remains

here� we do not know any example with these properties for � � �		�

Another possible approach to the problem under consideration is to use the method
by Fryntov ���
 of constructing supporting polynomials for the Riesz�Hall�Mergelyan
majorant� In this direction we obtain the following result�

Theorem C� Let B � H be such thatX
���B

�

j�j
��� ������

Denote
B��r� �

Y
���B

�
� �

r

j�j

�
�

Suppose that� for some constant M ���

�B is M �separated� ������

and

lim inf
j�j��
���B

log jB����j

logB��j�j�
� �� ������

Then equalities ������ are ful�lled�

Comparatively to Theorem B� we impose here a much weaker condition on the growth
of jB����j� In particular� we do not insist anymore on the asymptotic relation ����	�
which� as was explained above� follows from the assumptions of Theorem B� However�
we must add an additional condition ������ which� locally� is much stronger than �������
An analysis of the example constructed by Koosis in �	�
 shows that condition ������ in
Theorem C cannot be omitted� Furthermore� using Theorem A� we construct in Section �
an entire function B � H of convergence class ������� with M �separated �B � such that
condition ������ holds with the upper limit instead of the lower one and nevertheless the
polynomials are not dense in �p�

	
�	jB�j��B



�
��



Remark ��	� If the zero set �B is a subset of R� � then B��r� � B��r� � M�r� B��
Here� as usual�

M�r� B� � max
jzj	r

jB�z�j �

In the general case �we assume for simplicity that B��� � ��� a standard estimate of the
canonical product of genus zero gives

logM�r� B� 	 logB��r� 	 r

Z �

r

logM�t� B�

t�
dt � ���	��

In general� we do not know whether B� may be replaced by M��� B� in the conditions of
Theorem C� Of course� if B has only �nite number of zeros on one of the semi�axes� or if�
for some � � �� the function r �
 r��M�r� B� decreases for big r� then B� is equivalent
to M��� B�� The last statement is a consequence of ���	���

Remark ��
� Lemma A��� shows that� under conditions ������ and ������� the property
������ is equivalent to a lower bound for jB�z�j which holds outside exceptional discs
around the zero set� for some � � �� M ���

log jB�z�j � � logB��jzj�� z 	�
�
���

D
	
�� j�j�M



�

In particular� conditions ������������� imply that B��r� 	M����r� B��

By no means� we try here to squeeze from Fryntov�s approach everything it can give�
Our goal was rather to demonstrate that his approach works far beyond his original
assumptions� This fact was not evident at all since� from the �rst look� his proof in ���

is rather rigid�

Here is another su�cient condition for the density given just in terms of �� Consider
a function V �r� � r��r�� where ��r� is a proximate order� ��r� 
 �� � 	 � 	 �		�
r��r� � o�r���� as r 
 ��� and without loss of generality assume that V �r� increases
for r � �� Denote by $ the inverse function to V �

Theorem D� Let � � f�ng � R� and �n	$�n� increase� Then � is the zero set of a
Hamburger class function B� and

Clos �p�� �

jB�j
���P � �p�

� �

jB�j
��
�
� � � p 	 ��

Conditions on � of such type appeared in similar problems in Kahane�s thesis �	��
Chapter I
�

�� Proof of Theorem A

We start with a proposition which goes back to Koosis� he considered in �	�
 the case
p � 	� w��� � jB����j���

��



Proposition ���� The polynomials are not dense in �p��w��B�� � 	 p 	 �� if and only
if there exists an entire function f �� � of zero exponential type such that

f � �q
� �

wjB�j
��B

�
�

�

p
�

�

q
� �� �	���

and

lim
jyj��

�
jyjn

��� f�iy�
B�iy�

���� � �� n � �� �	�	�

Proof� If such an entire function f does exist� put c��� � f���	B����� Then c �
�q
	
�	w��B



� Let us verify that the functional on �p��w��B� de�ned by c� is not identically

�� and vanishes on all polynomials� By �	��� and the H�older inequality�X
���B

��� f���
B����

���j�jn �
X
���B

��� f���

w���B����

���j�jnw��� ��� n � ��

This implies that

zn��f�z�

B�z�
�

X
���B

�nc���
�

z � �
� n � �� z 	� �B � �	���

The reason is that the dierence of the left�hand side and the right hand�side is an entire
function of zero exponential type tending to zero along the imaginary axis �compare to
Lemma A��	�� The Phragm en�Lindel�of principle yields that this dierence is ��

Equality �	��� shows that c �� �� Furthermore� setting z � � in �	���� we obtainX
���B

�nc��� � ��

and the polynomials are not dense�
Arguing in the opposite direction� assume that there exists a non�zero functional

c � �q
	
�	w��B



which vanishes on the polynomials� We de�ne an entire function f by

the Lagrange interpolation series

f�z�

B�z�
�

X
���B

c���

z � �
�

The series in the right hand�side converges absolutely�X
���B

��� c���
z � �

��� � X
���B

jc���j

w���

w���

jz � �j
��� z 	� �B �

Therefore� we easily obtain that f is of zero exponential type and satis�es conditions
�	��� and �	�	�� �

Applying this Proposition with f�z� � B�z�	F �z�� we obtain
��



Corollary ���� Let � 	 p 	 �� �	p� �	q � �� If F � H is a divisor of B such that

� � �q
� �

wjF �j
��F

�
�

then

Clos �p��w��B�P �� �p��w��B��

This gives necessity in Theorem A�
For the case p ��� this corollary as well as the much more delicate converse theorem

is proved by de Branges� Here we formulate a special case of his theorem�

De Branges� Theorem �see ��� 	�� Section VIF� �	
�� If

Clos c��w��B�P �� c��w��B��

then for some F � H which is a divisor of B�

� � ��
� �

wjF �j
��F

�
�

Now� our aim is to extend this converse theorem to all p�

De�nition� An exponent p� � 	 p 	 �� is normal �for the pair B�w� if

� 	� �q
� �

wjB�j
��B

�
�

�

p
�

�

q
� ��

If p is a normal exponent� then all r� p � r 	 �� are normal exponents as well� For
normal exponents� the entire function f in Proposition 	�� is automatically transcendental
�since there is an in�nite subsequence f�ng � �B such that f��n�
 � as n
��� and as
a consequence has in�nitely many zeros� Dividing it by an arbitrary polynomial divisor�
we get another function satisfying the conditions of Proposition 	���

Corollary ���� Let p be a normal exponent� The polynomials are not dense in the space
�p��w��B� if and only if for every n � � there exists an entire function f �� � of zero
exponential type satisfying condition �	�	� and such that

jf���j 	
w���jB����j

� � j�jn
� � � �B �

In particular� we obtain

Corollary ���� The equality

Clos �p��w��B�P � �p��w��B�
��



holds simultaneously for all normal exponents p�

Combining this result with Proposition 	�� and de Branges� theorem� we obtain suf�
�ciency in Theorem A for normal exponents p� It remains to note that for exponents
p that are not normal� the polynomials are not dense as a consequence of Corollary 	�	
�with F � B�� This completes the proof of Theorem A� �

