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ALMOST-ADDITIVITY OF ANALYTIC CAPACITY AND

CAUCHY INDEPENDENT MEASURES

VLADIMIR EIDERMAN, ALEXANDER REZNIKOV, AND ALEXANDER VOLBERG

Abstract. We show that, given a family of discs centered at a chord-arc curve,
the analytic capacity of a union of arbitrary subsets of these discs (one subset in
each disc) is comparable with the sum of their analytic capacities. However, we
need that the discs in question would be separated, and it is not clear whether the
separation condition is essential or not. We apply this result to find families {µj}
of measures in C with the following property. If the Cauchy integral operators
Cµj

from L2(µj) to itself are bounded uniformly in j, then Cµ, µ =
∑

µj , is also

bounded from L2(µ) to itself.

1. Introduction

We consider two properties of families of sets and measures in the complex plane.

1.1. Almost additivity of analytic capacity. The analytic capacity γ(F ) of a
compact set F in C is defined by the equality

γ(F ) = sup |f ′(∞)|,
where the supremum is taken over all analytic functions f : C \F → C with |f | ≤ 1
on C \ F . Here f ′(∞) = limz→∞ z(f(z)− f(∞)). For non-compact F we set

γ(F ) = sup{γ(K) : K compact, K ⊂ F}
[G]. For a summary of equivalent definitions the reader can see [To] and [Vo].

In the celebrated paper [To1] Tolsa established the countable semiadditivity of
the analytic capacity, i. e. that

γ
(

⋃

Fi

)

≤ C
∑

γ(Fi)

with an absolute constant C. But the inverse inequality does not hold in general.

To see that we consider the n-th generation E
1/4
n of the corner 1/4-Cantor set con-

structed in the following way. Start with the unit square (0-th generation). The
j-th generation consists of 4j squares Ej,k with side length 4−j, each square Ej,k

contains four squares of (j + 1)-th generation, located at the corners of Ej,k, and so

on. It’s known [MTV] that γ(
⋃4n

k=1En,k) = γ(E
1/4
n ) ≍ 1/

√
n with absolute constants

of comparison; here P ≍ Q means that cP ≤ Q ≤ CP . Positive constants c, C, a,
A (possibly with indices) are not necessarily the same at each appearance. On the
other hand,

4n
∑

k=1

γ(En,k) ≍ 4n · 4−n = 1.
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Thus, “almost additivity” γ
(
⋃

Fi

)

≍ ∑

γ(Fi) of the analytic capacity does not take
place in general. N. A. Shirokov posed the question on the validity of this property
for the special class of sets described in the following Theorem 1.1.

We say that Γ is a chord-arc curve, if

|t− s| ≤ A0|z(t)− z(s)|, A0 > 1,

where z(t) is the arc-length parametrization of Γ.

Theorem 1.1. Let Dj be discs with centers on a chord-arc curve Γ, such that
λDj ∩ λDk = ∅, j 6= k, for some λ > 1. Let Ej ⊂ Dj be arbitrary compact sets.
Then there exists a constant c = c(λ,A0), such that

(1.1) γ
(

⋃

Ej

)

≥ c
∑

j

γ(Ej).

Open question. It is not clear if the theorem is true or not when λ = 1.

1.2. Cauchy independence of families of measures. We use the results in the
previous subsection to investigate the property of measures described below.

We call a finite Borel measure with compact support in the complex plane a
Cauchy operator measure if the Cauchy operator Cµ is bounded from L2(µ) to itself
wth norm at most 1.

The first natural question is how to interpret the “definition” of Cµ as

Cµf(z) =
∫

f(ξ)dµ(ξ)

ξ − z
.

One of the ways is to consider the so-called ε-truncations, defined by

Cε
µf(z) =

∫

ε<|ξ−z|<ε−1

f(ξ)dµ(ξ)

ξ − z
.

We now say that Cµ is bounded as an operator from L2(µ) to itself if the ε-truncations
are bounded from L2(µ) to itself uniformly in ε. Moreover, by the norm of Cµ we
understand the supε ‖Cε

µ‖µ =: ‖Cµ‖µ , where ‖Cε
µ‖µ is the norm of Cε

µ as an operator

from L2(µ) to itself. We encourage the reader to look for other interpretations in
[NTrV1], [To] and [Vo].

The following important fact (which we will repeatedly use) demonstrates the
connection between the analytic capacity and boundedness of the Cauchy operator
[To1, To2, To, Vo]: for every compact set F in C,

(1.2) γ(F ) ≍ sup{‖µ‖ : supp µ ⊂ F, µ ∈ Σ, ‖Cµ‖µ ≤ 1},
where Σ is the class of nonnegative Borel measures µ such that µ(D(x, r)) ≤ r for
every disc D(x, r) := {z ∈ C : |z − x| < r}.

We call a collection {µj} of finite positive Borel measures with compact supports
C-Cauchy independent measures if a) ‖Cµj

‖µj
≤ 1 (Cauchy operator measures) and

b) ‖Cµ‖µ ≤ C < ∞ for µ = Σjµj. We will call such collection Cauchy independent
if it is C-Cauchy independent for some finite C.

The family {µj} can be finite or infinite. Two Cauchy operator measures are
always Cauchy independent with an absolute constant C. A short proof of this
nontrivial fact is given in [NToV, Proposition 3.1]. So, a finite family is always
Cauchy independent for a sufficiently large constant C. But our main interest is in
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situations, when infinite families are independent (or when C is independent of the
number of measures). The main result is the following

Theorem 1.2. Suppose that λ > 1, and measures µj are supported on compact sets
Ej lying in discs Dj such that λDj are disjoint. We also assume that measures µj

are extremal in the following sense: ‖Cµj
‖µj

≤ 1 and ‖µj‖ ≍ γ(Ej) with absolute
comparison constants. Let µ =

∑

j µj and E = ∪Ej. Then this family is Cauchy
independent if and only if for any disc B,

(1.3) µ(B) ≤ C0γ(B ∩ E) .

Remark. In Section 3 we explain that the condition (1.3) with any disc B is
necessary for the bound ‖Cµ‖µ ≤ C without any additional assumptions on the
structure of µ. The example given in Section 5 shows that this condition alone is
not sufficient even if µ consists of countably many pieces µj, and each of µj gives
a bounded Cauchy operator with a uniform bound. Thus, additional conditions on
the structure of µ are needed. The example of such assumptions on µ which seem
reasonable is given in Theorem 1.2, where supports of µj are located in separated
discs.

