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Overview of the Workshop
This workshop was part of the Internet Analysis Seminar that is the education component

of the National Science Foundation – DMS # 0955432 held by Brett D. Wick. The Internet
Analysis Seminar consists of three phases that run over the course of a standard academic
year. Each year, a topic in complex analysis, function theory, harmonic analysis, or operator
theory is chosen and an internet seminar will be developed with corresponding lectures. The
course will introduce advanced graduate students and post-doctoral researchers to various
topics in those areas and, in particular, their interaction.

This was a workshop that focused on the connections between Hausdorff geometry and
singular integral operators. How one can discern order in a seemingly very disordered set?
If the set in question has some self-similarity then a dynamical systems approach can be of
use. But suppose there is no a priori structure. We consider one such situations when the
full a priori knowledge about the set is the following: 1) its Hausdorff dimension is given,
and we know that the Hausdorff measure in this dimension is (positive) and finite, 2) the set
is a singularity set of a non-constant Lipschitz function satisfying some (fractional) Laplace
equation. Or, instead of 2) one can say that singular integrals from a small collection (e.g.,
Riesz transforms) are bounded in L2 with respect to Hausdorff measure. Or, instead of 2)
one can say that a certain Calderón-Zygmund capacity of the set is positive. Then what
geometry, if any, is imposed on the set by these conditions? It turns out (or conjectured)
that automatically we can “connect” points from a non-trivial part of the set by a smooth
manifold. In other words, the points of such a set should “feel” each others presence in a
very quantitative and geometric way. This multi-dimensional analytic traveling salesman
problem is the subject of the lectures. This is because several (but not all) such problems
were recently solved, and they turned out to be entangling PDE, Harmonic Analysis and
Geometric Measure Theory into one knot.

First, there is a particular (but very interesting and important) family of problems on
the plane. These are problems posed by Painlevé, Denjoy, Ahlfors, Vitushkin, and were
solved in the last 12 years by the efforts of a large group of mathematicians. Sets of finite
Hausdorff measure H1 and positive analytic capacity on the plane must contain a subset of
positiveH1-measure of a rectifiable curve. This “analysis-to-geometry” statement was known
as “Denjoy’s problem” and was solved almost simultaneously, and by different methods by
David-Mattila-Léger and Nazarov-Treil-Volberg.

The higher dimensional analogue of this question is a very interesting area of current
research, and is the following: Is it true that the sets of finite Hausdorff measure Hm,
1 ≤ m ≤ d, m an integer, and positive γ(m, d)-capacity must contain a non-trivial m-
rectifiable subset? This is known as the David-Semmes problem and is completely analo-
gous to Denjoy’s problem in dimension greater than 2. Unfortunately, in higher dimensions
the main geometric tool, called Menger’s curvature, is “cruelly missing”. The topic of the
Internet Analysis Seminar this year will focus on the machinery necessary to understand
the David-Semmes problem and the recent work of Nazarov, Tolsa and Volberg in the co-
dimension one case. The lectures will touch upon the themes connecting analysis (singular
integral operators, operator capacity) with geometry (geometric measure theory).

http://internetanalysisseminar.gatech.edu/
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The participants that presented, presented one of the following papers:

[1] Vladimir Eiderman, Fedor Nazarov, and Alexander Volberg, The s-Riesz transform of
an s-dimensional measure in R2 is unbounded for 1 < s < 2, J. Anal. Math. 122 (2014),
1–23. ↑

[2] Vladimir Eiderman, Alexander Reznikov, and Alexander Volberg, Almost-additivity of
analytic capacity and Cauchy independent measures, available at http://arxiv.org/

abs/1401.0407. ↑
[3] Benjamin Jaye and Fedor Nazarov, Reflectionless measures and the Mattila-Melnikov-

Verdera uniform rectifiability theorem, available at http://arxiv.org/abs/1307.1156.
↑

[4] , Three revolutions in the kernel are worse than one, available at http://arxiv.
org/abs/1307.3678. ↑

[5] Peter W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102
(1990), no. 1, 1–15. ↑

[6] J. C. Léger, Menger curvature and rectifiability, Ann. of Math. (2) 149 (1999), no. 3,
831–869. ↑

[7] Fedor Nazarov, Xavier Tolas, and Alexander Volberg, On the uniform rectifiability of
AD regular measures with bounded Riesz transform operator: the case of Codimension
1, available at http://arxiv.org/abs/1212.5229. ↑

[8] , The Riesz transform, rectifiability, and removability for Lipschitz harmonic
functions, available at http://arxiv.org/abs/1212.5431. ↑

[9] Kate Okikiolu, Characterization of subsets of rectifiable curves in Rn, J. London Math.
Soc. (2) 46 (1992), no. 2, 336–348. ↑

[10] Xavier Tolsa, Painlevé’s problem and the semiadditivity of analytic capacity, Acta Math.
190 (2003), no. 1, 105–149. ↑

They were then responsible to prepare two one-hour lectures based on the paper and an
extended abstract based on the paper. This proceedings is the collection of the extended
abstract prepared by each participant.

http://arxiv.org/abs/1401.0407
http://arxiv.org/abs/1401.0407
http://arxiv.org/abs/1307.1156
http://arxiv.org/abs/1307.3678
http://arxiv.org/abs/1307.3678
http://arxiv.org/abs/1212.5229
http://arxiv.org/abs/1212.5431
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RECTIFIABLE SETS AND THE TRAVELING SALESMAN PROBLEM

PETER JONES

presented by Tyler Bongers

Abstract. In this paper, a characterization of subsets of rectifiable sets in R2 is given. A
measurement of the local deviation of a set from its best local linear approximation will be
defined, which will then be studied at all scales and in all locations. When this measurement
is finite, a rectifiable curve containing the set is explicitly constructed. On the other hand, it
is also shown that all rectifiable curves satisfy this same geometric condition; the proof of this
fact is carried out in the special case of Lipschitz curves, and complex analysis techniques
are used to reduce the general case to the particular.

1. Introduction and Main Results Presented

The classic Traveling Salesman Problem asks to find the shortest possible route visiting
each of (finitely many) cities and returning home; this leads to the problem of finding the
shortest connected set containing a given finite set of points. In this paper, we will study a
characterization of subsets of the plane for which there does exist a connected superset of
finite length - that is, characterize subsets of rectifiable curves.
Let us begin by giving a scale invariant measure of the deviation of a set K from linearity
at a given location. We call a square Q dyadic if it is of the form [j · 2−n, (j + 1) · 2−n]× [k ·
2−n, (k+ 1) · 2−n] for integers j, k, n; its sidelength is denoted l(Q) = 2−n. For λ > 0, we say
that λQ is the square with the same center as Q but sidelength λl(Q). We then define

βK(Q) =
ω(Q)

l(Q)

where ω is the width of the smallest infinite strip (line, in the degenerate case) containing
K ∩ 3Q. Alternatively, we could define

βK(Q) = 2 inf
L

sup
z∈3Q∩K

d(z, L)

l(Q)

where the infimum is taken over all lines L. We then use this to define

β2(K) =
∑

Q

β2
K(Q)l(Q) =

∑

Q

βK(Q)ω(Q)

where the sum is taken over all dyadic squares in the plane.
Thus it is seen that βK(Q) measures the deviation of the set from the best approximating line.
We have that 0 ≤ βK(Q) ≤ 3 for all K,Q; the closer βK(Q) is to zero, the less deviation from
linearity K has on the scale and location of Q. Then β2(K) measures non-linear behaviour
at all scales and at all locations in the plane. This allows us to state one of the main results
of this paper.
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Theorem 1. If Γ ⊂ C is connected, then

β2(Γ) . l(Γ)

The proof of this will proceed in several parts, beginning with a geometric study of the
boundaries of Lipschitz domains (which are of independent importance). Let us consider a
curve Γ, parameterized by r(θ)eiθ, where

1

C
≤ r(θ) ≤ 1

and r is Lipschitz. Morally, such almost-smooth-enough curves ought to behave linearly
at least on small scales and at most locations; thus it is reasonable to expect that β2(K)
is finite here. This is made precise by studying the distance between the curve Γ and an
approximating polygon with 2n sides; after rotating the dyadic grid and using the triangle
inequality appropriately, this distance can be directly compared to the beta numbers.
In order to use the result on Lipschitz curves, we will use a general geometric theorem of
independent interest:

Theorem 2. If Ω is a simply connected domain and l(∂Ω) <∞, there is a rectifiable curve
Γ such that

Ω \ Γ =
⋃

j

Ωj

where each Ωj is a C0 Lipschitz domain, and
∑

j

l(∂Ωj) ≤ C0l(∂Ω)

This is proven using complex analysis techniques. We begin by conformally mapping Ω to
the unit disk by a Riemann map F , and decomposing the disk into (a polar version of)
dyadic squares. The assumption that Ω has finite boundary length implies that F lies in
the Hardy space H1, making a number of complex analytic tools available. Letting ϕ be the
logarithm of F ′, an elementary argument with Green’s theorem shows that

∫ ∫

D
|F ′(z)||ϕ′(z)|2 log

1

|z|dA .
∫

∂D
|F ′(eit)|dt = l(∂Ω)

We then perform a stopping time argument, based on the behaviour of ϕ, tiling the disk
with regions derived from dyadic squares; the images of these regions under the conformal
map will (almost) be the disjoint C0 Lipschitz domains. The regions so selected will also be
6-chord arc domains; that is, given any two points x, y in the boundary of such a region,
there is a subarc of the boundary of length at most 6|x−y| containing x and y; this is almost
preserved by the conformal map. Letting γQ denote the boundary of one of these regions,
we estimate ∫

γQ

|F ′(z)|ds(z)

in order to estimate
∑

j l(∂Ωj). This is done in several ways, according to the exact behaviour
of the region. Slightly smaller regions are then chosen in a manner which does not increase
the boundary length too much, which are then mapped to actual C0 Lipschitz domains; the
Koebe distortion theorem or a Cantor-like construction is used here.
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Now given a rectifiable curve Γ, we attach a large circle S and a line segment L meeting
these two; applying the theorem to each of the bounded components of C \ (Γ ∪ S ∪ L), we
can prove

Lemma 3. If Γ is connected, there is a connected Γ̃ containing Γ with l(Γ̃) . l(Γ), every
bounded component of C \ Γ̃ is a C0 Lipschitz domain, and the unbounded component is the
complement of a disk. Moreover, given x, y ∈ Γ̃, there is a subarc γ containing x, y with
l(γ) . |x− y|.