We �nish this Section with a proposition needed in Section �� For the sake of simplicity
assume now that �B  ���� �� � �� Consider the Riesz�Hall�Mergelyan majorant

MN �z� � sup
�
jP �z�j � P � P� jP ���jw��� 	 j�jN

�
� N � ��

For normal exponents we can improve the Mergelyan theorem ���� 	�
 a little bit�

Proposition ���� �compare to ���
� For the polynomials to be complete in �p��w��B�
with normal p it is su	cient that for some N ��� z � C n �B�

MN �z� � ��� �	���

and it is necessary that �	��� holds for all N � z � C n �B�

Proof� To prove su�ciency we write the Lagrange interpolation formula for Pf � where
P is a polynomial and f satis�es the conditions of Corollary 	�� with n � N � ��

P �z�f�z�

B�z�
�

X
���B

P ���f���

B�����z � ��
�

This equality is veri�ed like formula �	���� Furthermore� it implies that MN is �nite
outside �B �����P �z�f�z�

B�z�

���� �
����� X
���B

P ���w���

�N
f����N��

B����w���

�

��z � ��

����� 	MN �z�
X
���B

�

j��z � ��j
�

The necessity follows from the usual Lp�version of the theorem �see ��� 	�� 	�
�� �

�� Proof of Theorem B

If the polynomials are not dense for some p� then by Theorem A�

X
���F

���B����
F ����

���p��p��� � �� � �����

for some Hamburger divisor F of B� Then� for some positive constant c�

jF ����j � cjB����j� ���	�
�	



and for every � � � and su�ciently large ��

jF ����j � exp
�
�hB���� �������

�
� � � �F �

Since F and B are canonical products of genus zero with positive zeros� on the circle
jzj � r they achieve their maximal and minimal values on the negative and positive rays
correspondingly� In particular� F also has a mean type with respect to the proximate
order ��r�� for some positive constant C��

log jF �z�j 	 log jF ��jzj�j 	 log jB��jzj�j 	 C�jzj
��jzj� �

As a result� we obtain a lower bound for F on a sequence of circles� there exist sequences
rn 
 ��� �n 
 �� n
�� such that

jF �rne
i	�j � jF �rn�j � exp

�
�hB���� �n�r

��rn�
n

�
� �����

Indeed� if
log jF ��� t�j 	 �hB���� �������� t � ���� �
� � � �F �

then the theorem on two constants applied in the domain�
z � C � jz � �j � �

�
n
	
��� �� �� �	�
 � ��� �	�� �� �




to the subharmonic function z �
 log jF �z�j � log jz � �j� implies that� for big � � �F �

log jF ����j 	 �hB���� �		������ �

that is impossible� Thus there are sequences rn and �n such that ����� holds�
The lower bound ����� extends to the whole complex plane outside the union of small

exceptional discs around �F � Let H be an arbitrary entire function of completely regular
growth in the sense of Levin�P#uger �see �	�� Chapter III
� �with respect to the same
proximate order ��r�� with the constant Phragm en�Lindel�of indicator function hH��� �
h� � hB���� Then the integrals

�

	�i

Z
j
j	rn

H���

F ���

d�

z � �

tend to � as n 
 � for every �xed z� and the residue theorem yields the Lagrange
interpolation formula

H�z�

F �z�
�
X
���F

H���

F �����z � ��
� z � C n �F �

Our estimates on F �
���F and H imply that the series in the right�hand side of this equality

converges absolutely and for some constant c�

jF �z�j � cjH�z�j� dist �z��F � � ��
�




The entire function G � B	F satis�es the estimate

cjH�z�G�z�j 	 jB�z�j

on the set fz � C � dist �z��F � � �g� Since H has completely regular growth� hHG �
hH � hG� and since every ray farg z � 
 � �g eventually does not intersect exceptional
discs� hHG�
� 	 hB�
�� We conclude that

hG�
� � hHG�
�� hH�
� 	 hB�
�� h� �

and� by the continuity of the indicator functions and the choice of h�� we obtain hG��� �
�� Since G is of order less than �		� we conclude that G is of minimal type with respect
to the proximate order ��r��

Let us recall that� by ���	�� G is bounded on �B � Therefore� we can use an argument
due to Ganapathy Iyer �see ���
 or �		
�� The Lagrange interpolation formula applies to
Gn and B for every integer n � ��

Gn�z�

B�z�
�

X
���B

Gn���

B�����z � ��
� z � C n �B �

We obtain that G is bounded on the whole complex plane� if jG���j 	 M � � � �B � and
if

X�z� �
X
���B

�

jB�����z � ��j
� z � C n �B �

then
jG�z�j 	M jB�z�X�z�j��n 	M �

As a consequence� G is a constant function that contradicts ������ �

�� Proof of Theorem C

The proof of Theorem C uses the following factorization lemma� A similar lemma was
also used by Fryntov ���� Lemma 	
� Since the proof is rather standard� we give it in
Appendix ��

Lemma ���� Let % � f�jg be a real M �separated sequence �possibly� �nite� such that
%  ��	� 	� � � and X

��


�

�
� L ��� �����

Put
f�z� �

Y
��


�
��

z

�

�
�

Fix m � 	� take an arbitrary sequence of entire numbers frsg� � 	 rs 	 m � �� and
consider

fm�z� �
Y
s

�
��

z

�sm�rs

�
�

��



There exist numbers C � C�L� � �� K � K�M� � �� which do not depend on %� m and
frsg� such that

�

C�� � jzjK�
	

jfm�z�j

jf�z�j��m
	 C�� � jzjK�� z 	�

�
��


D
	
�� j�j�M��



� ���	�

�

Cj�jK
	

jfm���j

jf ����j��m
	 Cj�jK� � � % n

�
�sm�rs

�
� �����

and

�

Cj�jK
	

jf �m���j

jf ����j��m
	 Cj�jK � � �

�
�sm�rs

�
� �����

Proof of Theorem C� Since exponents p � � are normal for the weight w � �	jB�j� to
prove Theorem ��� it su�ces to verify that the Riesz�Hall�Mergelyan majorant MN ���
is in�nite for some N depending on M and ��

We work with the zero sequence � � �B� Without loss of generality� we assume that
�B  ��	� 	� � �� There are two steps in the proof� �Thickening the zero sequence�
and �Rarefying the zero sequence�� As a result� for every su�ciently big m� we obtain a
�nite set �m � � such that

lim
m��

inf fj�j � � � � n �mg ��� �����

and �supporting polynomials�

Pm�z� �
Y

���m

�
��

z

�

�
�

satisfying the property

jPm���j 	 j�jN jB����j� � � � n �m� �����

with N � N���M� which does not depend on m and ��
Furthermore� property ����� and estimate ����� imply that there exists a sequence cm

of positive numbers� limm�� cm ��� such that

cmjPm���j 	 j�jN��jB����j� � � ��

Since Pm��� � �� the de�nition of the polynomial majorant MN �see Section 	� gives
that