Remark. Theorem 1.2 is a bit astonishing. It is easier to explain, that under
its conditions, there exists a piece of measure µ, namely µ′ := χE′ · µ, such that
µ(E ′) ≥ c µ(E), and ‖Cµ′‖µ′ ≤ C < ∞, where c > 0 and C are constants depending
only on parameters in Theorem 1.2. Even this fact is far from being trivial, it requires
the full strength of non-homegeneous non-accretice Tb theorem of Nazarov–Treil–
Volberg (see [NTrV2], [Vo], [To]), the reader can see this type of considerations on
pp. 125–129, 135–146 of the paper of Tolsa [To1] in which Painlevé’s conjecture is
solved. In other words, to prove that a “good portion” of µ is a Cauchy operator
measure is a non-trivial fact in itself. But it is even more remarkable that the whole
measure µ is such.

As a corollary we derive the following independence theorem.

Theorem 1.3. Let µ = Σjµj be as above. Assume that measures µj are supported
on compacts Ej lying in discs Dj such that λDj are disjoint (λ > 1). We also
assume that measures µj are extremal in the sense that ‖Cµj

‖µj
≤ 1 and c1µj(Ej) ≤

γ(Ej) ≤ c2µj(Ej), 0 < c1 < c2 < ∞. If for any disc B,

(1.4)
∑

j

γ(B ∩ Ej) ≤ C1γ(B ∩ E), E =
⋃

Ej,

then the norm ‖Cµ‖µ is bounded, and the bound depends only on comparison con-
stants c1, c2, C1.

Unlike Theorem 1.1, Theorems 1.2, 1.3 do not have any assumptions on the loca-
tion of discs Dj .

However, if we have λ-separated discs Dj (meaning λDj are disjoint) and almost
additivity (1.4) then it turns ut that we automatically must have a very special
geometry of such discs. Let us show this right away (modulo the proof of Theorem
1.3).

Let us recall that the curve Γ on the plane is called Ahlfors regular (with constant
A) if for any disc B we have

H1(Γ ∩B) ≤ A diamB.
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Corollary 1.4. Under the conditions of (1.4) for some Ej ⊂ Dj with γ(Ej) >
0, j = 1, 2, . . . , and λ-separation of the discs Dj, λ > 1, there exists an Ahlfors
regular curve Γ, whose Ahlfors constant depends only on λ and on C1 of (1.4), such
that all discs Dj intersect Γ.

Proof. Let E be a compact set of finite 1-Hausdorff measure: H1(E) < ∞. Let c2(E)
mean Melnikov–Menger’s curvature of measure H1|E, see [M], [To], [Le]. While
proving Theorems 1.2, 1.3 we will construct sets Lj inside Lj ∩Dj 6= ∅, formed by
finitely many straight segments, and such that measure H1|L, L :=

⋃

j Lj , satisfies

c2(L ∩ B) ≤ C diamB, ∀ discs B,

where C depends on C1, λ only. This property turns out to be equivalent to the fact
that L is contained in a single Ahlfors regular curve of the plane by a theorem of G.
David and S. Semmes, see [DS], [Le].

�

Remark. Now we see that almost additivity of analytic capacity in the form of
inequality (1.4) and a “small” geometric condition of λ-separation of ambient discs
(with λ > 1) means that our discs have to “line-up” along a good (Ahlfors regular)
curve. Theorem 1.1 claims a sort of a converse statement.

To prove Theorems 1.2, 1.3, we will need only the special case of Theorem 1.1,
when Γ is a subset of the real axis or of a circle. In this case there is a short proof
based only on some classical facts in complex analysis. We give this proof in the
next Section 2. Theorem 1.2 is proved in the Section 3, and Theorem 1.3 in Section
4. In Section 5 we give the example mentioned above. Section 6 contains the proof
of Theorem 1.1 in the full generality, which is completely different from the proof in
Section 2. The main tool of this proof is Melnikov–Menger’s curvature of a measure.
All necessary definitions are given in Section 6. In the last Section 7 we formulate
an open question.

2. Almost-additivity of analytic capacity: string of beads attached

to the real line

A result close to the theorem below for some special sets {Ej}∞j=1 was proved (but
not stated) in [NV]. Here we use the approach via the Marcinkiewicz function, the
approach in [NV] was a bit more complicated. Unlike [NV], we do not need any
special size properties of these sets.

Theorem 2.1. Let Dj be discs, each of which has a non-empty intersection with
the real line R, such that λDj ∩ λDk = ∅, j 6= k, for some λ > 1. Let Ej ⊂ Dj be
arbitrary compact sets. Then there exists a constant c = c(λ) > 0, such that

γ
(

⋃

Ej

)

≥ c
∑

j

γ(Ej).

Proof. It is enough to prove the result for finite families of indices j. We first notice
that γj := γ(Ej) ≤ diam(Ej) ≤ 2rj, where rj is the radius of Dj . Let yj be the
center of the chord R ∩Dj . Denote λ′ := 1+λ

2
. For each j we draw a horizontal line

segment Lj ⊂ λ′Dj with center at yj and with capacity b(λ)γj . We choose and fix

b(λ): 0 < b(λ) ≤ min( 1
100

,
rj
√
λ′2−1

2
. Thus, the length ℓj of Lj satisfies ℓj =

1
25
γj <

rj
10
,

ℓj ≤ 2rj
√
λ′2 − 1. In particular, the whole segment Lj lies in λ′Dj.
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Next, let fj be the function that gives the capacity of Ej. Also let ϕj be the
function that gives the capacity of Lj in the following sense:

ϕj(z) =

∫

Lj

ϕj(x)

x− z
dx,

∫

ϕj(x)dx = b(λ)γj .

Positive functions ϕj(x) have a uniform bound ‖ϕj‖∞ ≤ A with an absolute constant
A. In particular, if F is any subset of indices j we have

(2.1)

∣

∣

∣

∣

Im
∑

j∈F
ϕj(z)

∣

∣

∣

∣

≤ A

∫

∪j∈FLj

|Imz|
|t− z|2 dt ≤ πA , ∀z ∈ C .