Denote the components as Ωj with boundaries Γj, and set dj = diam(Γj). To apply the
lemma, we will use the fact that different parts of the curve will act almost independently
on certain scales: in particular, let us consider two sets

F(Q) = {Γj : Γj ∩ 4Q 6= ∅, dj ≥ l(Q)}
G(Q) = {Γj : Γj ∩ 5Q 6= ∅, dj < l(Q)}

That is, F(Q) and G(Q) count the pieces of Γ which are close to Q, classified according to the
size of the region bounded by Γ. Morally, since the elements of F(Q) correspond to features
of Γ which are large relative to the square Q, these pieces will act independently when
computing the beta numbers (after all, large scale features must be somewhat separated due
to their size). This is not quite true, and must be corrected to account for behaviour of the
curve on scales smaller than Q, leading to

Lemma 4. If Q∗ is the dyadic parent of Q,

β2
Γ(Q) .

∑

F(Q)

β2
Γj

(Q∗) +
∑

G(Q)

Area(Ωk)

l(Q)2

Notice how this contrasts with the fact that β is (in general) far from sublinear: It is not
true that β2

A∪B(Q) . β2
A(Q) + β2

B(Q). However, by considering the curve on the slightly
larger scale of Q∗ and adding a correction due to the small scale behaviour, we are left with
a viable estimate.
By noticing the (almost) scale-invariance on both sides of the inequality, we may assume
that Q has sidelength 1, in which case the estimate is reduced to

ωΓ(Q)2 .
∑

F(Q)

ωΓj
(Q∗)2 +

∑

G(Q)

Area(Ωk)

The lemma is proved by studying a few cases, based on the size of F(Q):

• If F(Q) is empty, then exploit the fact that the region bounded by Γ is a disk - whose
area is directly comparable to the square of its diameter.
• If F(Q) is large, containing at least 3 curves, then there must be some Γj ∈ F(Q)

with β2
Γj

(Q∗) > ε (in which case, this case is finished). If not, then each Γj ∈ F(Q)
is almost linear on the scale of Q∗, in which case two curves Γj must collide or cross
- but the regions Ωj are disjoint.
• If F(Q) contains only one or two curves, then the argument is more subtle, and

requires studying G(Q) as well.
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From here, the proof of the main theorem is almost finished: We have
∑

Q

∑

F(Q)

β2
Γj

(Q∗)l(Q) ≤
∑

j

∑

Q

β2
Γj

(Q∗)l(Q)

∼
∑

j

∑

Q

β2
Γj

(Q∗)l(Q∗)

.
∑

j

l(Γj)

∼ l(Γ)

For the second term, we must estimate

∑

Q

∑

G(Q)

Area(Ωk)

l(Q)

The key point here is that, fixing a curve Γj, there are only a few squares Q at each level
for which Γj ∈ G(Q) - in particular, there are only C such squares, for a large constant C.
Thus, changing the order of summation and summing over levels instead of squares,

∑

k

Area(Ωk)
∑

Q
Ωk∈G(Q)

l(Q)−1 .
∑

k

Area(Ωk)
∑

n
2−n>dk

2n

∼
∑

k

Area(Ωk)

dk

∼
∑

k

dk ∼
∑

k

l(Γk) . l(Γ)

where we have used the fact that Area(Ωk) ∼ d2
k and l(Γk) ∼ dk for Lipschitz domains. This

finishes the proof of the theorem.
The other main result of the paper is

Theorem 5. If β2(K) <∞, there is a connected set Γ with K ⊂ Γ, such that

l(Γ) ≤ (1 + δ) diam(K) + C(δ)β2(K)

where C is used to indicate a universal constant dependent on δ. By adjusting the factor δ
(and increasing it sufficiently), it is possible to make Γ have some useful properties, such as
uniform local connectedness: that is, if z1, z2 ∈ Γ, there is a connected subset γ containing
zi with l(γ) . |z1 − z2|.
The proof of this is carried out inductively. We begin with a sequence of sets Ln which are
uniformly distributed throughout K on scale 2−n. If Γn−1 has already been constructed, con-
taining many line segments, we efficiently replace line segments making up Γn−1 to connect
the points in Ln \ Ln−1.
We now study β2

K(Q) for a dyadic square on a scale slightly larger than 2−n containing a
point in Ln; based on this study, we replace certain line segments (adding a length which can
be bounded in terms of β2

K(Q)l(Q)) and add new line segments, preserving certain segments
IQ contained in Γn−1. Letting Dn denote the set of all such squares, the length added in
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constructing Γn will then be bounded by

C
∑

Q∈Dn

β2
K(Q)l(Q) +

1

2

∑

Q∈Dn

l(IQ)

Summing and telescoping, this will lead to

l(ΓN) ≤ 2l(Γ0) + C
∑

Q

β2
K(Q)l(Q)

and taking limits will finish the proof.
Combining the two main results, we are left with a complete answer to the question: A set
K is contained in a rectifiable curve in the plane if and only if β2(K) is finite, and β2(K) is
comparable to the length of the shortest such curve.
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ON THE UNIFORM RECTIFIABILITY OF AD REGULAR MEASURES
WITH BOUNDED RIESZ TRANSFORM OPERATOR: THE CASE OF

CODIMENSION 1

FEDOR NAZAROV, XAVIER TOLSA, AND ALEXANDER VOLBERG

presented by Lucas Chaffee

Abstract. It is shown that if µ is a d-dimensional Alfhors-David regular measure in Rd+1,
and the Riesz transform is bounded in L2(µ), then the non-BAUP David-Semmes cells form
a Carleson family. This result, along with previous results of David and Semmes, yields as
an immediate corollary that µ is uniformly rectifiable.

1. Introduction and Main Results Presented

In short, this paper examines an interesting piece of the much more general issue of how the
geometry of the support of a d-dimensional measure, µ, in Rn relates to the boundedness
of certain singular integral operators in L2(µ). It has been known for some time that for
a d-dimensional Alfhors-David regular measure in Rn, uniform rectifiability is sufficient to
obtain L2(µ) boundedness of many d-dimensional Calderón Zygmund operators, however the
necessity of this is much more difficult to examine, particularly in higher dimensions where
certain curvature methods are unavailable. This paper sets forth, in a manner that’s as self
contained as possible, to examine the necessity of uniform rectifiabilty for a d-dimensional
AD regular measure in Rd+1 for the boundedness of the d-dimensional Riesz transform,

f 7→ K ∗ (fµ), with K(x) =
x

|x|d+1
.

The main result of this paper is the following theorem,

Theorem 1. Let µ be an AD regular measure of dimension d in Rd+1. If the associated
d-dimesional Riesz transform is bounded in L2(µ), then the non-BAUP cells in the David-
Semmes lattice associated with µ form a Carleson family

The BAUP condition on a set is defined in by David and Semmes in [5], the term being
short for what they call the bilateral approximation of unions by d-planes condition. For the
purpose of this paper it is more useful to simply define the non-BAUP cells.

Definition 2. Let δ > 0. We say that a cell P ∈ D is δ-non-BAUP if there exists a point
x ∈ P∩supp µ such that for every hyperplane L passing through x, there exists a point
y ∈ B(x, `(P )) ∩ L for which B(y, δ`(P ))∩supp µ = ∅.
It was shown in [5] that this result is sufficient to show that the measure is, in fact, uniformly
rectifiable, and the authors make a special point of noting that their work in a sense deals
only with the ‘analytic’ passing of the operator’s boundedness to the measure’s rectifiability,
but that all credit for the ‘geometric’ aspect firmly belong to David and Semmes.
As mentioned above, this paper is as self contained as reasonably possible, and as such,
the paper begins a long path beginning with building up preliminaries, and then smoothly
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transitioning into the proof itself. In the next section we examine this path. For shorter
definitions and lemmata I will transcribe their statements, but for the longer ones I will
merely describe the ideas behind them.

2. Path to the Proof

After a brief section of notation, the authors begin by familiarizing the reader with AD
regular measures and the Riesz transforms associated with them. Since the singularity in
the kernel of the Riesz transform makes it difficult to impossible to immediately approach
for an arbitrary Borel measure, the paper defines the regularized kernels,

Kδ(x) =
x

max{δ, |x|}d+1
,

with the corresponding operator being Rδν = Kδ ∗ ν. The paper then goes on to define the
following useful properties a measure can have.

Definition 3. A positive Borel measure µ in Rd+1 is called C-nice if µ(B(x, r)) ≤ Crd for
every x ∈ Rd+1, r > 0. It is called C-good if it is C-nice and ‖Rµ,δ‖L2(µ)→L2µ) ≤ C for every
δ > 0.

With these concepts of nice and good measures, one can indeed discuss and develop the
Riesz transform. That being said, the ultimate result requires the use of not only the upper
bound of nice measures, but a lower bound as well, and they provide the following definition.

Definition 4. Let U be an open subset of Rd+1. a nice measure µ is called Alfhors-David
regular (or just AD regular) in U with lower regularity constant c > 0 if for every x ∈supp
µ ∩ U and every r > 0 such that B(x, r) ⊂ U , we have µ(B(x, r)) ≥ crd.