MN����� � sup
m

cm � ���

��



and �nally� by Proposition 	���

Clos �p�� �

jB�j
��B�P � �p�

� �

jB�j
��B

�
� � � p 	 � �

Step � �Thickening the zero sequence��� We choose inductively two sequences of
numbers fNkg and fN �

kg�

� � N� � N �
� � N� � N �

� � � � � � Nk � N �
k � � � � �

such that the following set of properties holds for k � ��

�a� N �
k � 	Nk� Nk�� � 	N �

k�
�b� For every � � �� k � ��

dist �Nk� j�j� �
�

j�jM
�

dist �N �
k� j�j� �

�

j�jM
�

�c� The function &n� de�ned by d&n�t� � kdn�t�� Nk�� 	 t 	 Nk� k � �� &n�t� � ��
t 	 �� belongs to the convergence classZ �

�

&n�t�

t�
dt ���

�d� N �
k

Z �

Nk��

&n�t�

t�
dt 	

�

	
�

�e� 	kn�Nk� log r 	 � logB��r�� for r � N �
k� where � is the constant from the con�

dition of Theorem� and K � K�M � �� is the constant from the conclusion of
Lemma ����

Let us introduce a �thickened� sequence b� � �� On both intervals ��Nk����Nk
�
�Nk� Nk��
 we add by k new points between every two consecutive points � and �� of
�� The same thing is done for consecutive � and �� such that Nk � � � Nk�� � ��

or �� � �Nk�� � � � �Nk� Roughly speaking� the density of b� is k � � times bigger
than that of the original set � on ��Nk����Nk
� �Nk� Nk��
� Moreover� we add the new
points in such a way that

�f� they lie not far away from the old ones� namely for every � � b� n � there exists
� � � such that

j�j � j�j and j�� �j 	
�

�j�jM
�

�g� the set b� is �M � ���separated�
�



Since Nk � �k by �a�� conditions �f� and �g� are compatible �without loss of generality�
M � ��� Furthermore� we can choose new points in such a way that

�b�� For every � � b�� k � ��

dist �Nk� j�j� �
�

j�jM��
�

dist �N �
k� j�j� �

�

j�jM��
�

As a consequence of property �c��

X
��b�

�

j�j
���

If 'n � n
b�� then property �d� implies

�d�� N �
k

Z �

Nk��

'n�t�

t�
dt 	 ��

Using the �thickened� sequence b� we de�ne an entire function bB of zero exponential
type� bB�z� �

Y
��b�

�
��

z

�

�
�

The main result we obtain on this step is the estimate

j bB����j � c
�
B��j�j�

��
� � � b�� �����

for some c � �� which implies� in particular� that bB � H�

First� however� we need to state two auxiliary estimates�

Lemma ����

W � exp
�X
���

�

j�j

�
�

B��r � ��

B��r�
�

Proof�

B��r � ��

B��r�
�
Y
���

� � r��
j�j

� � r
j�j

�
Y
���

�
� �

�

j�j� r

�
	
Y
���

�
� �

�

j�j

�
	 exp

�X
���

�

j�j

�
� �

��



Lemma ���� If B satis�es the conditions of Theorem C� � � �� and z is such that

jz � �j 	
�

�j�jM
�

then� for su	ciently big j�j� we have

jB����j��� 	
��� B�z�

z � �

��� 	 jB����j�� �����

Proof� Consider the function h�

h�z� � log
��� B�z�

z � �

��� �
harmonic in the disc D � D��� �	�	j�jM��� Since B � H� Lemma A��	 implies that

jzjn

jB�z�j
	
X
���

j�jn

jz � �jjB����j
� n � � �

Therefore�

jB�z�j � jzjnmin
���

jz � �j �
hX
���

j�jn

jB����j

i��
�

and� as a result� for z � �D and some positive c�

��� B�z�

z � �

��� � cjzj �

Hence� for su�ciently big j�j� the function h is positive and harmonic in D� Finally� in
the twice smaller disc D��� �	��j�jM�� we have

�

�
log jB����j �

�

�
h��� 	 h�z� 	 �h��� � � log jB����j

which is equivalent to ������ �

Now� �x � � b�� N �
k�� � j�j � N �

k� For su�ciently big k� we are going to get a lower
estimate for

j bB����j � �

j�j

Y
��b�
��	�

����� �

�

��� � �

j�j
�
Y
��b�

��Nk��

����� �

�

��� � Y
��b�� ��	�

Nk���j�j�Nk��

����� �

�

��� � Y
��b�

�Nk��

����� �

�

���� �����

��



The �rst and the third products can be dealt with easily�Y
��b�

��Nk��

����� �

�

��� � � since N �
k�� � 	Nk��� ������

Y
��b�

�Nk��

����� �

�

��� � �

e�
because of property �d��� ������

The di�cult part here is to estimate the middle product� There are two cases� N �
k�� �

j�j � Nk and Nk � j�j � N �
k��� We consider only the �rst one� the second one does not

require essential modi�cations� Without loss of generality assume that � � �� Put

�k �
�
� � � � Nk � j�j � Nk��

�
� k � ��b�k �

�
� � b� � Nk � j�j � Nk��

�
� k � ��

and

(k�z� �
Y
���k

�
��

z

�

�
�

Qk�z� �
Y

��b�k��	�b�kn�k�

�
��

z

�

�
�

Then
�

j�j
�

Y
��b�� ��	�

Nk���j�j�Nk��

����� �

�

��� � jQ�k���j � j(k���j� ����	�

It remains to estimate two terms in the right�hand side� Denote by �� the point of �
closest to � �possibly� �� � ���

First� we verify that

j(k�z�j � B�z�
h Y

���
j�j�Nk

���� z

�

�� � Y
���

j�jNk��

���� z

�

��i�� � �

eW
j��j

�M�� jB
�����j

���

B��j��j�
� ������

for z � �� Indeed� if � � b� n �� then Lemma ��� and properties �f� and �g� imply that

jB���j � j��j
�M��jB�����j

����

Furthermore� as a consequence of property �d��Y
���

j�jNk��

����� �

�

��� 	 e� ������

��



and by Lemma ��	 �j�� ��j 	 ���Y
���

j�j�Nk

����� �

�

��� 	 Y
���

j�j�Nk

�
� �

����
�

���� 	WB��j��j��

If � � �� then

��� B�z�

�� z
�

��� ����
z	�

� j��jjB
�����j�

Y
���

j�j�Nk

�
� �

����
�

���� 	 B��j��j��

and we get even better estimates� This proves �������

To estimate jQ�k���j we use Lemma ���� The set of zeros of Qk� b�k�� � �b�k n�k�� is a
k times �thickened� set �k�� � �k� Therefore� if � � �k��� then

jQ�k���j �

�
j(�k�����jj(k���j

Cj�jK

�k
�

�
jB����j

Cj�jK
�
h Y

���
j�j�Nk��

���� �

�

�� � Y
���

j�jNk��

���� �

�

��i���k�
By property �e� we have

Y
���

j�j�Nk��

����� �

�

��� 	 �
� �

�

Nk��

�n�Nk���
	 �n�Nk��� 	

�
B����

���k
�

and using estimate ������ we obtain� for su�ciently big k� that

jQ�k���j �

�
jB����j

eCj�jK
�
B��j�j�

���k �k

�

�
jB����j��k

eCj�jK

�k
�

jB����j�
B��j�j�

�� � jB����jk�� � jB����jk��� ������

The last inequality is a consequence of condition ����� and the inequality

jB����j��k

eCj�jK
� exp

h�
k
logB��j�j�� log�eC��K log j�j

i
� �� j�j � N �

k�

which follows from property �e��
��



If� on the opposite� � � b�k�� n �k��� then� again by Lemma ����

jQ�k���j �

�
j(k�����jj(k���j

Cj�jK

�k
�

�
jB���j

Cj�jK
�
h Y

���
j�j
Nk��

���� �

�

�� � Y
���

j�j�Nk��

���� �

�

��i���k�
and by Lemma ��� and property �e� we get like before that

jQ�k���j �

�
jB�����j���

eCj��jK�M��

�

�B��j��j�
��k

�k
� jB�����j

k�� ������

for su�ciently big k�
Gathering together ������������� ������ and ������� we obtain that

j bB����j � jB�����jk��

B��j��j�
� jB�����j

k� � jB�����j
�k�

for su�ciently big k� Lemma ��� implies now estimate ������

Remark� Actually� we have proven that the function bB satis�es all the conditions of
Theorem �with M � M � � and dierent ���

Step � �Rarefying the sequence��� Here we follow ���
�

Let us enumerate the elements of b� � f�jgj�Z in such a way that j��j 	 j�j� � � b��
and

� � � � �j�� � �j � �j�� � � � � �

For every positive integer m� choose a sequence

b��m� �
�
�km�rk�m�

�
� � 	 rk�m� 	 m� �� k � Z�

in such a way that

�u� b��m�  ��Nm��� Nm��
 � �  ��Nm��� Nm��
�

�v� b��m� 
	
��Nm��Nm��
 � �Nm��� Nm




� � 

	
��Nm��Nm��
 � �Nm��� Nm




�

�w� b��m� 
	
�����Nm
 � �Nm���



� � 

	
�����Nm
 � �Nm���



�

The fact that we are able to make such a choice follows from the construction of the setb�� Furthermore� we require additionally that the numbers rk�m� satisfy the property

lim
m��

inf
�
j�j � � � �  b��m�

�
���

Put

�m � � n b��m��
��



To prove Theorem we need only to verify that the �supporting� polynomials

Pm�z� �
Y

���m

�
��

z

�

�
�

satisfy estimate ������ Put

Fm�z� �
B�z�

Pm�z�
�

Y
����b��m�

�
��

z

�

�
�

Using Lemma ���� we can estimate jF �m���j from below at points � � �  b��m��

Case �� j�j � N �
m��� By properties �d��� �u� and �v�� we have

jF �m���j �
�

j�j

Y
����b��m�

��	�

����� �

�

��� � �

ej�j

Y
��b��m�
��	�

����� �

�

����
Applying Lemma ��� and using ����� we get

jF �m���j �
�

Cej�jK
j bB����j��m �

c

Cej�jK
�
B��j�j�

���m
� ������

Case �� j�j � N �
m��� Our �rst inequality

jF �m���j �
Y

����b��m�
j�j�Nm��

����� �

�

��� � �

j�j

Y
����b��m�

��	�� j�jNm��

����� �

�

��� � �

j�j
�

Y
���

��	�� j�jNm��

����� �

�

����
holds because all factors in the �rst product are bigger than �� to rewrite the index set
in the second product we use properties �v� and �w�� Therefore� by property �e� and
condition ������ we have for big m�

jF �m���j � jB����j
h Y

���
j�j�Nm��

���� �

�

��i�� � jB����j�
B��j�j�

����m��� � �
B��j�j�

���m
� ������

By ������ and ������ we obtain that in both cases

jF �m���j �
c

Cej�jK
�
B��j�j�

���m
�

Thus� for big N �

jPm���j 	
jB����j

jF �m���j
	 j�jN jB����j� � � � n �m�

�	



Now� ����� is proved and the theorem follows� �

An analysis of the proof of Theorem C shows that it runs under the following condition
imposed on the M �separable zero set � of a Hamburger class function�

there is a sequence � � R� � R� � � � � � Rk 
�� Rk � C�Rk������ such that every

�M����separable sequence b�� obtained by adding k points between every consecutive
�� �� � � with Rk � j�j � Rk��� j�j � j��j� is the zero set of a Hamburger class
function�

In particular� if an increasing sequence of positive numbers f�ng satis�es these conditions
and f�ng is an increasing sequence of positive numbers� then f�n�ng also satis�es these
conditions� This leads to Theorem D� We leave the details to the interested reader�

�� An Example

Here we produce an example which shows that condition ������ in Theorem C cannot
be relaxed�

Example ���� For every �� � 	 � � �		� there exists a function B � H of order � and
mean type� with zero set f�kgk�� such that

Clos �p�� �

jB�j
��B�P �� �p�

� �

jB�j
��B

�
� � 	 p 	 ��

and� for � � �� there exists � � � such that

� � �k�� � �k � �����k � k � �� �����

lim sup
���
���B

log jB����j

��
� � � ���	�

for � � � for every � � � and for su	ciently big k

� � �k�� � �k � ����k �

Proof� Let us consider only �the more di�cult� case � � �� First� take the sequence
�� � f���kgk��� ���k � k���� We are going to add some points to this sequence to get
the sequnce f�kgk��� By induction� we choose sequences frngn��� ftngn��� fxngn�� of
points on the positive axis and �nite sets of points �n � f�n�kg�
k
mn