Remark. It is important here that the intervals Lj are situated on the real line
(or at least are not far away from R). For any M > 0 one can easily construct a
chord-arc curve and discs centered on it such that the left hand side in (2.1) exceeds
M . This is the obstacle for extension of these arguments to chord-arc curves.

Our next goal is to find a family F of indices and absolute positive constants a1,
a2, such that the following two assertions hold:

∑

j∈F
γj ≥ a1

∑

j

γj ,(2.2)

∑

j∈F
|fj(z)− b(λ)−1ϕj(z)| ≤ a2 , ∀z ∈ C \

(

⋃

j∈F
(Ej ∪ Lj)

)

.(2.3)

Let us finish the proof of the theorem, taken these assertions as granted (for a short
while). Let F :=

∑

j∈F fj . Combining (2.1) and (2.3) we get |ImF (z)| ≤ C1(λ),

z ∈ C \ (∪j∈FEj). Hence, the function F1 := eiF − 1 is bounded in C \ (∪j∈FEj) by
constant C(λ). Since F (∞) = 0, we have |F ′

1(∞)| = |F ′(∞)| = ∑

j∈F γj. Thus,

γ

(

⋃

j∈F
Ej

)

≥ a1
C(λ)

∑

j∈F
γj .

Combine this with (2.2). We obtain, that

γ

(

⋃

j

Ej

)

≥ γ

(

⋃

j∈F
Ej

)

≥ a3
∑

j

γj ,

and Theorem 1.1 would be proved. So we are left to chose the family F such that
(2.2), (2.3) hold.

By the Schwartz lemma in the form we borrow from [G, p. 12–13], we have

(2.4) |fj(z)− b(λ)−1ϕj(z)| ≤
Arjγj

dist(z, Ej ∪ Lj)2
, z /∈ Ej ∪ Lj .

Denote λ0 =
√
λ′2 − 1, h := ( λ

λ′ − 1),

Qi := [−hri, hri]× (R ∩D(yi, λ0ri)) gi :=
∑

j: j 6=i

rjγj
D(Qj , Qi)2

,

where D(Qi, Qj) := dist(Qi, Qj) + ri + rj. Notice that rectangles Qi lies entirely
in Di, and moreover, augmented rectangles (1 + h)Qi are disjoint (it is a simple
excercise in trigonometry).
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Remark. We do not need this, but for the sake of explanation, let us define a
function g =

∑

gjχQj∩R. This function is often called a Marcinkiewicz function.
The main trick with Marcinkiewicz functions is to integrate them with respect to a
suitable measure. What in fact happens next is that we integrate it with respect to
Lebesgue measure on R.

The important point is that we can estimate
∑

i giγi. In fact,

∑

i

giγi =
∑

i

γi
∑

j: j 6=i

rjγj
D(Qj, Qi)2

=
∑

j

rjγj
∑

i: i 6=j

γi
D(Qi, Qj)2

≤ 2
∑

j

rjγj
∑

i: i 6=j

ri
D(Qi, Qj)2

≤ A0

∑

j

rjγjr
−1
j = A0(

∑

j

γj).

In the last estimate we used that

∑

i: i 6=j

ri
D(Qi, Qj)2

≤ A0

∫

t:|t−yj |≥rj

1

r2j + |t− yj|2
dt ≤ πA0

rj
.

Now we use the Tchebysheff inequality. Denote I∗ := {i : gi > 10A0}, I∗ := {i :
gi ≤ 10A0}. We immediately see that

(2.5)
∑

j∈I∗
γj ≥

9

10

∑

j

γj .

Obviously, by (2.4) for every index i we have

∑

j: j 6=i

|fj(z)− b(λ)−1ϕj(z)| ≤ C(λ)gi , z ∈ C \ ∪j∈I∗:j 6=iQj .

This estimate and the choice of I∗ imply that

∑

j: j 6=i , j∈I∗
|fj(z)−b(λ)−1ϕj(z)| ≤ C(λ)gi ≤ 10A0C(λ) , ∀i ∈ I∗ , ∀z ∈ C\∪j∈I∗:j 6=iQj. .

But all functions |fi|, |ϕi| are bounded by 1 in C \ (Ei ∪ Li). Therefore, the last
inequality implies the estimate
(2.6)
∑

j: j∈I∗
|fj(z)− b(λ)−1ϕj(z)| ≤ 10A0C(λ) + b(λ)−1 =: a2 , ∀z ∈ C \ ∪j∈I∗(Ej ∪ Lj) .

The function
∑

j∈I∗(fj − b(λ)−1ϕj) is analytic in C \
(
⋃

i∈I∗(Ei ∪ Li)
)

and vanishes

at infinity. Therefore, (2.6) implies (2.3) if we put F := I∗. Assertion (2.2) is proved
in (2.5), and the proof of the theorem is completed. �

Using the conformal map of the half-plane onto the unit disc and an obvious
observation on dilations, we have the following corollary.

Corollary 2.2. The statement of Theorem 2.1 remains true if centers are on a
circle instead of being on the real line.
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3. Proof of Theorem 1.2

3.1. Necessity of the condition (1.3). Suppose that ‖Cµ‖µ ≤ C < ∞ and
supp µ ⊂ E. One can easily see that ‖Cµ|B‖µ|B ≤ C < ∞ for any disc B. Moreover,
boundedness of Cµ implies that αµ ∈ Σ with α depending only on C, see for example
[Da]. Thus, the measure cµ|B, c = c(C, α) > 0, participates in the right hand side
of (1.2) with F = B ∩ E, and we get (1.3).

3.2. Sufficiency of the condition (1.3). The following result was proved in [NToV],
although was not formulated explicitly (see the last three pages of Section 3 in
[NToV]).

Theorem 3.1. Suppose that {Dj} are discs on the plane and the dilated discs λDj,
λ > 1, are disjoint. Let ν, σ be two positive measures supported in ∪jDj such that
c1ν(Dj) ≤ σ(Dj) ≤ c2ν(Dj), 0 < c1 < c2 < ∞. Suppose also that the Cauchy
operators Cσj

, σj = σ|Dj
, are uniformly bounded. Then if ν is a Cauchy operator

measure, then σ is also a Cauchy operator measure, and its constant depends only
on c1, c2, λ and and the constant for measure ν.

We need some preliminary constructions and notations. First, we define new Lj .

Definition. We call by cross two perpendicular line segments of equal length inter-
secting in their centers, one of them being horizontal.