With these notions in hand, the paper then proceeds to develop the Riesz transform for a
sufficiently smooth measure on a fixed affine hyperplane L in Rd+1 in the following sense:
let mL be the d-dimensional Lebesgue measure on L in Rd+1, and let ν = fmL, where f is
a C2 compactly supported density with respect to mL. They project the Riesz transform to
the hyperplane, H, parallel to L, passing through the origin. They then show that with this
smooth measure, RHν exists as a limit of the regularized operators RH

δ , that it is Lipschitz
in Rd+1 and harmonic outside of the support of ν, and obtain some bounds for the L∞ and
Lipschitz norms. Seeing that a smooth measure produces a smooth measure, they tackle
a partial converse, something they call a toy flattening lemma, and see that if RH(fmL)
is smooth in a ball on L, then f must be slightly less smooth on a smaller ball. While
the authors consider this lemma to be rather elementary, through the use of some weak
limiting techniques they later on are able to obtain a full flattening lemma which can be
used on measures not supported just on a hyperplane. In the meantime, however, they
move on to carefully developing the Riesz transform for arbitrary good measures, as well as
showing that if a sequence of good measures, µk, converges weakly to some other measure,
µ, then µ is also good, and for f and g Lipschitz, with f scalar and g vector valued, we
have

∫
〈Rµkf, g〉dµk →

∫
〈Rµf, g〉dµ. Noting how this paper began by working on measures

supported on a hyperplane, it should come as no surprise that a measure being ‘flat’ in some
sense might be beneficial, and indeed, in the next section the authors define the following
concepts of flatness.

Definition 5. We say that a measure µ is geometrically (H,A, α)-flat at the point z on the
scale ` if every point of supp µ∩B(z, A`) lies within distance α` from the affine hyperplane
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L containing z and parallel to H, and every point of L ∩ B(z, A`) lies within distance α`
from supp µ.
We say that a measure µ is (H,A, α)-flat at the point z on the scale ` if it is geometrically
(H,A, α)-flat at the point z on the scale ` and, in addition, for every Lipschitz function f
supported in B(z, A`) such that ‖f‖Lip ≤ `−1 and

∫
fdmL = 0, we have

∣∣∣∣
∫
fdµ

∣∣∣∣ ≤ α`d.

This notion of flatness seems to suggest that for suitably behaved functions, one might be
able to replace a flat measure with a multiple of mL and suffer only minor error, and indeed,
the paper goes on to make this error explicit in two lemmata for the integrals of Lipschitz
functions against particular types of nice flat measures. For the next piece of the puzzle, we
need to fix parameters 0 < r < R and a continuous function ψ : [0,∞) → [0, 1] such that

ψ(x) = 1 for x ≤ 1 and ψ(x) = 0 for x ≥ 2, and define psiz,δ,∆(x) = ψ
(
|x−z|
R

)
− ψ

(
|x−z|
r

)
.

With these in mind, the paper then shows that for A,α, β, c̃, C̃ > 0 fixed, there exists some
ρ = ρ(A,α, β, c̃, C̃, d) such that if µ is C̃-good and AD regular on a ball B(x,R) for some
point x ∈supp µ with lower regularity c̃, and

|[R(ψz,δR,∆Rµ)(z)]| ≤ β

for all ρ < δ < ∆ < 1
2

and all z ∈ B(x, (1−2∆)), then for some ` > ρR, z ∈ B(x,R−(A+α)`),
and hyperplane H, we have that µ is geometrically (H,A, α)-flat at the point z on the scale
`. With this tool in hand, the authors are ready to prove the vital Flattening Lemma (whose
lengthly statement I will omit in the interest of brevity) which allows them to move from a
lack of oscillation on RHµ at some fixed point in the support of µ on scales comparable to `,
to flatness of µ at z on the scale `. Recall that we are proving a theorem which, in turn, gives
us uniform rectifiability, and one of the first things one needs to show uniform rectifiability
is that the support is, essentially, geometrically flat, and so by proving this property, even
though they don’t prove the rest of the fact that their measure is uniformly rectifiable di-
rectly, this flattening lemma will allow them to take advantage of the much stronger analytic
condition of flatness.

With these measure related preliminaries taken care of, the authors now fix an AD regular d-
dimensional measure in Rd+1 for the remainder of the paper and develop the David-Semmes
lattice for it, and then define a what it means for a family of sets to be Carleson, as well
as state a useful lemma about what it means if a family is not Carleson. They also denote
by zQ the ‘center’ of the cell Q with respect to the support of the measure µ, and they say
that a cell is (H,A, α)-flat if µ is (H,A, α)-flat at zQ at scale `(Q). They then move on
to define what it means for a family of functions to be a Riesz system and show how they
can be used to show that a family of cells are Carleson. Recalling how often the measure
theoretic preliminaries dealt with Lipschitz functions we begin to see some more strands of
logic tie together as they show that the Lipschitz wavelet system associated to a cube Q,
denoted ΨQ(A), which is simply the family of all Lipschitz functions with mean zero sup-

ported on B(zQ, A`(Q)) and with Lipschitz norm less than C`(Q)−
d
2
−1, forms a Riesz system.

It is here that the meat of the proof can now begin, as the authors show that there is
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an integer N , a finite set of linear hyperplanes, and a Carleson family depending on param-
eters A and α, such that for every cell P in the lattice which is not in the Carleson family,
there exists a cell Q at most N levels below it and a hyperplane in the aforementioned set
such that Q is (H,A, α)-flat (using the flattening lemma). With this result in hand the
original goal of showing that all non-BAUP cells is a Carleson family may be tweaked in the
sense that it is now sufficient to show that we can find parameters A,α > 0 such that for
a fixed hyperplane, H, the family F = F(A,α,H,N) of all non-BAUP cells containing an
(H,A, α)-flat cell at most N layers below it, is Carleson. With this in mind, we state the
following important lemma.

Lemma 6. If F is not Carleson, then for every positive integer K and every η > 0, there
exists a cell P ∈ F and K + 1 alternating pairs of finite layers Bk, Qk ⊂ D (k = 0, ..., K)
such that

• B0 = {P}
• Bk ⊂ FP = {Q ∈ D : Q ⊂ P} for all k = 0, ..., K.
• All layers Qk consist of (H,A, α)-flat cells only.
• Each individual layer consists of pairwise disjoint cells.
• If Q ∈ Qk then there exists some P ′ ∈ Bk such that Q ⊂ P ′ (k = 0, ..., K).
• If P ′ ∈ Bk+1 then there exists some Q ∈ Dk such that P ′ ⊂ Q (k = 0, ..., K − 1).
• ∑Q∈Qk µ(Q) ≥ (1− η)µ(P )

The proof of this lemma in no way uses the actual definition of what it means to be non-
BAUP, however it is this lemma that will allow us to finally prove our theorem. The re-
mainder of the paper assumes that F is non-Carleson and non-BAUP and closely examines
these layers to eventually arrive at a contradiction much further down the road. They first
examine the flat layers, Qk, and apply the what was developed in the beginning for RH to
obtain an almost orthogonality result for the Riesz transforms of the different layers which I
will state after the following setup. Let φ ∈ C∞ such that supp φ ⊂ B(0, 1) and

∫
φdm = 1.

For a cube Q, define Qε = {x ∈ Q : dist(x,Rd+1 \Q) ≥ ε`(Q)}, and

φQ = χQ2ε ∗
1

(ε`(Q))d
φ

( ·
ε`(Q)

)
.

Define νQ = aQφqmL(Q) with aQ such that νQ(Rd+1) =
∫
φQdµ. Define

Gk =
∑

Q∈Qk
φQR

h[φQµ− νQ] for k = 0, ..., K,

and Fk = Gk −Gk+1. Then we have that if ε < 1
48
, A > 5 and α < ε8, then

|〈Fk, Gk〉µ| ≤ σ(ε, α)µ(P ), where lim
ε→0

(
lim
α→0

σ(ε, α)
)

= 0

recalling that α is one of the flatness parameters, and by previous work, we can take it to
be as small as we want. This means, essentially, that there is no real lower bound to this
inner product, and this lack of lower bound is where we will obtain our contradiction. Note
the following,

‖G0‖2
L2(µ) =

∥∥∥∥∥
K∑

k=0

Fk

∥∥∥∥∥

2

L2(µ)

=
∑
‖Fk‖2

L2(µ) + 2
K−1∑

k=0

〈Fk, Gk+1〉µ.
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In the proving of the almost orthogonality result, the authors show that ‖G0‖2
L2(µ) ≤ Cµ(P ),

and so if we can find a uniform lower bound for ‖Fk‖2 independent of K, ε, and α, and take
K sufficiently large we will see a clear lower bound for |〈Fk, Gk+1〉µ| arise, which, by taking
ε and then α sufficiently small we can arrive at a contradiction. The remainder of the paper
is devoted to showing that such a uniform lower bound exists. It does this by first making
the reduction to densely packed cells. A cell, Q ∈ Qk, is densely packed if

∑

Q′∈Qk+1, Q′⊂Q
µ(Q′) ≥ (1− ε)µ(Q).

Dealing with these cells is a little easier, and it is sufficient to obtain a lower bound for an
FQ defined similarly to Fk, but in terms of Q and its children. With this cell and by using
(finally) the non-BAUP layer Bk+1, they are able to construct a vector field and a slightly
modified measure (similar in spirit to how we saw that good flat measures could be replaced
with a multiple of mL if done carefully) which finally allows them to obtain their uniform
lower bound, and hence, a contradiction.
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MENGER CURVATURE AND RECTIFIABILITY

J.C.LÉGER

presented by Amalia Culiuc

Abstract. A well-known conjecture by Vitushkin states that a 1-set in C is removable
from the bounded analytic functions if and only if it is purely unrectifiable. Using the
Menger curvature and a construction similar to Jones’ Traveling Salesman Theorem, G.
David proved this conjecture in 1998. The final argument of his proof is, however, only
presented in detail in an unpublished manuscript. In the present paper, Léger provides an
alternative construction that proves David’s final argument and can extend naturally to
higher dimensions.

1. Introduction and Main Results Presented

We begin by introducting the relevant terminology. Let x, y, z be three points in Rn. The
Menger curvature of the triple (x, y, z), denoted by c(x, y, z), is the inverse of the radius of
the circumcircle of the triangle (x, y, z) if such a triangle exists and 0 otherwise. Given this
definition, if E is a Borel set in Rn, its total Menger curvature is the nonnegative number
c(E) satisfying

c2(E) =

∫ ∫ ∫

E3

c2(x, y, z)dH1(x)dH1(y)dH1(z),

where H1 represents the 1-dimensional Hausdorff measure on Rn.
A Borel set E ⊂ Rn is said to be rectifiable if there exists a countable collection of Lipschitz
functions γi : R→ Rn such that

H1 (E\ ∪ γi(R)) = 0,

and it is said to be purely unrectifiable if for any Lipschitz function γ : R→ Rn,

H1 (E ∩ γ(R)) = 0

By these definitions, any 1-set can be partitioned into a rectifiable subset and a purely
unrectifiable subset.
The main result of this paper relates the concepts of Menger curvature and rectifiability as
follows:

Theorem 1. If E ⊂ Rn is a Borel set of finite, nonzero 1-dimensional Hausdorff measure
and c2(E) <∞, then E is rectifiable.