� such that

�a� rn � tn � rn��		� n � ��
�b� mn � C � t�n� n � ��
�c� tn � �n�k � ��		�tn� � 	 k 	 mn�
�d� the set � � �� � �� � � � � � �n rearranged in the order of increasing� satis�es

condition ������
�




�e� if Bn�z� �
Q

z��n
�� � z	��� eBn �

Q
�
s
nBs� F��z� � �� Fn�z� �

Q
�
s
n���

z	xs�� then for some N independent of n �and to be �xed later�

jBn�x�j � �� 	�n� x � 	rn� �������� Y
��s
n��

Bs�x�
��� � �� x � rn� �����

j eB�n���j � jFn�����j���

�N
� � � �� � �n� rn � � � rn��� �����

and for some xn � �� � �n�

j eB�n�xn�j � jFn���xn�j
���� �����

Condition ����� evidently holds for su�ciently big rn� properties �b�� �c� imply that
����� holds for su�ciently big tn� If �n is empty� then ����� follows from ����� and the
estimates on the original product B� given in �	�� Chapter II� Section 	
�

log jB�����j � C��
�� � � ���

log jB����j � C��
�� dist ������ � ��

�
�����

Let us add to �n groups of N new equidistant points between consecutive points ���k�
���k��� beginning from ���k closest from above to tn� We stop at the �rst moment when
condition ����� starts to be valid for some point x � �� � �n and put xn � x� Since on
the previous step condition ����� did not hold� condition ����� is still ful�lled�

It remains to verify that if we add by N points between all the points ���k in the
interval �tn� ��		�tn
� then condition ����� is satis�ed for the point xn � ���k closest from
above to tn� �Note that in this case mn � Ct�n�� Indeed�

jBn����k�j 	 exp
	
�N

	
	� � �



����k



�

Fixing N � C�	
	
	� � �



we get j eB�n����k�j � � for big n� and ����� holds�

Now� B �
Q

s��Bs is of order � and mean type because of properties �a� and �b�� is

in H because of property �e�� satis�es condition ����� because of property �d�� To verify
���	�� we note that on the intervals �rn� 	rn
 the quotient jB	B�j is uniformly bounded
from above because of ����������� and then use estimates ������

Put F �z� �
Q

s����� z	xs�� Then the function F is of zero order and belongs to H

by Lemma A��� Finally� jF ����	B����j tends to � more rapidly than any polynomial for
�
�� F ��� � �� because of ������ It remains to apply Theorem A� �

��



Appendix �� Singular case

Here we give some general information related to the so called singular case of the
weighted polynomial approximation problem in the spaces �p�w� and Lp���� The facts
stated below provide additional motivation for the results discussed in our paper� Prob�
ably� most of these facts are known to the specialists�

�� Let w � R �
 ��� c
� c � ��� be a function continuous on Sw � fx � R � w�x� � �g
and such that

lim
jxj��

jxjnw�x� � �� n � �� �A����

We consider the space C��w� consisting of all functions continuous on Sw and such that

lim
jxj��

jf�x�jw�x� � ��

kfkC��w� � sup
x�R

jf�x�jw�x��

Condition �A���� guarantees that all polynomials belong to the space C��w��
We are going to use de Branges� theorem ��� 	�� Section VIF� �	
 in full generality�

De Branges� Theorem� The polynomials are not dense in C��w� if and only if there
exists an entire function F of zero exponential type� with simple real zeros �F � Sw such
that X

���F

�

w���jF ����j
��� �A��	�

Conditions �A���� and �A��	� imply that F is in the Hamburger class H �and conse�
quently� by a theorem of M� Krein �	�� Chapter V� Section �
� in the Cartwright class��

For every s � R� de�ne a weight ws�x� � �� � jxj�sw�x�� We call a weight w singular
if the polynomials are dense in C��ws� and are not dense in C��wt� for some s � t�
Otherwise� w is called regular�

The next result improves somewhat a theorem by Mergelyan �	�� Subsection 	�
�

Proposition A���� If w is a singular weight� then Sw coincides with the zero set of a
Hamburger class function�

Proof� Since the set Sws does not depend on s� without loss of generality we may
assume that the polynomials are dense in C��w� and are not dense in C��w��� Then� by
de Branges� theorem� there exists F � H such that �F � Sw andX

���F

�

�� � j�j�w���jF ����j
���

If �F �� Sw� then we can choose a point �� � Sw n �F and set F��z� � �z � ���F �z��
Then F� � H� �F� � Sw and X

���F�

�

w���jF �����j
���

��



One more application of de Branges� theorem gives us that the polynomials are not
dense in C��w�� and we arrive at a contradiction� Thus� �F � Sw� and the proof is
completed� �

For singular weights w� the set Sw is discrete and has no �nite limit points� therefore
we interpret the space C��w� as a space of sequences and we for it our previous notation
c��w��

�� Given a positive measure � on R having �nite moments of all orders we consider the
spaces Lp����

Lp��� �
�
f � kfkpLp��� �

Z
R

jf�x�jp d��x� ��
�
� � 	 p �� �

Set d�s�x� � �� � jxj�psd��x�� s � R� A measure � is called p�singular if the polyno�
mials are dense in Lp��s� and are not dense in Lp��t� for some s � t� An analog of
Proposition A��� holds in this situation�

Proposition A���� If � is a p�singular measure� then supp� coincides with the zero
set of a Hamburger class function�

In the case p � 	� this assertion follows from classical results related to the Hamburger
moment problem ��� Chapters � and �
�

Proof� First� using Mergelyan�s argument �	�� Subsection 	�
� we prove that supp� is
a discrete set and

card � supp�  ��r� r
� � o�r�� r
�� �A����

As in the previous proof� assume that the polynomials are dense in Lp��� and are not
dense in Lp����� Pick an arbitrary point x� � supp�� and choose a function � � C�R�
with compact support such that ��x�� � �� Then there exists a sequence of polynomials
Pn such that k� � PnkLp��� 
 �� n
�� Therefore�

sup
n
kPnkLp��� 	 C�

On the other hand� since the polynomials are not dense in Lp����� the Riesz�Hall�
Mergelyan majorant

Mp���z� � sup
�
jP �z�j � P � P� kPkLp��� 	 �

�
is �nite and� moreover� �	�� 	�� 	�


logMp���z� � o�jzj�� jzj 
 ��

This implies that fPng is a normal sequence in C � a subsequence fPnkg converges locally
uniformly to an entire function ) of zero exponential type� Furthermore� ) � � ��a�e�

�



Varying x� and � we obtain that � � supp� is discrete and satis�es estimate �A�����
Thus�

� �
X
���

�����

where X
���

j�jn�� ��� n � ��

X
���

�

�� � j�j��
���

We introduce an auxiliary weight w�

w�x� �

�
�
��p
� � x � � � ��

��� x �� ��

satisfying the conditions given at the beginning of Subsection �� Then for every f with
compact support�

kfkpc��w� � max
���

jf���jp�� 	
X
���

jf���jp�� � kfkpLp���

	 max
���

h
jf���jp�� � j�j����

i
�
X
���

�

�� � j�j��
	 kfkpc��w��p� �

X
���

�

�� � j�j��
�

As a result� we get continuous embeddings

c��w��p� �
 Lp��� �
 c��w�� �A����

Therefore� � is p�singular if and only if w is singular� An application of Proposition A���
completes the proof� �

�� Now� we are able to characterize the supports of singular weights and p�singular
measures� Let us call B � H a good Hamburger class function if it has no divisors G of
zero exponential type bounded on �B such that B	G is transcendental� Observe� that if
such a divisor G exists� then F � B	G automatically belongs to the Hamburger class�

Proposition A���� The following conditions on a subset � of R are equivalent�

�i� � � supp� for a p�singular measure ��
�ii� � � Sw for a singular weight w�
�iii� � � �B for a good Hamburger class function B�
�iv� � � �B for a Hamburger class function B satisfying the following property� every

entire function S of zero exponential type such that

lim
jyj��

����ynS�iy�B�iy�

���� � � � n � �� �A����

is equal to a constant provided it is bounded on the set �B�
��



The equivalence of the properties �i���iii� follows from Propositions A���� A��	 and
Theorem A� The equivalence of the properties �i� and �iv� follows from Koosis� argument
�	�
 �which was already used in Section 	�� Observe that condition �iii� looks much
weaker than �iv�� if B � H and G is a divisor of B of zero exponential type bounded
on �B � then S � G satis�es condition �A���� which yields that G is a constant function�
However� we cannot see how to prove directly the equivalence of these two conditions�

Theorems B� C and D give su�cient conditions for a Hamburger class function to be
a good function� We think that the class of good Hamburger functions deserves a much
better understanding than that we have achieved in this work�

�� Let X be one of the Banach spaces Lp���� � 	 p ��� or C��w�� and let

�X�P� � dimP��

where

P� � fx� � X� � x��P � � �� �P � Pg

be the annihilator of the polynomials�

Proposition A���� For � 	 p �� and d � N� the following conditions are equivalent �

�i� �Lp���P � d�
�ii� for every integer r� � 	 r � d� the polynomials are not dense in Lp���r�� and

are dense in Lp���d��
�iii� the polynomials are dense in Lp���d�� and for every a � R such that ��fag� � �

and every c � �� the polynomials are not dense in Lp���d � c�a��
�iv� A� supp ��� � �B� B � H�

B� for every F � H such that �F � �B� card ��B n �F � � d� we have

X
���F

�

��jF ����jp��p���
� �� � � � p ���

and

lim inf
���
���F

��jF
����j � � � p � ��

C� for every F � H such that �F � �B� card ��B n �F � � d� we have

X
���F

�

��jF ����jp��p���
� �� � � � p ���

and

lim inf
���
���F

��jF
����j � � � p � ��

��



A similar statement is valid for C��w�� In the L��setting� the equivalence of conditions
�i���iii� is known� see ��
 for references� Canonical measures are 	�singular� Moreover� a
measure � is canonical if and only if �Lp����P � �� and a special case of Proposition A���
with p � 	� d � � �and with �� instead of �� coincides with the corrected version of
Hamburger�s statement given in Section � �Corollary �����

Proof� The equivalence of conditions �i� and �ii� follows from the following simple ar�
gument from linear algebra� We use the pairing hf� gi �

R
fg d� for f � Lp��r� and

g � Lq���r�� �	p� �	q � �� Assume �rst that �i� holds so there are d linearly indepen�
dent vectors in Lq��� annihilating the polynomials� Then a linear combination v of them
annihilates d�� functions �i�x��r� � � r � d� or� what is the same� �i�x�rv belongs to
Lq��r� and annihilates the polynomials� Thus the polynomials are not dense in Lp���r��
r � d� Furthermore� the polynomials are dense in Lp���d�� otherwise� there is a vector
w � Lq��d� annihilating the polynomials and therefore d � � vectors w� xw� � � � � xdw
from Lq��� annihilate the polynomials which contradicts �i�� Arguing in the same way�
we obtain the opposite implication�

The equivalence of conditions �ii� and �iii� was proved in the C��setting by Mergelyan
�	�� Subsection 	�
� his proof works in the Lp spaces as well� Assume �rst that �ii� holds�
Then there is a vector v� � Lq���� annihilating the polynomials� By Proposition A��	�
the support of � is discrete� Choose a point a � R such that ��fag� � �� Then the
function v�x� � v��x�	�x� a� belongs to Lq��� and� for every polynomial P �

P �a�

Z
v d� � P �a�

Z
v��x�

x� a
d��x� �

Z
v��x�P �x�

x� a
d��x� �

Z
vP d� � �A����

Since the polynomials are dense in Lp���� the function v� cannot be orthogonal to �	�x�
a�� thus Z

v d� �

Z
v��x�

x� a
d� �� � �

and we can normalize v in such a way that
R
v d� � �c� Relation �A���� says that the

polynomials are not dense in Lp��� c�a�� and �iii� is done� Reversing the argument� we
obtain the opposite implication�

The equivalence of conditions �ii� and �iv� follows from Theorem A� �

�� The weighted approximations by polynomials and by linear combinations of exponents
are rather similar �	�� 	�
� However� there are some dierences� One of them appears in
the singular case �		� 	�
� In weighted approximation by linear combinations of exponents�
the Hamburger class is replaced by the Krein class consisting of the real entire functions
C with real zeros� such that

�

C�z�
�
X
���C

�

C �����z � ��
�

where the series in the right�hand side converges absolutely outside exceptional discs
around the points of �C � By Krein�s theorem �	�� 	�
� the Krein class is a subset of the
Cartwright class� In particular� the Krein class functions have exponential type�

��



De Branges� theorem claims that the linear combinations of exponents
�
eilx

�
���l��

are not dense in the space C��w� if and only if there exists a Krein class entire function
C of exponential type � such that �C � Sw andX

���C

�

w���jC ����j
� �� �

The counterparts of Theorem A and Proposition A��� hold in this setting with Krein
class entire functions of exponential type � instead of Hamburger class entire functions�
Furthermore� an observation by Koosis �		
 shows that in this case the notion of a good
function is not meaningful� every Krein class entire function of mean type is good� Thus
the problem of description of supports of singular measures has a simple answer� a set
� � R is the support of a singular measure �or of a singular weight� if and only if � is
the zero set of an entire function of the Krein class having exponential type ��

�� Let us consider the situation where the set � � Sw is discrete and does not accumulate
too fast at in�nity�

card
	
�  ��r� r




� O�rN �� r 
��

for some N ���
We introduce the scale of spaces �p��w� � �p��w���� and assume� as before� that w

satis�es condition �A���� and hence� the polynomials belong to these spaces� The weight
w is called singular if the polynomials are dense in �p��ws� and are not dense in �p��wt�
for some t � s� Otherwise� w is called regular� Analogously to �A����� for s � N	p we
have continuous embeddings

c��ws� �
 �p��w� �
 c��w��

Therefore� the notion of regularity does not depend on p� and in the regular case the
polynomials are dense or not dense simultaneously in all �p��w�� � 	 p 	 ��� Now we
apply Proposition A��� and de Branges� criterion of density of the polynomials in C��w�
to obtain such a result�

Proposition A���� If � is not a zero set of a Hamburger class function� then the weight
w is regular� and the following two conditions are equivalent�

�i� the polynomials are dense in all �p��w�� � 	 p 	 ���
�ii� there exist s � ��� c � �� and a Hamburger class function F � �F � �� such that

w���jF ����j � c�� � j�j��s� � � �F �

Correspondingly� in the singular case� � should be the zero set of a Hamburger class
function� This case is the main subject of our paper�

Finally� we note that the situation with general Lp��� spaces is quite dierent unless
some apriori conditions are imposed on the support of �� given � � r ��� A� Kesarev
constructed recently a smooth measure � on R �which is automatically p�regular for every
p� such that for s � r the polynomials are dense in Ls��� and for s � r they are not
dense in Ls����

��



Appendix �� A model example

The Bernstein approximation problem on discrete subsets � of the real line can be
analyzed rather completely in the case when both � and the weight w��� behave fairly
regular� In this appendix we show how de Branges� criterion and the techniques developed
in the paper can be applied in the following concrete situation�

� � fn���gn�N� � � ��

w��� � exp��c�m�� ws��� � �s exp��c�m�� c � �� m � �� s � R�

Most of the results presented below are not new� Some of them could be extracted� for
example� from �	�� Chapter �
 or from ��� Theorems 	��� ��� and ���
� However� the
methods we use give the most precise results in this direction�

Following the previous appendix� we say that the weight w is regular if the polynomials
are dense or not dense simultaneously in all the spaces �p��ws�� �� � s ��� Otherwise�
the weight is called singular� The discussion in the previous appendix shows that this
notion does not depend on the exponent p� � 	 p 	 �� The results for regular weights
given below are presented on Figure ��

regular density region

regular non-density region

1/2

m

1/2 ρ

m=min(ρ,1/2)

Figure ��

�� For m � �		 the polynomials are regularly dense in �p��w�� To verify this fact� we
associate to every functional a on �p��ws�� a � �q���	ws�� �	p��	q � �� its cosine�transform

Fa�z� �
X
���

a��� cos�����z�

holomorphic in a neighborhood of �� If a functional a vanishes on all polynomials� then
Fa vanishes at the point � together with all derivatives� and correspondingly� Fa � ��
a � �� This argument is given in ��� Theorems 	��
�

��



�� For � � m � �		 the polynomials are regularly dense in �p��w�� Otherwise� by
Theorem A� there exists a Hamburger class function F such that

�F � � �A	���

and
jF ����j � c��

�s exp�c�m�� � � �F � �A	�	�

with c� � �� s � �� Let �F be the order of growth of F � The inclusion �A	��� implies
that �F 	 �� Therefore� �F � � �F 	 � � m that contradicts �A	�	� because �F is
unbounded�

�� For m � min��� �		� the polynomials are regularly non�dense in �p��w�� Indeed� pick
m�� m � m� � min��� �		�� and choose a subset �� � � which is an R�set with respect
to the order m� �see Section � for the de�nition�� In this situation the canonical product

F �z� �
Y
����

	
��

z

�



satis�es the asymptotic relation �like in Section ��

lim
���
���F

log jF ����j

�m�
� c cot�m�� �A	���

for some c � �� As a result� F is in the Hamburger class� and by Theorem A� the
polynomials are regularly non�dense�

�� Let m � � � ��� �		�� c � � cot��� Like in Subsection � we use that the canonical
product

B��z� �
�Y
n	�

	
��

z

n���



satis�es the estimate

lim
���
���

log jB�����j

��
� � cot��� �A	���

Now� the proof of Theorem B may be easily modi�ed to prove that the polynomials are
regularly dense in �p��w�� Alternatively� this result may be derived directly from Fryntov�s
theorem�

If �	� is an integer �� ��� then this result follows from ��� Theorem ���
 where much
simpler methods are used� Apparently� these methods are insu�cient to study the case
of arbitrary � � 	 which is left open in ��
�

�� Let m � � � ��� �		�� c � � cot��� In this case the polynomials are regularly non�
dense in �p��w�� Indeed� estimate �A	��� implies that for some � � � and every s there
exists c� � � such that

ws���jB
�
����j � c� exp���

��� � � �B �
�	



This gives immediately that all the exponents p are not normal for the weights ws� and
the polynomials are not dense �see Section 	��

This case is basically covered by Theorem ��� in ��
� A somewhat less precise result
could also be extracted from �	�� Chapter �
�

�� The remaining case m � � � ��� �		�� c � � cot�� is the most delicate one because
the weights ws are singular� Our results are presented on Figure 	�

3/2

      non-density region

{(p,s):s>

3/2

s

3/2

s=3/2
density region

{(p,s):s 3/2

p(1,0)

ρ
ρ /p

ρ /p} & {(1,3/2 ρ)}

ρ /p} \ {(1,3/2 ρ)}

Figure ��

To apply our technique we need a more precise asymptotics for jB��j� It follows from
the results of G� H� Hardy in ���
 �see also ��	� Section ���� Theorem 	
� that there exists
a �nite limit

lim
jzj��

B��z�

z���� sin��z�� exp��� cot���z��
� j arg zj 	 �		� �A	���

Put f�z� � sin��z��� g � B�	f � Since B
�
���� � g���f ����� � � �� estimate �A	��� implies

that there exists a �nite limit

lim
���
���

jB�����j

������ exp��� cot������
�

Therefore� for p � � and for every Hamburger class divisor F of B� we have

X
���F

h �

ws���jF ����j

iq
�
X
���F

��q�s�������
���B�����
F ����

���q
�

�X
k	�

n
�q�s���������
k

����B���n���k �

F ��n
���
k �

����q� �

p
�

�

q
� �� �A	���

�




where �F � fn
���
k g�k	�� Hence� if q�s� �� �		�	� � �� that is s � �		� �	p� then the

exponent p is not normal for the weight ws� and the polynomials are not dense in �p��ws��
If p � �� and F is a Hamburger class divisor of B�� then we have

ws���jF
����j � �s������

��� F ����
B�����

����
Therefore� if s � �		��� then p � � is not a normal exponent for ws� and the polynomials
are not dense in ���ws��

On the orther hand� if p � � and s 	 �		 � �	p or p � � and s � �		 � �	p� then
the polynomials are dense in �p��ws�� To prove this we apply the criterion in Theorem A�
Consider the case p � � and � � q�s� �� �		�	� 	 �� If the polynomials are not dense�
then for some Hamburger divisor F of B the series �A	��� converges� Put G � B	F �
Then we have