By H1 we denote the 1-dimensional Hausdorff measure. Here is an easy lemma.

Lemma 3.2. For any cross and any disc B,

γ(cross ∩B) ≍ H1(cross ∩B)

with absolute constants of comparison.

We now need an number N = N(λ), which is defined as follows. Recall that
λ > 1 and λ′ = 1+λ

2
. Let a disc D with radius r be given. We place a cross of length

(that is of H1-measure) less than r
1000

in the center of D, and N crosses that touch
∂(λ′Dj) on the inside, of the same length as the first cross, and on equal distance
from each other. We also require that crosses do not intersect. By L we denote the
union of all crosses. Let N be a minimal integer such that the following holds.

If a disc B intersects D and C \ (λD), then at least one cross from L lies inside
B.

Clearly, such N = N(λ) < ∞ exists. The following lemma is almost obvious.

Lemma 3.3. For the set L defined above it is true that γ(L) ≍ H1(L), where the
comparison constants can depend only on N .

Proof. Since crosses do not intersect, we have

γ(L) ≍ γ(cross) ≍ γ(horizontal part of the cross) ≍ H1(cross) = 1
N+1

H1(L).

�

Let Lj be the union of crosses associated with Dj . We have chosen the number
of crosses in each Lj , but we have a freedom to choose their size. We define the size
so that

(3.1) H1(Lj) =
N+1
1000

γ(Ej).



8 VLADIMIR EIDERMAN, ALEXANDER REZNIKOV, AND ALEXANDER VOLBERG

Then, in particular, H1(one cross) = 1
N+1

H1(Lj) =
1

1000
γ(Ej) ≤ rj

1000
, since γ(Ej) ≤

γ(Dj) = rj.
We need the following lemma.

Lemma 3.4. Fix an index j. Let B be a disc such that at least one cross from
Lj lies inside B. Then γ(Lj) ≍ γ(Lj ∩ B) with constants depending only on λ. In
particular this is true if Dj ⊂ B, or if B intersects Dj and C \ λDj.

Proof. Indeed, by semiadditivity of γ we have γ(Lj) ≤ A ·(N+1) ·γ(central cross) ≤
A(N + 1)γ(Lj ∩B). �

Lemma 3.5. For any disc B the following relation holds with constants depending
only on λ:

γ
(

⋃

j:Dj⊂B

Lj

)

≍ γ
(

⋃

j:Dj⊂B

Lj ∩B
)

.

Proof. By semiadditivity of γ,

γ
(

⋃

Dj⊂B

Lj

)

≤ A

(

γ
(

⋃

λ′Dj⊂B

Lj

)

+ γ
(

⋃

Dj⊂B,λ′Dj 6⊂B

Lj

)

)

.

The first term is the same as γ(
⋃

λ′Dj⊂B Lj ∩ B). For the second, we use that

Lj∩B ⊂ λ′Dj, and thus we can apply Theorem 2.1, or rather Corollary 2.2 prepared
in the previous section as λ

λ′λ
′Dj are pairwise disjoint, and we can use Corollary 2.2

with just a new dilation constant λnew := λ
λ′ . Thus

γ
(

⋃

Dj⊂B,λ′Dj 6⊂B

Lj ∩ B
)

≥ c
∑

Dj⊂B,λ′Dj 6⊂B

γ(Lj ∩ B) ≥

c1
∑

Dj⊂B,λ′Dj 6⊂B

γ(Lj) ≥ c2γ
(

⋃

Dj⊂B,λ′Dj 6⊂B

Lj

)

,

which finishes the proof. The second inequality uses Lemma 3.4, as obviously all
Lj for Dj ⊂ B satisfy this lemma (the central cross definitely lies in B for such
discs). �

For a given disc B denote by J = J (B) the set of indices J := {j : Dj ∩ B 6=
∅ and Dj 6⊂ B}.
Lemma 3.6. Suppose that a disc B intersects more than one Dj. Then with absolute
constants,

γ
(

⋃

J
Lj

)

≍ γ
(

⋃

J
Lj ∩ B

)

.

Proof. Here again we will use Corollary 2.2 of Theorem 2.1. Since B intersects more
than one Dj , it cannot be contained in λDj , j ∈ J . Thus, it contains at least one
cross from Lj for each j ∈ J (it follows from the choice of N). Call this cross Cj.
We apply Corollary 2.2 to Dj with dilation constant λ to get the estimate

γ
(

⋃

J
Lj ∩B) ≥ c

∑

J
γ(Lj ∩ B) ≥

∑

J
γ(Cj) ≥ c1

∑

J
γ(Lj) ≥ c2γ(

⋃

J
Lj),

which finishes the proof. �
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Finally, we need the following notation. Fix a disc B. Denote

Fj =

{

Ej, Dj ⊂ B

∅, Dj 6⊂ B.
, F =

⋃

Fj.

Remark. A disc B will be free to change in what follows. The constants in further
inequalities will never depend on B.

Our next goal is to prove that under assumptions of Theorem 1.2, the inequality

γ
(

⋃

Lj ∩ B
)

≥ c
∑

γ(Lj ∩B)

holds with a universal constant c (universality means that c will not depend on the
disc B). We need the following two lemmas.

We fix a small positive absolute constant ε. The choice of smallness will be clear
from what follows.

Lemma 3.7 (The first case). Suppose that γ(F ) ≤ εγ(E ∩B). Then there exists a
constant c, that can depend only on N , ε and other universal constants, such that

γ
(

⋃

Lj ∩B
)

≥ c
∑

γ(Lj ∩ B).

Proof. Suppose that B intersects only one λDj. Then the
⋃

and the
∑

have only
one term, and there is nothing to prove. So, we can assume that B intersects at
least two of λDj’s. Notice also that by this assumption, by the fact that λDi are
pairwise disjoint, and by the choice of N , if B intersects Dj then at least one cross
from Lj lies inside B. Let J be as in Lemma 3.6. Using Lemma 3.4 and Corollary
2.2 we get

(3.2)
∑

J
γ(Lj) ≤ A1

∑

J
γ(Lj ∩ B) ≤ A2γ(

⋃

J
Lj ∩B) .

On the other hand, by the assumption of Theorem 1.2,

(3.3)
∑

Dj⊂B

γ(Lj) ≤ C
∑

Dj⊂B

γ(Ej) ≤ C ′
∑

Dj⊂B

µj(Dj) ≤ C ′µ(B) ≤ C ′C0γ(E ∩ B).