The interest in rectifiability comes from its relation to the problem of removable sets from
the bounded analytic functions. Recall that a compact set E ⊂ C is said to be removable
from the bounded analytic functions if the only bounded analytic functions on C−E are the
constants. In the 1880s, Painlevé considered the question of finding necessary and sufficient
conditions for a set in the complex plane to be removable. He was able to prove that a
sufficient condition was that the set E have 1-dimensional Hausdorff measure 0. In the
1960s, Vitushkin [Vi67] conjectured that a compact 1-set E is removable from the bounded
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analytic functions if and only if it is purely unrectifiable. This conjecture was proved in
1996 by Mattila et.al.[MMV96], but the proof required the additional assuption of Ahlfors
regularity. In 1998, G.David [Da98] removed this assumption using the theorem above.
In what follows, we present a brief summary of the arguments used in the proof of Theorem
1. We conclude this section by stating Léger’s higher dimensional version of this theorem.

Theorem 2. Let E ⊂ Rn be a Borel set, d a positive integer, and

cd+1(E) =

∫

x∈E

∫

y)∈E
...

∫

yd∈E

(
d(x,< y0, ...yd >)

d(x, y0)...d(x, yd)

)d+1

dHd(y0)dHd(yd)...dHd(x),

where Hd is the d-dimensional Hausdorff measure on Rn and d(x,< y0, ...yd >) represents
the distance between x and the plane going through the points y0, ...yd. If Hd(E) < ∞ and
cd+1(E) < ∞, then E is contained in a countable collection of images of Lipschitz function
up to a set of Hd measure 0.

2. Proof of the main result

The proof of Theorem 1 relies on two propositions. Proposition 1 states that under the
assumptions of Theorem 1, there exists a subset F of E with some desirable geometric
properties. Proposition 2 shows that for a set with these given properties, if c2(F ) is small,
a very large portion of F is included in the graph of a Lipschitz function.

Proposition 1. If E ⊂ Rn is a 1-set and c2(E) < ∞, then for all η > 0, there exists a
subset F of E such that:

(1) F is compact
(2) c2(F ) ≤ η · diamF

(3) H1(F ) > diamF
40

(4) For all x ∈ F and all t > 0, H1(F ∩ B(x, t)) ≤ 3t, where B(x, t) represents the ball
of center x and radius t.

The proof of this statement is based on the fact that

1

2
≤ lim sup

t→0

E ∩B(x, t)

2t
≤ 1

and requires a construction relying on Vitali’s covering theorem.
Before stating Proposition 2, we must define the total Menger curvature of a Borel measure
µ on Rn. We say that the nonnegative number c(µ) is the total Menger curvature of µ if

c2(µ) =

∫ ∫ ∫
c2(x, y, z)dµ(x)dµ(y)dµ(z).

Given this definition, we state the following:

Proposition 2. If C0 ≥ 10, there exists a number η > 0 such that if µ is a compactly
supported Borel measure on Rn and the following hold:

(1) µ(B(0, 2)) ≥ 1 and µ(Rn\B(0, 2)) = 0,
(2) For any ball B, µ(B) ≤ C0 · diamB,
(3) c2(µ) ≤ η,
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then there exists a Lipschitz graph Γ such that

µ(Γ) ≥ 99

100
µ(Rn)

Assume for now that Proposition 2. We can use it together with Proposition 1 to prove
Theorem 1.

Proof. Let E be a Borel set that satisfies the assumptions of Proposition 1 and let Eirr be the
unrectifiable part of E. Suppose H1(Eirr) > 0 (so E is not rectifiable). Then Eirr satisfies
the hypoteses of Proposition 1 and we can apply it to find F ⊂ Eirr. It is not difficult to
check that the measure 40 × H1 restricted to a rescaled copy of F satisfies the conditions
of Proposition 2. Applying Proposition 2, we find that there exists a Lipschitz graph Γ
such that 40 × H1(Γ) > 0. Thus H1(Eirr ∩ Γ) = H1(Γ) > 0. But Eirr was assumed to be
unrectifiable, so we have reached a contradiction. Therefore, Theorem 1 is proved. �

We return now to the proof of Proposition 2. In what follows, µ will always be a measure
satisfying the assumptions of Proposition 2 and F will denote its support. Our goal is to
find a Lipschitz function A : R → Rn−1 whose graph is the desired Γ. Before doing so, we
define some functions that describe the geometry of F .
To measure the degeneracy of µ, for a ball B with center x ∈ Rn and radius t, let the density
of B be,

δ(B) = δ(x, t) =
µ(B(x, t))

t
and set

δ̃(B) = δ̃(x, t) = sup
y∈B(x,k0t)

δ(y, t).

Note that for any ball B, δ(B) < 2C0.
If k > 0 is fixed, for any x ∈ Rn , t > 0, and any line D in Rn, we also define the P. Jones β
functions:

βD1 (x, t) =
1

t

∫

B(x,kt)

d(y,D)

t
dµ(y)

βD2 (x, t) =

(
1

t

∫

B(x,kt)

(
d(y,D)

t

)2

dµ(y)

) 1
2

β1(x, t) = inf
D
βD1 (x, t)

β2(x, t) = inf
D
βD2 (x, t)

The functions βD1 and βD2 provide a measurement of the average distance between F and the
line D inside the ball B(x, kt). Since this interpretation is not valid if δ(x, y) is very low,
we also introduce a uniform lower bound δ > 0, the density threshold, and investigate the
behavior only in balls with δ(B) > δ.
The construction of the Lipschitz graph is performed using a stopping time argument. Notice,
however, that the familiar setting of “dyadic cubes” cannot be employed here, since those
may not exist in the support of µ. This issue is resolved by considering overlapping balls
and applying the Besicovitch covering lemma. Fix δ, k > 10, k0 > 10, a β1 threshold ε > 0,
a small angle α > 0 and a number η > 0, which will be chosen appropriately after the
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construction. Also fix a point x0 ∈ F and a line D0 such that βD0
1 (x0, 1) ≤ ε. This will be

the domain of the function A. Now define

Stotal =





(x, t) ∈ F × (0, 5),





δ(x, t) ≥ 1
2
δ

β1(x, t) < 2ε

∃Dx,t s.th β
Dx,t

1 (x, t) ≤ 2ε and angle(Dx,t, D0) ≤ α





We make the observation that Stotal is not a coherent region, that is, if a ball B is in Stotal,
there is no gurantee that any of its dilations will be in Stotal. To resolve this issue, define,
for any x ∈ F ,

h(x) = sup

{
t > 0, ∃y ∈ F, ∃τ, t

3
≥ τ ≥ t

4
, x ∈ B

(
y,
τ

3

)
, and (y, τ) /∈ Stotal

}

and set

S = {(x, t) ∈ Stotal, t ≥ h(x)}.
It can be checked that the set S has the coherence property. We now divide F into four pieces.
We aim to show that one piece is “good” for our purposes, while the other three, which are
“bad”, carry only a small portion of the measure µ. Consider the following partition:

Z = {x ∈ F, h(x) = 0}

F1 =




x ∈ F\Z,





∃y ∈ F, ∃τ ∈
[
h(x)
5
, h(x)

2

]
, x ∈ B

(
y, τ

2

)

and

δ(y, t) ≤ δ




,

F2 =




x ∈ F\(Z ∪ F1),





∃y ∈ F, ∃τ ∈
[
h(x)
5
, h(x)

2

]
, x ∈ B

(
y, τ

2

)

and

β1(y, t) ≥ ε




,

F3 =




x ∈ F\(Z ∪ F1 ∪ F2),





∃y ∈ F, ∃τ ∈
[
h(x)
5
, h(x)

2

]
, x ∈ B

(
y, τ

2

)

and

angle(Dy,τ , D0) ≥ 3
4
α




.

One can show that the set F is the disjoint union of the four subsets above.
We will define a Lipschitz function A : D0 → D⊥0 such that Z is in the graph of A and show
that µ(Z) ≥ 99

100
µ(F ). For the latter it suffices to prove that µ(Fi) ≤ 10−6 for all Fi.

The bound on µ(F2) is the easiest to handle due to the control on β1 implied by the propo-
sition below:

Proposition 3. There exists a constant C depending on δ, C0, k, and k0 such that
∫ ∫ ∞

0

β1(x, t)
21(δ̃(x,t)≥δ)

dµ(x, t)dt

t
≤ Cc2(µ)

The bounds on the other two sets are less straightforward and they require some control
on the size of sets where h > 0. Their proof are the consequence of a series of geometric
arguments and technical lemmas. Before considering any of those arguments, we begin the

19



construction of the function A. Consider the following functions:

d(x) = inf
(X,t)∈S

(d(X, x) + t), for all x ∈ Rn

D(p) = inf
x∈π−1(p)

d(x) = inf
(X,t)∈S

(d(π(X), p) + t), for p ∈ D0,

where π is the orthogonal projection map onto D0. The function D above associates to
each point p ∈ D0 a “good” point in F . Notice that d and D are Lipschitz, h(x) ≥ d(x),
and Z = {x ∈ F, d(x) = 0}, since F is closed. To construct A, we attempt to invert the
projection π : F → D0. This is the outcome of the following lemma:

Lemma 3. There exists a constant C2 such that if x, y ∈ F and t ≥ 0 satisfy dist(π(x), π(y)) ≤
t, d(x) ≤ t, and d(y) ≤ t, then d(x, y) ≤ C2t.