�X
k	�

n��k jG�n
���
k �jq ��� �A	���

Now� an argument like in the proof of Theorem B �Section �� shows that � n�F is �nite�
Otherwise� we may add to F some zeros of G in such a way that ����� holds� and as a
consequence� B � F � and we get a contradiction� Hence� G is a polynomial� and �A	���
cannot hold� The same argument works for p � � and s � �		� �	p�

Appendix �� The Hamburger class

The properties of functions in the Hamburger class H we need in our paper are given
here� For some of these and other properties see also ��� Chapter �
� ��
�

Lemma A���� If B is a transcendental entire function of zero exponential type with real
zeros� then

lim
jyj��

jyjn

jB�iy�j
� �� n � ��

Proof� To prove this statement note that for all such functions B we have jB�iy�j �
jB���j� y � R n f�g� Therefore� it is enough to divide B by �n� �� terms �z � zk�� where
zk� � 	 k 	 n� �� are �dierent� zeros of B� �

Lemma A���� If B � H� then for every polynomial P �

P �z� �
X
���B

B�z�P ���

B�����z � ��
�

Proof� Denote the dierence between the right�hand side and the left�hand side by R�z��
Then R and� as a consequence� R	B are entire functions of zero exponential type� and
by Lemma A��� the function R	B tends to � along the imaginary axis� The Phragm en�
Lindel�of principle yields now that R	B � �� R � �� �

��



Lemma A���� If B � H� then for every polynomial P �

X
���B

P ���

B����
� ��

Proof� Without loss of generality assume that B��� �� �� Then we apply Lemma A��	
to the polynomial zP �z� and put z � �� �

Lemma A���� If � � 	�k � �k��� � 	 k � �� then F �z� �
Q

k���� � z	�k� is an
entire function of order � in the Hamburger class�

Proof� First�

jF ���k�j �
�

�k
�
Y
s�k

��k
�s

� �
�
�
Y
sk

�
��

�k
�s

�
�

Y
sk

�
��

�k
�s

�
�
Y
l�

	
�� 	�l



� ��

Furthermore� for every n�

lim
k��

�

�nk
�
Y
s�k

��k
�s

� �
�
� lim

k��

Y
s�n

� �

�s
�

�

�k

�
�
Y
s�n

�

�s
� �� �

Lemma A���� Let B be an entire function in the Hamburger class H satisfying condition
������� Suppose that the zeros of B areM �separated for someM ��� Then the following
conditions on B are equivalent�

�i� for some � � ��

log jB����j � � logB��j�j�� � � ��

�ii� for some � � ��

log jB�z�j � � logB��jzj�� z 	�
�
���

D
	
�� j�j�M



�

These conditions imply that� for some R ���

B��r� 	M�r� B����� R � r ���

Proof� Without loss of generality assume that � ��	� 	� � �� We show that �i� implies
�ii�� the opposite implication and the last assertion are obvious� According to Lemma ����

��



log jB�z�j � � logB��jzj� on the circles C� � fjz � �j � j�j�M��g� � � �� Consider the
function F � log jBj � � logB�� Then� for x � R� n ��

�F ���x� �
X
���

�

�x� ���
� �

X
���

�

�x� j�j��
� � �

Hence� F is concave between the zeros of B and� consequently� is positive on R�n����C��
We argue similarly for x � R� n �� If B has no zeros on a half�axis� we just use that F
tends to �� along this half�axis�

Therefore� log jBj � � logB� on the boundary �* of the domain

* � C � n
�
�

D
	
�� j�j�M



�

Since log jBj is harmonic and bounded from below on *� the function � logB� � log jBj
is subharmonic and has zero exponential type on *� Applying the Phragm en�Lindel�of
principle� we conclude that log jBj � � logB� on *� The same argument works in the
lower half�plane as well� �

Appendix �� Proof of Lemma ���

Estimate ����� is an immediate consequence of estimate ���	� written in the form

�

C�� � jzjK�
	

jfm�z�j

jf�z�j��m
jz � �j��m 	 C�� � jzjK�� jz � �j �

�

j�jM��
�

We need only to use that

f ���� �
f�z�

z � �

���
z	�

�

and that the function

z �
 log jfm�z�j �
�

m
log jf�z�j�

�

m
log jz � �j

is harmonic in the disc D
	
�� j�j�M



� Estimate ����� is proved in the same way�

To prove estimate ���	�� we consider the family of functions

fm�r�z� �
Y
s

�
��

z

�sm�r

�
� � 	 r 	 m� ��

The zeros of functions fm�r and fm�l� r �� l� are interlaced� and by a theorem of M� Krein
�see �	�� Chapter VII� Section �
� the function

Im
fm�r�z�

fm�l�z�
� Im z

�



is of a constant sign for Im z �� �� By the Carath eodory inequality for the half�plane
�	�� Chapter I� Section �
� every function g enjoying this property� Im g�z� � Im z �� ��
Im z �� �� satis�es the estimate

�

�
jg�i�j

j Imzj

jzj�
	 jg�z�j 	 �jg�i�j

jzj�

j Im zj
� jzj � ��

Applying this estimate to g � fm�r	fm�l and using that jg�i�j 	 C�L�� where L is the
constant in condition ������ we obtain

j Im zj

Cjzj�
	
���fm�r�z�

fm�l�z�

��� 	 Cjzj�

j Im zj
� jzj � �� �A����

Multiplying these inequalities for l � �� �� � � � �m� � and taking the root of m�th degree�
we obtain

j Im zj

Cjzj�
	

jfm�r�z�j

jf�z�j��m
	

Cjzj�

j Im zj
� jzj � ��

Since the zeros of the functions fm and fm�� are interlaced� we have an estimate like
�A���� for the quotient fm	fm��� Therefore�

j Im zj�

Cjzj�
	

jfm�z�j

jf�z�j��m
	

Cjzj�

j Im zj�
� jzj � �� �A��	�

This implies immediately that

�

C�� � jzjK�
	

jfm�z�j

jf�z�j��m
	 C�� � jzjK�� jzj � �� j Im zj �

�

� � jzjM��
� �A����

The function h � log jfmj � ��	m� log jf j is harmonic in C n %� For every � � %� there
exists c� � jc� j 	 �� such that h� c� log j � ��j is harmonic in D��� j�j�m�� Making use of
estimate �A��	� on the boundary of this disc and the Poisson�Jensen formula� we obtain
that

jh�z�j 	 K log
�

j�j
jz � �j � j�j�m�� �

and henceforth

�

C�� � jzjK�
	

jfm�z�j

jf�z�j��m
	 C�� � jzjK�� jz � �j � j�j�m��� �A����

Consider the open set

O �
hn
z � x� iy � jyj �

�

�� � jxjM���

o
� fz � jzj � 	g

i
n
�
��


D
	
�� j�j�M��



�

The function h is harmonic on each connectivity component of O� and� by the maximum
principle� the estimate �A���� extends to these components� Taking into account �A�����
we get the statement of the lemma� �

��
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