Also with an absolute constant A,

γ(E ∩B) ≤ A

(

γ(F ) + γ
(

⋃

J
Ej ∩ B

)

)

≤ εAγ(E ∩ B) + Aγ
(

⋃

J
Ej ∩B)

)

.

Thus, if ε is small enough (notice that the smallness depends only on A), we have

(3.4) γ(E ∩B) ≤ Cγ
(

⋃

J
Ej ∩B)

)

.

Therefore, combining (3.3), (3.4), and (3.2), we obtain
∑

Dj⊂B

γ(Lj) ≤ Cγ
(

⋃

J
Ej ∩ B)

)

≤ C1

∑

J
γ(Ej ∩ B)

≤ C2

∑

J
γ(Lj) ≤ C3γ

(

⋃

J
Lj ∩B

)

.
(3.5)
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Now combine (3.2) and (3.5) to get

(3.6) γ
(

⋃

Lj ∩B
)

≥ γ
(

⋃

J
Lj ∩B

)

≥ c
∑

Dj⊂B

γ(Lj)+c
∑

J
γ(Lj) = c

∑

Dj∩B 6=∅
γ(Lj) .

Obviously,

(3.7) γ
(

⋃

Lj ∩ B
)

≥ γ
(

⋃

J1

Lj ∩ B
)

, J1 := {j : Dj ∩ B = ∅, Lj ∩B 6= ∅}.

For j ∈ J1 we again consider the new dilation constants λnew := λ
λ′ , discsD

′
j := λ′Dj.

The discs λnewD
′
j , j ∈ J1, are disjoint, and D′

j intersects B for j ∈ J1. By Corollary
2.2 applied to Lj , j ∈ J1, playing the roles of Ej, we get

(3.8) γ
(

⋃

J1

Lj ∩ B
)

≥ c
∑

J1

γ(Lj ∩B) .

The combination of (3.6)–(3.8) finishes the proof. �

Lemma 3.8 (The second case). Suppose that γ(F ) ≥ εγ(E ∩ B) with ε from the
previous lemma. Then there exists a universal constant c such that

γ
(

⋃

Lj ∩B
)

≥ c
∑

γ(Lj ∩ B).

Proof. By Theorem 2.1 or rather Corollary 2.2 we need only to prove the inequality

(3.9) γ
(

⋃

Dj⊂B

Lj ∩ B
)

≥ c
∑

Dj⊂B

γ(Lj ∩B).

Using the assumption of our lemma as well as the conditions (1.3) and ‖µj‖ ≍ γ(Ej)
of Theorem 1.2, we get

(3.10) γ(F ) ≥ εγ(E ∩B) ≥ εcµ(B) ≥ εc
∑

Dj⊂B

µj(B) ≥ εc′
∑

j

γ(Fj).

By ν we denote the measure on F participating in (1.2) for which ‖ν‖ ≍ γ(F ).
Denote dνj = χFj

dν. Then Cνj is bounded on L2(νj) (with norm at most 1), and
(1.2) yields the estimate

‖νj‖ ≤ Cγ(Fj) ≤ C1γ(Lj) ≤ C2H1(Lj) =: C2ℓj .

We call j good if Dj ⊂ B and ‖νj‖ ≥ τℓj . The choice of τ will be clear from the
next steps. However, we want to emphasize now that this choice will be universal.
By (3.10) we have:

εc′A−1
∑

γ(Fj) ≤ A−1γ(F ) ≤ ‖ν‖ =
∑

‖νj‖

≤ C2

∑

j is good

ℓj + τ
∑

Dj⊂B

ℓj ≤ C2

∑

j is good

ℓj + C3τ
∑

γ(Fj)

(in the last inequality we use (3.1)). Therefore,

(3.11)
∑

j is good, Dj⊂B

ℓj ≥ c
∑

γ(Fj) ≥ c1
∑

Dj⊂B

ℓj.
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Actually, τ is chosen exactly here. We see that it indeed depends only on universal
constants such as A and ε. Recall that Cj denotes the central cross of each Lj . We
set

dσg :=
∑

j is good, Dj⊂B

χCj
dH1, dνg :=

∑

j is good, Dj⊂B

dνj .

Then for good j, σg(Dj) = H1(Cj) ≍ H1(Lj) = ℓj ≍ νg(Dj). In the last in-
equalities the comparison constants can depend on previous universal constants and
τ . Operators Cσg |Dj

are uniformly bounded (since the Cauchy operator for each of
two intervals in a cross is bounded). By the way we defined ν, the operator Cνg is
bounded as well with norm at most 1. Thus, we may apply Theorem 3.1 and con-
clude that Cσg

is also bounded with a certain absolute bound of the norm. Therefore,
using (3.11), we get

γ
(

⋃

Dj⊂B

Lj

)

≥ γ
(

⋃

j is good, Dj⊂B

Lj

)

≥ c‖σg‖ ≥ c1
∑

j is good, Dj⊂B

ℓj ≥ c2
∑

Dj⊂B

ℓj .

In Lemma 3.5 we have proved that

γ
(

⋃

Dj⊂B

Lj

)

≍ γ
(

⋃

Dj⊂B

Lj ∩B
)

.

Moreover, for every j such that Dj ⊂ B, we have

ℓj = H1(Lj) ≍ H1(Lj ∩ B) ≍ γ(Lj ∩ B).

Thus, we obtain (3.9), and Lemma 3.8 is proved. �

The main Theorem of [NV] says:

Theorem 3.9. Let L ⊂ R2, be a compact set of positive and finite Hausdorff measure
H1, and let σ = H1|L. Then Cσ is bounded if and only if there exists a finite constant
C0 such that σ(B ∩ L) ≤ C0γ(B ∩ L) for any disc B.

Starting with the main assumption of Theorem 1.3 (the inequality µ(B) ≤ C0γ(B∩
E) for any disc B) we proved in Lemmas 3.7, 3.8 that the uniform in B almost-
additivity of γ holds for the union of all sets {Lj ∩B}. Namely, we proved that the
following holds for any B with uniform positive c2:

(3.12) γ(B ∩ L) ≥ c1
∑

j

γ(B ∩ Lj) ≥ c2
∑

j

σ(B ∩ Lj) = c2σ(B ∩ L) ,

where σ := H1|L. Hence the measure σ satisfies Theorem 3.9. So the boundedness
of Cauchy integral on the union of crosses is obtained. The measures σ|Lj and µj

are supported on λ′Dj , the discs λ
λ′ · (λ′Dj) are disjoint, and σ(Lj) ≍ µj (see (3.1)).