A consequence of this result obtained by setting t = 0 is that the restriction of π to Z is
injective. Therefore, we can define A on π(Z) by A(π(z)) = π⊥(x),∀x ∈ Z, and it is possible
to prove that this restriction is Lipschitz. What remains then is to extend A to the entire
domain D0.
Fix a family of dyadic intervals on D0 and for any p ∈ D0 that is not a boundary point of
some dyadic interval, if D(p) > 0, let Rp be the largest dyadic interval such that p ∈ Rp and
diamRp ≤ 1

2
inf
u∈Rp

d(u). Now consider a relabeling of the collection of intervals Rp, {Ri, i ∈ I}.
These intervals have disjoint interiors, and we can show that the family {2Ri}i∈I covers
D0\π(Z). Set U0 = D0 ∩B(0, 10) and I0 = {i ∈ I, Ri ∩ U0 = ∅}.
The construction of the extension amounts to defining a partition of unity. For each i,
define a function φ̃i ∈ C∞(D0) such that 0 < φ̃i < 1, φ̃i = 1 on 2Ri, φ̃i = 0 outside

3Ri, |∂φ̃i| ≤ C

diamRi
, and |∂2φ̃i| ≤ C

(diamRi)2
. We can then define a partition of unity for

V =
⋃

i∈I0
2Ri by

φi(p)
φ̃i(p)∑
j φ̃j(p)

.

This partition has the property that |∂φi| ≤ C

diamRi
, and |∂2φi| ≤ C

(diamRi)2
.

Now for p ∈ V , let

A(p) =
∑

φi(p)Ai(p),

where Ai is the affine function D0 → D⊥0 whose graph is Di = DBi
. Note that V is disjoint

from π(Z) and contains U0\π(Z), so A is now defined for all of U0. A few facts remain to
be checked. First of all, one must verify that this definition produces, indeed, a Lipschitz
extension. It is also necessary to show that most of F lies near the graph of A, which involves
bounding the subsets F1 and F3 defined previously. Settling these issues completes the proof
of Proposition 2, and thus the proof of the main theorem.
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CHARACTERIZATION OF SUBSETS OF RECTIFIABLE CURVES IN Rn

KATE OKIKIOLU

presented by Ishwari Kunwar

Abstract. This paper characterizes the subsets of rectifiable curves in Rn.

1. Introduction and Main Results Presented

The main result of this paper is the following theorem which was proved for the special case
of n = 2 in [3] by Peter W. Jones.

Theorem 1. If Γ is a connected set in Rn, then there exists a constant C = C(n) such that

∑

Q∈D

r2
3Q

lQ
≤ C l(Γ).

Here, D denotes the set of all dyadic cubes Q =
∏n

j=1[mj2
−k, (mj + 1)2−k] (k,mj ∈ Z), lQ

denotes the sidelength of Q, rQ = rQ(Γ) is the cylinder radius of Γ in Q and l(Γ) is the
one-dimensional (outer) Hausdorff measure of Γ. 3Q denotes the cube concentric to Q with
sidelength l3Q = 3lQ.

Let Q0 be a closed cube in Rn with sides parallel to the coordinate axes. By choosing a new
origin and coordinate axes in which Q0 = [0, 1]n, we can define the dyadic decomposition
of Q0 to be the set of all cubes contained in Q0 that are dyadic with respect to the new
coordinates. Let 〈Q0〉 denote this set, and let 〈Q0〉k := 〈Q0〉 ∩ Dk, where Dk is the k-th
generation of dyadic cubes in Rn.

The following lemma shows, for given λ > 1, how to associate to a cube Q0 a finite number
of larger cubes containing Q0 such that if Q ∈ 〈Q0〉k, then λQ is contained in some cube
Q∗ = Q∗(Q,Q0, λ) in the k-th generation of one of these larger cubes. The lemma also shows
that the number of cubes Q in 〈Q0〉 giving rise to the same Q∗ under this association is
bounded.

Lemma 2. (a) For given λ > 0 and F ⊆ Rn,

#{Q ∈ Dk : F ∩ λQ 6= ∅} ≤
(
diameter(F )

2−k
+ λ+ 1

)n
(k = 0, 1, 2, ...)

(b) Let λ > 1 and Q0 be a cube in Rn. Then for k = 0, 1, 2, ... and each cube Q ∈ 〈Q0〉k there
exists a cube Q∗ = Q∗(Q,Q0, λ) such that

λQ ⊆ Q∗ ∈
⋃

e∈V

〈
Q0(λ, e)

〉
k
,
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where V is the set of 2n vertices of the cube [0, 1]n and

Q0(λ, e) = 4λQ0 +
4λlQ0

3
e.

If

Q̂ ∈
⋃

e∈V

〈
Q0(λ, e)

〉
k
,

then

#{Q ∈
〈
Q0
〉

: Q∗ = Q̂} ≤ (4N)n.

This lemma reduces the theorem to proving the following statement:

If Γ is a connected set in Rn and Q0 is a cube in Rn, then there exists a constant C = C(n)
such that

∑

Q∈〈Q0〉

r2
Q

lQ
≤ C l(Γ),

.

For closed Γ, there exists an arclength preserving surjective map γ : T → Γ, from a circle T
of length 2l(Γ) such that γ hits almost every point of Γ twice. For a cube Q in Rn, let Tα be
the connected components of γ−1(Q), where α ∈ ΛQ, the indexing set, and let Γα = γ(Tα).
Let Lα = ∅ if Tα = T and Lα = [γ(x), γ(y)] if Tα 6= T , where x and y are the endpoints of
the arc Tα, and define

sQ = sup
α∈ΛQ

sα,

where sα = rQ if Tα = T , and sα = supz∈Γα dist(z, L
α) if Tα 6= T .

Let A = {Q ∈ 〈Q0〉} : sQ∗ < δrQ}, and B = {Q ∈ 〈Q0〉} : sQ∗ ≥ δrQ}, where δ = δ(n) > 0.

Lemma 2 together with the following lemma enables us to bound

∑

Q∈B

r2
Q

lQ
.

Lemma 3. If Γ is a connected set in Rn with l(Γ) <∞ and Q0 is a cube in Rn, then there
exists a constant C = C(n) such that

∑

Q∈〈Q0〉

s2
Q

lQ
≤ C l(Γ ∩Q0).

Lemma 2 together with the following lemma enables us to bound

∑

Q∈A

r2
Q

lQ
.
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Lemma 4. If Γ is a connected set in Rn and Q0 is a cube in Rn, then
∑

Q∈A

rQ ≤ C l(Γ ∩ 2Q0),

where A = {Q ∈ 〈Q0〉 : sQ∗ < δrQ}, Q∗ = Q∗(Q,Q0, λ), λ = λ(n), δ = δ(n), and C =
C(n).

Finally, to prove
∑

Q∈〈Q0〉

r2
Q

lQ
≤ C l(Γ),

we write
∑

Q∈〈Q0〉
r2Q
lQ

=
∑

Q∈A

r2Q
lQ

+
∑

Q∈B

r2Q
lQ

.
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THREE REVOLUTIONS IN THE KERNEL ARE WORSE THAN ONE

BENJAMIN JAYE AND FEDOR NAZAROV

presented by Robert Rahm

Abstract. In this paper, the authors provide a kernel, K(z) = z
z2 and a measure µ such

that the operator given by

(Tµf)(z) =

∫

C
f(ξ)K(z − ξ)dµ(ξ)

is bounded and supp(µ) is purely unrectifiable. This is in contrast to the situation when
K(z) = 1

z .

1. Introduction and Main Results Presented

For a kernel K : C− {0} → C and a finite measure µ, we can define the (singular) integral
operator:

(Tµf)(z) =

∫

C
K(z − ξ)f(ξ)dµ(ξ).

We want to determine geometric properties of µ (that is, geometric properties of the support
of µ) from properties of the operator Tµ. For example, if K(z) = 1/z is the Cauchy kernel,
it was proven by Lèger in [1] that if µ is a one dimensional measure, then µ is rectifable if
‖Tµ(1)‖L∞−supp(µ) <∞ (this is eqivilent to the boundedness of Tµ as an operator on L2(µ),

see [3].) The main result of the paper shows that not all kernels can be used to give geometric
information about finite measures. In particular, for the remainder of the abstract, set:

K(z) =
z

z2
.

The main result of the paper is:

Theorem 1. There exists a 1-dimensional purely unrectifiable probability measure µ with
the property that ‖Tµ(1)‖L∞−supp(µ) <∞.

They also show that Tµ fails to exists in the sense of p.v. µ− a.e.

2. Notation and Terminology

We will define some terms that we will use (and some that we have already used). A measure
µ is rectifiable if its support is rectifiable and it is unrectifiable if its support is unrectifiable.
Let m1 and m2 denote 1 and 2 dimensional Lebesgue measure with m2 normalized so that
m2(B(0, 1)) = 1. A collection of squares is said to be essentially pairwise disjoint if their
interiors are pairwise disjoint. The letters “c” and “C” will denote small (< 1) and large
(≥ 1) constants. If B is a ball with radius r, λB is the ball concentric with B with radius
λr. Finally, A(z, r) is the annulus B(z, r)−B(z, r/2).

Date: August 3, 2014.
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3. Properties of K

First, note that K is the same size as the Cauchy kernel. If we write z = reiθ then:

K(z) =
1

reiθeiθeiθ

whereas for the Cauchy kernel:

1

z
=

1

reiθ
.

So, K has three “revolutions” in the kernel, while the Cauchy kernel has only one. This
means that K has a certain mean value zero property that the Cauchy kernel does not have.
Obviously, this statement needs some clarification, since the Cauchy kernel does have mean
value zero. In particular, the following is proven:

Theorem 2. If |ω| < 1, then:
∫

B(0,1)

K(ω − ξ)dm2(ξ) = 0.

Clearly, once this is shown, a similar result holds for z ∈ C, r > 0 and ω ∈ B(z, r). There
won’t be too many proofs included in this extended abstract, but we include this proof to
show that three rotations are needed. That is, Theorem 2 isn’t true if the kernel has only
one or two rotations in the kernel.

proof of Theorem 2. We want to show the following:
∫ 1

0

∫ 2π

0

K(ω − reiθ)rdθdr =

∫ |ω|

0

∫ 2π

0

K(ω − reiθ)rdθdr +

∫ 1

|ω|

∫ 2π

0

K(ω − reiθ)rdθdr = 0.

For the second integral, |ω| < |ξ| and so there holds:

K(ω − reiθ) =
ω − reiθ
r2e2iθ

∞∑

l=0

(l + 1)

(
ω

ξ

)l
.(1)

For fixed, r, the integral of this in the variable θ is zero since the integral of ekiθ is equal to
0 for all k > 0. For the first integral, |ξ| < |ω| and there holds:

K(ω − reiθ) =
ω − reiθ
ω2

∞∑

l=0

(l + 1)

(
reiθ

ω

)l
.(2)

Therefore, there holds:
∫ |ω|

0

∫ 2π

0

K(ω − reiθ)rdθdr =

∫ |ω|

0

2πr

(
r
ω

ω2
− 2

r2

ω3

)
dr

=

∫ |ω|

0

2π

ω3

(
r |ω|2 − 2r3

)
dr = 0.

Now, if we consider the Cauchy kernel, then the expression analogous to (1) is:

1

reiθ

∞∑

l=0

( ω

reiθ

)l
,
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and integrating this in the varaible θ gives 0. However, the expression that is analogous to
(2) is

1

ω

∞∑

l=0

(
reiθ

ω

)
,

and integrating this over θ is equal to 1
ω2 and integrating over r

ω2 , in the variable r from 0

to |ω| is not zero. Perhaps we might try working with ω−ξ
ω−ξ . The integral of this is not 0, but

even if it was, it wouldn’t be desirable to use this kernel since it does not have the same size
as the Cauchy kernel. �

4. The Measure

The measure µ is obtained as a weak limit of measures that are supported on increasingly
sparse sets. (This will be made more precise.) In order to construct these sets, the authors
begin with a square packing lemma:

Lemma 3. Fix r, R ∈ (0,∞) with r < R
16

and R
r
∈ N. Then one can pack R

r
pairwise

essentially disjoint squares of side length
√
πrR into a disc of radius R(1 + 4

√
r
R

).

The proof is superimpose the square lattice with mesh size
√
πrR over the plane. There are

M squares that intersect B(0, R) and M > R/r. Now just throw out M −R/r squares.
The next step is to construct a sparse cantor set using the square packing lemma, Lemma 3.
Pack 100 squares into the ball B(0, (1.4)) to get a collection Q1

1, · · ·Q1
100 of 100 essentially

pairwise disjoint squares, each with center z11 , · · · , z1100. Now, consider each B(z1j , 1/100) and

B(z1j , 1.4/100). For each B(z1j , 1/100), repeat the above construction, packing 100 squares

into it. So, on the nth step, we get 100n new balls centered at points zn1 , · · · , zn100n . Again,
consider the balls B(znj , 1/100n) and the balls B(znj , 1.4/100n). Let En be the union of the
balls B(znj , 1.4/100n).
So, the idea is that at each step, we take a large collection of balls, and within each ball,

we put 100 cubes. Deep within each cube, we put a ball with radius 1
100

th
the radius of its

parent ball. Doing this indefinitely, we obtain a collection of cubes, call them Q
(n)
j , and a

collection of balls that are “rapidly nesting” call them B̃
(n)
j where n ∈ N and j = 1, · · · , 100n.

Also, consider the collection B
(n)
j where B

(n)
j = 1.4B̃

(n)
j . Let E(n) = ∪jB(n)

j . The following
properties hold:

(a) ∪lQ(n+1)
l ⊂ E(n);

(b) B
(n)
j ⊂ Q

(n)
j ; Moreover, dist(B

(n)
j , ∂Q

(n)
j ) ≥ 1

2

√
1

100

n(n−1)
;

(c) dist(B
(n)
j , B

(n)
k ) ≥ 1

2

√
1

100

n(n−1)
whenever j 6= k, n ≥ 0.

Properties (a) and (b) tell us that E(n+1) ⊂ E(n). Let E = ∩nE(n). As usual, we can easily

obtain an upper bound for H1(E). Indeed, for m ≥ n ≥ 0, E∩B(n)
j is covered by the 100m−n

disks, B
(m)
k that are contained in B

(n)
j . Each of these disks has radius 1.4(100)−m ≤ 2(100)m.

Thus, there holds:

H1(E ∩B(n)
j ) ≤ 2100m−n(100)m =

2

100n
.
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Taking n = 0, there holds:

H1(E) = H1(E ∩ 1.4B(0, 1)) ≤ 2.

This also implies that E has Hausdorff dimension at most 1.
We are now ready to define a sequence of measures, µn, and µ will be the weak limit of these

measures. First, let µ
(n)
j = 100nχ

B
(n)
j
m2 and set µ(n) =

∑100n

j=1 µ
(n)
j . Note that supp(µ(n)) ⊂

E(n) and µ(n)(C) =
∑100n

j=1
1

100n
m2(B

(n)
j ) =

∑100n

j=1 100n1.4
(

1
100n

)2
=
∑100n

j=1 1.4 1
100n

= 1.4. This
is true for every n, so there is a measure µ that is the weak limit of a subsequence of the
measures µn. Note that µ(C) = 1.4 and supp(µ) ⊂ E. The following three properties hold:

(i) supp(µ(m)) ⊂ ∪jB(n)
j whenever m ≥ n;

(ii) µ(m) = rn for m ≥ n; and
(iii) there exists C0 such that µ(n)(B(z, r)) ≤ C0r for any z ∈ C, r > 0 and n ≥ 0.

Property (iii) and the fact that µ is a weak limit of a subsequence of the measure µ(n) implies
that µ(B(z, r)) ≤ C0r = C0H1(B(z, r)). In particular, there holds:

H1(E) ≥ 1

c0
µ(E) > 0.

This implies that E has Hausdorff dimension at least 1. Thus, E must have Hausdorff
dimension 1.

5. E is purely unrectifiable

The point of the paper is to provide a measure µ such that Tµ is bounded and supp(µ) is
purely unrectifiable. We have constructed the measure, we now show that supp(µ) is purely
unrectifiable. Since supp(µ) ⊂ E, it suffices to show that E is purely unrectifiable. Recall
that the lower Hd density of a A at a point a set is given by:

Θd
∗(A, a) = lim inf

r↘0
(2r)−dHd(A ∪B(a, r)).

In [2], it is shown that a set E is purely Hd–unrectifiable if and only if Θd
∗(E, a) < 1 for

Hd–a.e. a ∈ E. Since dist(B
(n)
j , B

(n)
k ) ≥ 1

2

√
100−n(n−1), then B(z, 1

4

√
100−n(n−1)) can only

intersect one of the B
(n)
j . But this implies that:

H1(E ∩B(z,
1

4

√
100−n(n−1))) ≤ 1.4(100)−n < 2(100)−n.

This implies that:

Θ1
∗(E, z) .

√
100n100n−1

100n
=

√
100n−1

100n
=
√
.01 = .1.

6. Tµ(1) is bounded off the support of µ

For every n ∈ N, each z ∈ E(n) is contained in a unique B
(n)
j . Call this B(n)(z). We want to

show: dist(z, supp(µ)) = ε, and if m is chosen so that 100−m < ε
4

then the following is true:
∣∣∣∣
∫

C
K(z − ξ)dµ(m)(ξ)

∣∣∣∣ ≤ C,(3)
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where the C does not depend on ε or z. First, pick a w ∈ supp(µ) with dist(z, w) = ε and
let q be the least integer with 100−q < ε. This means that q ≤ m. The idea is to write (3)
as:
∫

C
K(z − ξ)dµ(m)(ξ) =

∫

Bq(w)

K(z − ξ)dµ(m)(ξ) +

q∑

n=1

∫

Bn−1(w)−Bn(w)

K(z − ξ)dµ(m)(ξ).

The first term is controlled using size properties of K and the measure of Bq(w). The second
term is controlled uniformly over q. The second term is controlled by the “mean value zero”–
type property possessed by K(z−ξ) over balls that contain z. The property can’t be applied
directly because z is not in all of the balls Bn−1(w), so a slightly more delicate argument is
needed.
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THE s-RIESZ TRANSFORM OF AN s-DIMENSIONAL MEASURE IN R2

IS UNBOUNDED FOR 1 < s < 2

VLADIMIR EIDERMAN, FEDOR NAZAROV, AND ALEXANDER VOLBERG

presented by Guillermo Rey

Abstract. The authors show that no totally lower irregular finite positive Borel measure
µ in R2 with Hs(suppµ) < ∞ can have bounded Riesz transform. This, combined with
previous results of Prat and Vihtilä, shows that for any s ∈ (0, 1) ∪ (1, 2) and any finite
positive Borel measure µ in R2 with Hs(suppµ) <∞, we have ‖Rµ‖L∞(m2) =∞.

1. Introduction and Main Results Presented

To introduce the main results, we will need some definitions first. Let E be a subset of Rd

and let s > 0, define

Hs
ε(E) := inf

{ ∞∑

i=1

(diamEi)
s : E ⊆

∞⋃

i=1

Ei, diamEi < ε
}
.

With this, we can define the s-dimensional Hausdorff measure of E as

Hs(E) = sup
ε>0
Hs
ε(E).

So, if a set E has s-dimensional Hausdorff measure H < ∞, it means that for all ε > 0 we
can find a countable sequence of balls Bi = B(ci, ri) such that ri ≤ ε,

∞∑

i=1

rsi ≤ H

and ∞⋃

i=1

B(ci, ri) ⊇ E.

We will say that a positive measure has dimension s if the support of µ has finite s-
dimensional Hausdorff measure, that is: for every ε > 0 there exists a countable collection
of balls Bi = B(ci, ri) with ri ≤ ε,

∞∑

i=1

rsi ≤ H

and

µ
(
Rd \

∞⋃

i=1

Bi

)
= 0.