We may apply Theorem 3.1 again to establish the boundedness of Cµ in L2(µ).

4. Proof of Theorem 1.3

We would like to explain why under the assumptions of Theorem 1.3, the con-
ditions of Theorem 1.2 are satisfied. Indeed, since ‖Cµj

‖µj
≤ 1, the relation (1.2)

implies that µ(B ∩ Ej) = µj(B ∩ Ej) ≤ Cγ(B ∩ Ej) for every disc B. Therefore,

µ(B) =
∑

µ(B ∩ Ej) ≤ C
∑

γ(B ∩ Ej) ≤ C0γ(B ∩ E),

where the latter is the condition of Theorem 1.2.
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5. “Sharpness” of Theorem 1.2

We saw in Section 3 that the condition

(5.1) µ(B) ≤ C0γ(B ∩ E) for every disc B

is necessary for the boundedness of the Cauchy operator Cµ with any Borel measure
µ. It is not difficult to see that this condition alone is not enough for the boundedness

of Cµ. Indeed, let µ
1/4
n be the probability measure uniformly distributed on the set

E
1/4
n defined in Introduction. Let µ1/4 be the weak limit of some weakly convergent

subsequence {µ1/4
nk }, E1/4 =

⋂

E
1/4
n , E is the initial unit square, and µ := µ1/4 +

H2|E. Then µ satisfies (5.1), but Cµ is unbounded – see for example [MT, MTV].
We are going to demonstrate more: in general the condition (5.1) is not sufficient
for the boundedness even if µ consists of countably many pieces, and each of them
gives a bounded Cauchy operator.

Proposition 5.1. There exists a family of measures {µj}∞j=0 with the following
properties: (a) ‖Cµj

‖µj
≤ 1; (b) ‖µj‖ ≍ γ(Ej), where Ej = suppµj; (c) 2Ej ∩2Ek =

∅, j 6= k, j, k ≥ 1; (d) the measure µ =
∑∞

j=0 µj satisfies (5.1); (e) ‖Cµ‖µ = ∞.

Proof. We use the idea of David-Semmes (see [VE, Example 8.7] for more detailed
exposition). Let N0 = 0, and let {Nk}∞k=0 be a sequence of natural numbers such
that Nk+1 − Nk → ∞ as k → ∞. Start the construction with the unit square E0

and make N1 −N0 steps of the construction of the corner 1/4-Cantor set E1/4. We
get 4N1−N0 squares with side length 4−N1 . Choose one (any) of them, denote it by
Q1, and continue the construction only with this square. Other 4N1−N0 − 1 squares
are the sets Ej which have already been defined. For the chosen square Q1 we make
next N2 −N1 steps of the construction of E1/4, obtaining 4N2−N1 squares with side
length 4−N2. Again, continue the construction only for one of them, say, for a square
Q2, and so on.

Let µj, j = 0, 1, . . . , be the 2-dimensional measure uniformly distributed on Ej

such that ‖µj‖ = cℓj , where ℓj is the side length of Ej , and the absolute constant
c is chosen in such a way that ‖Cµj

‖µj
= 1. Then properties (a), (b), (c) are

obvious. To demonstrate (d) we notice that E :=
⋃

j≥0Ej is equal to E0, and

thus γ(B ∩ E) ≍ diam(B ∩ E) =: d0. On the other hand, for any j ≥ 0 and
dj := diam(B ∩ Ej), we have µ(B ∩ Ej) ≤ cℓ−1

j d2j < Cdj (the density of µj is c/ℓj).
Hence, µ(B ∩ E) < C

∑∞
j=0 dj ≍ d0, and (d) is established.

Finally, to prove (e), we apply the operator Cµ to the characteristic functions χQk
,

k = 0, 1, . . . We have

‖Cµ(χQk
)‖L2(µ) = ‖Cµ|Qk

(1)‖L2(µ) ≥ ‖Cµ|Qk
(1)‖L2(µ|Qk).

But

‖Cµ|Qk
(1)‖2L2(µ|Qk)

≥ c(Nk+1 −Nk)4
−Nk

with an absolute constant c – see [MT]. Hence, ‖Cµ‖µ ≥ c(Nk+1 − Nk) → ∞, and
(e) is proved. �

Remark that the measures {µj}∞j=1 satisfy all assumptions of Theorem 1.2 except
(5.1). Therefore, we have to add µ0 and change the structure of µ.
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6. Proof of Theorem 1.1

The main result of this section can be related to Theorem 2.1. It is known that
a compact chord-arc curve is a bi-lipschitz image of a straight segment, see [Po],
Chapter 7. On the other hand analytic capacity can be only finitely distorted by
bi-lipschitz maps. This is a difficult result by X. Tolsa, [To3]. So if we allow the
separation constant λ > 1 to depend on the Lipschitz constant of our chord-arc
curve (so, the separation of the discs to be large if the constant of the curve is
large), then we can obtain Theorem 1.1 directly from Theorem 2.1.

However, we do not want the separation constant to depend on chord-arc constant.
Then we need another proof, which follows.

The Melnikov–Menger curvature of a positive Borel measure µ in C is defined (see
[M], [To], [Le]) as

c2(µ) =

∫∫∫

1

R2(x, y, z)
dµ(x) dµ(y) dµ(z),

where R(x, y, z) is the radius of the circle passing through points x, y, z ∈ C, with
R(x, y, z) = ∞ if x, y, z lie on the same straight line (in particular, if two of these
points coincide). This notion was introduced by Melnikov [M]. The following rela-
tion characterizes the analytic capacity in terms of the curvature of a measure [To1],
[To2, p. 104], [Vo], [To] : for any compact set F in C,

(6.1) γ(F ) ≍ sup{µ(F ) : supp µ ⊂ F, µ ∈ Σ, c2(µ) ≤ µ(F )},
where Σ is the class of measures of linear growth defined in (1.2).