If µ is a finite (signed) measure on Rd, its s-dimensional (vector) Riesz transform Rµ is
defined by

Rµ(x) =

∫

Rd

x− y
|x− y|s+1

dµ(y).
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If 0 < s < d, it is easy to see that the integral converges almost everywhere with respect to
the d-dimensional Lebesgue measure md on Rd. We say that R is bounded in L2(µ) if

‖R(fµ)‖L2(µ) ≤ C‖f‖L2(µ)

Observe that when s ∈ (0, d] ∩ N and µ = Hs|V is the s-dimensional Hausdorff measure
restricted to an s-dimensional linear subspace V , then

f 7→ R(fµ)

can, essentially, be seen as a standard Calderón-Zygmund operator on Rs and hence bounded
in L2(µ).
Things can get much more complicated than this and one in general cannot hope to have
boundedness for “all” s-dimensional measures. In fact the characterization of those measures
for which the Riesz transforms (of the appropriate order) are bounded in L2 is the so-called
“David-Semmes problem”, which asks to relate the L2(µ) boundedness of certain singular
integral operators with the geometry of the support of µ. In the case of integer s the
conjecture is that if the support of µ is Alfohrs-David regular and R is bounded, then µ is
uniformly rectifiable (see [1] for some recent results and definitions in this direction).
As we just saw, the s-dimensional Riesz transform can be bounded in L2(µ) for some s-
dimensional measures, but the situation for non-integer s changes dramatically. The example
given above certainly cannot be translated to non-integer s and in fact, another of the
conjectures of David and Semmes states that

Let µ be an s-dimensional finite measure. If the s-dimensional Riesz transform
is bounded in L2(µ), then s is an integer.

Laura Prat in [4] attacked this conjecture in the plane for s ∈ (0, 1) using Menger’s curvature
techniques, however for s > 1 one cannot use Menger’s curvature due to non-positivity issues.
In higher dimensions the conjecture was proved by Merja Vihtilä in [5] under condition that

µ({x : lim inf
r→0+

r−sµ(B(x, r)) > 0}) > 0.

The present work gives the last partial result needed to settle the conjecture in the case of
d− 1 < s < d by studying the case where the measure µ is totally lower irregular :

µ({x : lim inf
r→0+

r−sµ(B(x, r)) > 0}) = 0.

Precisely, the statement of the main result is the following:

Theorem 1 (Main Theorem). Let s ∈ (d− 1, d), and let µ be a strictly positive finite totally
irregular Borel measure in Rd such that Hs(suppµ) <∞, then ‖Rµ‖L∞(md) =∞.

Actually, one can see in the article that the authors also prove that, under the same con-
ditions, R cannot be bounded in L2(µ). Hence, this articles settles the David-Semmes
conjecture alluded to earlier (the one treating the case of non-integer s) in dimension 2.
This article introduced one of the main ideas used in [1] and [2] and is very flexible. One
of the techniques used is a kind of maximum principle which is used in an essential way in
the proof. This is precisely what stops the argument from working in higher codimensions
and it would be very interesting to prove this result (as well as those in [1] and [2], of
course) without using the recourse to the maximum principle, or else by showing that the
corresponding maximum principle works for all 0 < s ≤ d.
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2. Ideas of the proof of the Main Result

The proof proceeds by contradiction: one assumes that ‖Rµ‖L∞ ≤ 1 from which it follows
that R should be bounded in L2(µ), then it is shown that R is unbounded in L2(µ), arriving
at a contradiction.
The first step in the proof is to notice that the L∞(md) bound implies that R is of polynomial
growth. Indeed, it is shown that

µ(B(c, r)) ≤ C‖Rµ‖L∞(md)r
s.

With this bound on µ one can apply the general machinery of Calderón-Zygmund operators
on non-homogeneous spaces from [3] to deduce that the maximal singular integral operator

R](fµ)(x) := sup
B3x

∣∣∣
∫

Rd\2B

x− y
|x− y|s+1

f(y) dµ(y)
∣∣∣

is bounded in L2(µ).
Next one constructs a Cantor-type structure on the support of µ. This is the most difficult
part of the paper, and where more time is spent. We refer the reader to the original article
for all the details, but let us sketch here the argument in the case where µ = Hs|K , where
K is a sparse s-dimensional Cantor square.
For x ∈ K let K(n)(x) be the square of the n-th generation containing x. Define

R(n)µ(x) =

∫

K(n)(x)\K(n+1)(x)

x− y
|x− y|s+1

dµ(y).

Then
N−1∑

n=0

R(n)µ(x) . R]µ(x) + 1.

Indeed, by telescoping the series, we obtain:

N−1∑

n=0

R(n)µ(x) =

∫

Rd\K(N)(x)

x− y
|x− y|s+1

dµ(y)

since µ is supported on K(0)

If one takes B to be the ball circumscribing K(N)(x) then one can proceed by:
∫

Rd\K(N)(x)

x− y
|x− y|s+1

dµ(y) =

∫

Rd\2B

x− y
|x− y|s+1

dµ(y)+

∫

Rd\K(N)(x)

x− y
|x− y|s+1

dµ(y)−
∫

Rd\2B

x− y
|x− y|s+1

dµ(y)

which we can rewrite as∫

Rd\2B

x− y
|x− y|s+1

dµ(y) +

∫

2B\K(N)(x)

x− y
|x− y| dµ(y).

The first term is, by definition, bounded by R]. For the second term observe that we have

|x− y|−s . l(K(N)(x))s

while µ(K(N)) . l(K(N)(x))s. As long as we construct the Cantor set in a way that the
squares of each generation are separated by significantly more than their diameters then 2D
only contains K(N)(x) and we are set.
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We continue the argument by noting that for each n we have

‖R(n)µ‖L2(µ) & 1.

This is a bit involved but relatively straightforward in the particular case of a Cantor square.
The main idea here is that if x ∈ K(n+1)(x) and y ∈ K(n)(x)\K(n+1)(x), then the differences
x− y have mostly constant sign, so there is very little cancellation.
Finally, we use the fact that the functions R(n)µ are “almost-orthogonal” so we end-up being
able to show that ∫

R2

∣∣∣
N−1∑

n=0

R(n)µ
∣∣∣
2

dµ & N,

but this contradicts the fact that R] is bounded since µ is finite.
Let us mention a slimmer of the ideas behind the use of the “maximum principle”. The kind
of result that is used is the following:

Lemma 2. Let f ∈ C∞c (Rd) and d− 1 < s < d, then

max
x∈Rd

Rjf(x) = max
x∈supp f

Rjf(x)

as long as the left hand side exists and is positive. Here Rj denotes the jth component of the
s-dimensional Riesz transform.

We will give a sketch of the proof here, but ignore all non-zero constants for briefness.
Observe that

Rjf = f ∗ xj
|x|s+1

= f ∗
[ ∂

∂xj

( −1

s− 1

1

|x|s−1
)]
.

Using the fact that f ∈ C∞c (Rd), we can put the derivatives on f to obtain (up to a non-zero
constant):

Rjf(x) =
(
∂jf ∗

1

|x|s−1
)

(x).

Under the Fourier transform, this expression looks like (again, up to constants)

R̂jf(ξ) = ∂̂jf(ξ)|ξ|−d−1+s,
so

|ξ|d+1−sR̂jf(ξ) = ∂̂jf(ξ).

Taking the inverse Fourier transform we arrive at

∂jf(x) = F∗
(
ξ 7→ |ξ|d+1−sû(ξ)

)
,

where u = Rjf and F∗ denotes the inverse Fourier transform.
The multiplier |ξ|d+1−s corresponds to “taking (d+ 1− s) derivatives”, so

∂jf(x) =
(√
−∆

)d+1−s
u(x).

We can use the representation formula for the square root of the Laplacian which can be
written as:

(√
−∆

)α
f(x) = p.v.

∫

Rd

f(x)− f(x− y)

|y|d+α dy
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for 0 < α < 2, where p.v. denotes the principal value. In our setting, this becomes:

∂jf(x) = p.v.

∫

Rd

u(x)− u(x− y)

|y|2d+1−s dy,

which is where we need the condition that s > d− 1.
Let x0 be a point where the maximum of Rjf is attained, then

∂jf(x0) = p.v.

∫

Rd

u(x0)− u(x0 − y)

|y|2d+1−s dy.

The right hand side is strictly negative, hence we must have x0 ∈ supp ∂jf ⊆ supp f .
It is unclear how one could avoid the use of the representation formula above (and hence
the requirement of s > d− 1, but a possible conjecture of Alexander Volberg and Vladimir
Eiderman [6] states

Let µ be a finite (signed) measure with compact support in Rd which has a
C∞ density with respect to the Lebesgue measure md. Then

|Rµ(x)| < C max
y∈suppµ

|Rµ(y)| ∀x ∈ Rd, 0 < s ≤ d,

where C = C(s, d) depends only on s and d, and R denotes the (vector)
s-dimensional Riesz transform.
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REFLECTIONLESS MEASURES AND THE
MATTILA-MELNIKOV-VERDERA UNIIFORM RECTIFIABILITY

THEOREM

BENJAMIN JAYE AND FEDOR NAZAROV

presented by Rishika Rupam

Abstract. The aim of this paper is to provide a new proof of a theorem by Mattila-
Melnikov-Verdera, on the uniform rectifiability of an Ahlfors-David regular measure µ whose
Cauchy transform operator is bounded in L2(µ).

1. Introduction and Main Results Presented

The motive and content of this paper is to prove the following

Theorem 1. An Ahlfors-David regular measure µ whose associated Cauchy transform oper-
ator is bounded in L2(µ) is uniformly rectifiable.

This theorem was first stated and proved by Mattila, Melnikov and Verdera in [2]. The proof
in this paper is a departure from the proof given there. In this extended abstract, we sketch
the outline of the proof. We start with definitions.

Definition 1. A measure µ is a c0- nice if µ(B(z, r)) ≤ C0r for any disc B(z, r) ⊂ C.

Definition 2. A nice measure µ is called AD-regular, with regularity constant c0 > 0, if

µ(B(z, r)) ≥ c0r,

for any disc B(z, r) ⊂ C with z ∈ supp(µ).

Definition 3. Let K(z) = 1
z

for z ∈ C \ {0}. For a measure ν, the Cauchy transform of µ
is formally defined by

C(ν)(z) =

∫

C
K(z − ξ)dν(ξ),

for z ∈ C. For δ > 0, define

Kδ(z) =
z̄

max(δ, |z|)2
.