Lemma 6.1 (Main Lemma). Let Dj = D(xj, rj) be discs with centers on a chord-
arc curve Γ, such that λDj ∩ λDk = ∅, j 6= k, for some λ > 1. Let µj be positive
measures with the following properties: (1) suppµj ⊂ Dj; (2) µj(Bj) =: ‖µj‖ ≤ rj.
Then for µ =

∑

µj we have

(6.2) c2(µ) ≤
∑

j

c2(µj) + C‖µ‖, C = C(λ,A0),

where A0 is the constant of Γ.

At the beginning let us show that Theorem 1.1 is a direct consequence of Main
Lemma and (6.1).

Proof of Theorem 1.1. Consider measures µj participating in (6.1) for F = Ej , j =
1, . . . Then µ(D(x, r)) ≤ Cr for any disc D, where C = C(A0) and µ =

∑

µj . To
prove this assertion, we fix a disc D = D(x, r) and divide all discs Dj onto two
groups: D1 := {Dj : Dj ∩D 6= ∅, rj ≤ r}, D2 := {Dj : Dj ∩D 6= ∅, rj > r}. Since
Γ is chord-arc,

∑

Dj∈D1
ri ≤ Cr, C = C(A0). It is easy to see that #D2 ≤ 6. Hence,

µ(D) ≤
∑

Dj∈D1

µ(Dj) +
∑

Dj∈D2

µ(Dj ∩D) ≤
∑

Dj∈D1

rj + 6µ(D) < Cr.

Furthermore, Main Lemma implies the inequality c2(µ) ≤ C‖µ‖, C = C(λ,A0).
Thus, the measure cµ with an appropriate constant c depending on λ,A0, partici-
pates in (6.1) for F = E = ∪Ej . So, γ(E) ≥ c‖µ‖, that implies Theorem 1.1. �
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Proof of Lemma 6.1. It is enough to consider the case of a finite set of discs Bj,
j = 1, . . . , N . We assume that these discs are enumerated in the order of increase
of the natural parameters of their centers.

Let Γj be arcs of Γ such that Γj ⊂ Dj and H1(Γj) = µ(Dj). Let σj := H1|Γj and
σ :=

∑

σj , so that σ(Dj) = µ(Dj). Obviously,

c2(µ) =

(

∑

j

∫∫∫

D3

j

+

∫∫∫

C3\⋃j D
3

j

)

1

R2(x, y, z)
dµ(x) dµ(y) dµ(z) =: I1 + I2.

Since I1 =
∑

j c
2(µj), we have to estimate only I2. Our proof is based on the

comparison of I2 and the corresponding integral with respect to σ:

Ī2 :=

∫∫∫

C3\⋃j D
3

j

1

R2(x, y, z)
dσ(x) dσ(y) dσ(z).

Notice that

(6.3) Ī2 < c2(σ) ≤ C‖σ‖, C = C(A0).

The last inequality is a consequence of two well-known facts. (a) The boundedness
of the Cauchy operator CH1|Γ on chord-arc curves – see [MV, p. 330]. In particular,

‖Cε
σ1‖2L2(σ) ≤ ‖CH1|Γχ∪Γj

‖2L2(H1|Γ) ≤ C‖χ∪Γj
‖2L2(H1|Γ) = C‖σ‖, ε > 0,

where C depends only on A0. (b) The connection between the curvature of a measure
and the norm of a Cauchy potential:

‖Cε
µ1‖2L2(µ) =

1

6
c2ε(µ) +O(‖µ‖)

for any measure µ ∈ Σ uniformly in ε – see for example [To2]. Here c2ε(µ) is the
truncated version of c2(µ) defined in the same way as c2ε(µ), but the triple integral
is taken over the set {(x, y, z) ∈ C3 : |x− y|, |y− z|, |x− z| > ε}. This equality with
µ = c σ ∈ Σ, and the previous relations imply (6.3).

Obviously,

I2 =

(
∫∫∫

Ω1

+

∫∫∫

Ω2

)

1

R2(x, y, z)
dµ(x) dµ(y) dµ(z) =: I2,1 + I2,2 ,

where

Ω1 := {Dj ×Dk ×Dl : j = k 6= l ∨ j 6= k = l ∨ j = l 6= k},
Ω2 := {Dj ×Dk ×Dl : j 6= k, k 6= l, j 6= l}.

To estimate the integral over Ω1, it’s sufficient to consider the subset

Ω′
1 := {Dj ×Dk ×Dl : j 6= k = l}.

For x ∈ Dj = D(xj , rj), y, z ∈ Dk, j 6= k, we have

2R(x, y, z) ≥ |x− y| ≥ c(rj + rj+1 + · · ·+ rk), c = c(λ,A0)
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(here we assume that j < k; the case k < j is analogous). Then

∫∫∫

Ω′
1

1

R2(x, y, z)
dµ(x) dµ(y) dµ(z) ≤ C

[N−1
∑

j=1

‖µj‖
N
∑

k=j+1

‖µk‖2
(rj + rj+1 + · · ·+ rk)2

+
N−1
∑

j=1

‖µN+1−j‖
N
∑

k=j+1

‖µN+1−k‖2
(rN+1−j + rj+1 + · · ·+ rN+1−k)2

=: C[SN,1 + SN,2].

Estimates for both terms on the right are the same. We estimate SN,1 using the
induction with respect to N .

1. N = 2. Then

SN,1 = ‖µ1‖ ·
‖µ2‖2

(r1 + r2)2
≤ ‖µ1‖ ≤ ‖µ1‖+ ‖µ2‖.

2. Suppose that the inequality

(6.4) SN,1 =

N−1
∑

j=1

‖µj‖
N
∑

k=j+1

‖µk‖2
(rj + · · ·+ rk)2

≤ ‖µ1‖+ · · ·+ ‖µN‖

holds for some N ≥ 2. For N + 1 discs we have

SN+1,1 = SN,1 +

N
∑

j=1

‖µj‖
‖µN+1‖2

(rj + · · ·+ rN+1)2

≤ SN,1 + ‖µN+1‖2
N
∑

j=1

rj
(rj + · · ·+ rN+1)2

.

The last sum is dominated by the integral
∫ ∞

0

dt

(rN+1 + t)2
=

1

rN+1
.

Hence,

SN+1,1 ≤ SN,1 + ‖µN+1‖2/rN+1 ≤ ‖µ1‖+ · · ·+ ‖µN+1‖.
Thus, we proved (6.4) and therefore estimated the triple integral over Ω1.

By symmetry,
∫∫∫

Ω2

1

R2(x, y, z)
dµ(x) dµ(y) dµ(z) = 6

∫∫∫

Ω′
2

1

R2(x, y, z)
dµ(x) dµ(y) dµ(z),

where Ω′
2 := {Dj ×Dk ×Dl : j < k < l}. Moreover, we may restrict ourself by the

integration over

Ω′
2,1 := {Dj ×Dk ×Dl : j < k < l, rj + · · ·+ rk ≥ 1

2
(rj + · · ·+ rl)}.

Indeed, if we prove the inequality

(6.5)

∫∫∫

Ω′
2,1

1

R2(x, y, z)
dµ(x) dµ(y) dµ(z) ≤ C‖µ‖

with C = C(λ,A0), then using the inverse parametrization of Γ, we get the same
estimate for the triple integral over

Ω′
2,2 := {Dj ×Dk ×Dl : j < k < l, rk + · · ·+ rl ≥ 1

2
(rj + · · ·+ rl)}
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(here we use the same numeration of discs as before). Since
∫∫∫

Ω′
2

≤
∫∫∫

Ω′
2,1

+
∫∫∫

Ω′
2,2

,

(6.4) and (6.5) imply (6.2).
Fix indices j, k, l. For any triples (x, y, z), (x′, y′, z′) ∈ Dj ×Dk ×Dl, the sine of

the angle between the intervals (y, z) and (y′, z′) does not exceed

C
rk + rl

rk + · · ·+ rl
, C = C(λ,A0).

For the angle between the intervals (x, z) and (x′, z′) we have C
rj+rl

rj+···+rl
. Denote by

α, α′ the angles at z, z′ of the triangles x, y, z and x′, y′, z′, correspondingly. Since
sin(α + β + γ) ≤ sinα + sin β + sin γ as α, β, γ ∈ [0, π], we get the estimate

sinα < sinα′ + C
rk + rl

rk + · · ·+ rl
+ C

rj + rl
rj + · · ·+ rl

.

Hence,

1

R(x, y, z)
=

2 sinα

|x− y| <
C

|x′ − y′|

[

2 sinα′ +
rk + rl

rk + · · ·+ rl
+

rj + rl
rj + · · ·+ rl

]

.

Therefore,

∫∫∫

Ω′
2,1

1

R2(x, y, z)
dµ(x) dµ(y) dµ(z) ≤ C

[
∫∫∫

Ω′
2,1

1

R2(x′, y′, z′)
dσ(x′) dσ(y′) dσ(z′)

+

N−2
∑

j=1

‖µj‖
N
∑

l=j+2

l−1
∑

k=j+1

r2k ‖µk‖ ‖µl‖
(rj + · · ·+ rk)2(rk + · · ·+ rl)2

+

N−2
∑

j=1

‖µj‖
N
∑

l=j+2

l−1
∑

k=j+1

r2l ‖µk‖ ‖µl‖
(rj + · · ·+ rk)2(rk + · · ·+ rl)2

+
N−2
∑

j=1

‖µj‖r2j
N
∑

l=j+2

l−1
∑

k=j+1

‖µk‖ ‖µl‖
(rj + · · ·+ rk)2(rj + · · ·+ rl)2

]

=: C[I+S(1)+S(2)+S(3)].

By (6.3), I ≤ c2(σ) ≤ C‖σ‖. We estimate each of sums separately. Write S(1) as

S(1) =
N−2
∑

j=1

‖µj‖
N−1
∑

k=j+1

N
∑

l=k+1

r2k ‖µk‖ ‖µl‖
(rj + · · ·+ rk)2(rk + · · ·+ rl)2

.

Since the inner sum with respect to l does not exceed

r2k ‖µk‖
(rj + · · ·+ rk)2

∫ ∞

rk

dx

x2
=

rk ‖µk‖
(rj + · · ·+ rk)2

,

we get the estimate

S(1) ≤
N−2
∑

j=1

‖µj‖
N−1
∑

k=j+1

rk ‖µk‖
(rj + · · ·+ rk)2

≤
N−1
∑

k=2

k−1
∑

j=1

rk ‖µk‖ rj
(rj + · · ·+ rk)2

≤
N−1
∑

k=2

‖µk‖
k−1
∑

j=1

rk

∫ ∞

rk

dx

x2
=

N−1
∑

k=2

‖µk‖ < ‖µ‖ .
(6.6)
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Now we will use the possibility to consider only those k for which rj + · · · + rk ≥
1
2
(rj + · · · + rl) (the set of such k can be empty). Suppose that the last inequality

holds for p ≤ k ≤ l − 1. Then we estimate S(2):

N−2
∑

j=1

‖µj‖
N
∑

l=j+2

l−1
∑

k=p

r2l ‖µk‖ ‖µl‖
(rj + · · ·+ rk)2(rk + · · ·+ rl)2

≤ 4
N−2
∑

j=1

‖µj‖
N
∑

l=j+2

l−1
∑

k=p

r2l ‖µk‖ ‖µl‖
(rj + · · ·+ rl)2(rk + · · ·+ rl)2

≤ 4

N−2
∑

j=1

‖µj‖
N
∑

l=j+2

rl ‖µl‖
(rj + · · ·+ rl)2

(we estimate the sum with respect to k in the same way as above). We may deal
with the last double sum as in (6.6), or notice that this sum does not exceed

N−2
∑

j=1

‖µj‖
[

1 +
N−1
∑

l=j+1

rl ‖µl‖
(rj + · · ·+ rl)2

]

.

Now change the order of summation and and use (6.6) directly. Finally,

S(3) ≤
N−2
∑

j=1

‖µj‖
N
∑

l=j+2

r2j ‖µl‖
(rj + · · ·+ rl)2rj

<

N−2
∑

j=1

‖µj‖ < ‖µ‖.

Lemma 6.1 is proved. �

7. Question on super-additivity

We make more accurate the question posed in Section 1. In Theorems 1.1, 2.1
discs were λ-separated, where λ > 1. But what if they are just disjoint? Namely,
let Dj be circles with centers on a chord-arc curve (or even on the real line R), such
that Dj ∩ Dk = ∅, j 6= k. Let Ej ⊂ Dj be arbitrary compact sets. Is it true that
there exists a universal constant c > 0, such that

γ
(

⋃

Ej

)

≥ c
∑

j

γ(Ej) ?

We cannot either prove or construct a counter-example to this claim.
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