The δ-regularized Cauchy transform of ν is defined by

Cδ(ν)(z) =

∫

C
Kδ(z − ξ)dν(ξ),

for z ∈ C.
We say that µ is a C0 good measure if it is C0 nice and sup

δ>0
‖Cµ,δ‖L2(µ)→L2(µ) ≤ C0.

Definition 4. A set E ⊂ C is called uniformly rectifiable if there exists M > 0 such
that for any dyadic square Q, there exists a Lipschitz mapping F : [0, 1]→ C with ‖F‖Lip ≤
Ml(Q) and E ∩Q ⊂ F [0, 1].
A measure µ is called uniformly rectifiable if the set E =supp(µ) is uniformly rectifiable.
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2 BENJAMIN JAYE AND FEDOR NAZAROV

We can now restate theorem 1 as follows,

Theorem 2. A good AD-regular measure µ is uniformly rectifiable.

The paper is divided into several sections, some providing small lemmas to supply the final
proof and some providing evolved versions of the above theorem. In the rest of the abstract,
we follow the main results in these sections. In section 3, the authors construct a Carleson
family for the following purpose.
The construction of a Lipschitz mapping: The authors identify a local property in
order to prove uniform rectifiability. Let’s choose a dyadic box P . The authors approximate
the support of µ = E by a sequence of sets of points. At each step in the sequence, they
construct a graph connecting the points at that stage. The idea is to connect these points in
an economical fashion, such that at each step, the length of the graph is bounded by Cl(P).
The conclusion of this procedure is that it is enough to show that

Proposition 1. Suppose that µ is a C0−good measure with AD regularity constant c0. There
is a constant C > 0 such that for each P,

∑

Q∈Bµ,Q⊂P
l(Q) ≤ Cl(P),

where Bµ is the set of ’bad boxes’, which we will elucidate in the next section.
In the following section, we take a short detour to introduce Riesz families

Definition. A system of functions ψQ (one ψ for each dyadic square Q) is called a Riesz
system if: 1.ψQ ∈ L2(Q)

2.‖
∑

Q∈D
aQψQ‖2

L2(µ) ≤ C
∑

Q∈D
|aQ|2, for every sequence aQ.

For each square Q, let ΨQ be a set of functions in L2(µ). Then, ΨQ is a Riesz family if for
any choice of functions ψQ ∈ ΨQ, the system ψQ forms a C-Riesz system.
For example, if we fix A > 0, and define

Ψµ
Q,A =

{
ψQ ∈ L2(µ) : supp(µQ) ⊂ B(zQ, AlQ), ‖ψQ‖Lip ≤ l(Q)−3/2,

∫

C
ψQ = 0

}
,

then this forms a Riesz family. Choose A′ > 1, A′ ≤ A. Consider the Riesz family Ψµ
Q,A

introduced above. For each Q ∈ D, we define

ΘA,A′(Q) = Θµ
A,A′(Q) = inf

F⊃B(zQ,A′l(Q))
sup

ψ∈ΨµQ,A

l(Q)−1/2| < Cµ(χF ), ψ >µ |.

For some choice of functions ψQ, we’ll have
∑

Q⊂P
ΘA,A′(Q)2l(Q) ≤ 2

∑

Q⊂P
| < Cµ(χB(zP ,2A′l(P ))), ψQ >µ |2.

Since the ψQ form a Riesz family, we’ll have that
∑

Q⊂P
ΘA,A′(Q)2l(Q) ≤ C(C0, A,A

′)l(P).

In order to prove proposition 1 above, it is sufficient to prove
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Proposition 2. Suppose µ is a C0 − good measure with AD regularity constant c0 > 0.
There exist constants A,A′ > 1, and γ > 0, such that for any square Q ∈ Bµ,

Θµ
A,A′(Q) ≥ γ.

If the above proposition fails, then we’ll have the following consequences:

Lemma 3. Suppose that the proposition 2 fails. Then, there exists a C0 − good measure µ
with AD-regularity constant c0, such that

(1) | < C̃µ(1), ψ >µ | = 0,

for all ψ ∈ Φµ, and there exist ξ, ζ ∈ ¯B(0, 20)∩ supp(µ), with |ξ− ζ| ≥ 1
2
, such that 0 ∈ [ζ, ξ]

and B(0, τ) ∩ supp(µ) = Ø.

Here C̃µ(1) is defined as the following operator

C̃µ(1)(z) =

∫

C

[
1

z − ξ −
1

ξ

]
dµ(ξ).

Measures that satisfy 1 are called reflectionless. It turns out there are few relectionless
measures that are also good and AD-regular, thus proving proposition 2.

Proposition 3. Suppose that µ is a non-trivial reflectionless good AD- regular measure.
Then µ = cH1

L for a line L, and a positive constant c > 0.

In order to prove this, we have the following

Lemma 4. For every z /∈ supp(µ),

[C̃(1)(z)]2 = 2κ.C̃µ(1)(z).

Lemma 5. Suppose that z /∈ supp(µ). Let z̃ be a closest point in supp(µ) to z, and set
e = z̃−z

|z̃−z| . For each α ∈ (0, 1), there is a radius rα > 0 such that B(z̃, rα)∩Cz̃,e(α) is disjoint

from supp(µ).

Lemma 6. Suppose that z /∈ supp(µ), and z̃ is a closest point on the support of µ to z. Let
e = z̃−z

|z̃−z| . Then supp(µ) ⊂ Hz̃,e.

2. Main Result 1

Proof (of proposition 1) In order to prove this proposition, we carry out the following steps.

(1) Choose and fix a dyadic box. Call it P - our viewing window.
(2) We carry out the following 2 way induction process. For each n ∈ N, we’ll choose a

sequence of points {xnk} that form a 2−n net of E ∩ P . At each such stage, we have
a function F : [0, 1]→ C, with ‖F‖Lip ≤ 2L and such that F [0, 1] ⊃ {xnk} ∩ 3P . We
use the Arzela Ascoli theorem to prove the following

Lemma 7. Suppose that there exist M > 0 such that L(l0) ≤ Ml(P ) for every
l0 > 0. Then there exists Fn : [0, 1]→ C such that ‖Fn‖Lip ≤ M.l(P) and Fn[0, 1] ⊃
{xnk} ∩ P.

The other induction process is as follows: Pick and fix an n as above. Then, in order
to create our graph (or web), we’ll start with the base step of boxes of side length
2−n and continue to 2−n+1, ..., l(P)/2.
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4 BENJAMIN JAYE AND FEDOR NAZAROV

(3) This is the base step for the induction process. Fix a point in 3Q. Then join together
every other point in 3Q.

(4) This is the subsequent step in the induction process. Let Q be a box of lenth twice
the length as in the previous induction step. If the graph from the previous step has
as least two components inside 3Q, then for each such component, choose a vertex
that lies in 3Q, fix a point inside 3Q and join each of the points to this chosen point.

(5) The authors use an economical construction that ensure that the length of the graph
in the 2 way induction process remains bounded by M.l(P ), where M is a constant
that depends on the goodness and regularity constants. They use the rarity of ’bad
squares’ (squares that are actually used in the induction process) to prove this.

3. Main Result 2

Proof (of lemma 3) If proposition 2 is false, then we have that for each k,

| < C̃µk(1), ψ >µk | ≤
1

k
+
CA3

k
,

for all ψ ∈ Φµk
A/2. Here Φµk

A/2 = {ψ : ‖ψ‖Lip ≤ 1,
∫
C ψdν = 0, supp(ψ) ⊂ B(0, A)} We use the

following lemma to conclude the proof.

Lemma 8. Let νk be a sequence of C0-good measures, with 0 /∈ supp(νk). Suppose that νk
converge weakly to ν with 0 /∈ supp(ν). Fix non-negative sequences γ̃k and Ãk, satisfying
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γ̃k → 0, and Ãk → Ã ∈ (0,∞]. If | < C̃νk(1), ψ >νk | ≤ γ̃k for all ψ ∈ Φνk
Ãk

, then

| < C̃ν(1), ψ >ν | = 0, for all ψ ∈ Φν
Ã

.

4. Main Result 3

Proof (of lemma 4) The proof relies on the following identity.
[

1

z − ξ +
1

ξ

]
.

[
1

ξ − ω +
1

ω

]
+

[
1

z − ω +
1

ω

]
.

[
1

ω − ξ +
1

ξ

]
=

[
1

z − ξ +
1

ξ

]
.

[
1

z − ω +
1

ω

]
.

Integrating both sides of this equality with respect to dµ(ξ)dµ(ω), we get 2C̃µ(C̃µ(1))(z) =

[C̃µ(z)]2. The rest of the proof is a justification of these formal operations.

Proof (of lemma 5) We divide the plane C into three different parts, as shown in the

figure. Notice that

=[C̃µ(−ti)] =

∫

C

[ =ξ + t

|ξ + it|2 −
=(ξ − z0)

|ξ − z0|2
dµ(ξ)

]
.

Lemma 4 guarantees that =[C̃µ(1)(−it)] = =[C̃µ(1)(z)] for any t > 0. Let ξ ∈ II∩ supp(µ).
Then an elementary geomtric argument shows that |ξ − it|2 ≥ −(=(ξ) + t)r, for |=(ξ)| < r

2
and t < r

2
. Thus,
∫

II

=ξ + t

|ξ + it|2dµ(ξ) ≥ −
∫

II∩B(0,r/2)

1

r
dµ(ξ)−

∣∣∣∣
∫

II\B(0,r/2)

=ξ + t

|ξ + it|2dµ(ξ)

∣∣∣∣.

Both terms on the right hand side are bounded in absolute value by C µ(B(0,R))
r

≤ CR
r

. Similar
calculations hold for I. Thus, we can conclude that there is a constant ∆, independent of t
such that

∫
III

=ξ+t
|ξ+it|2dµ(ξ) ≤ ∆. Suppose the statement in the lemma is false. Then, there

exists α > 0, along with a sequence zj ∈ C0,e(α)∩ supp(µ) with zj → 0 as j →∞. For each
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6 BENJAMIN JAYE AND FEDOR NAZAROV

ball Bj ∈ III, provided t ≤ α
2
|zj|, we have =ξ+t

|ξ+it|2 ≥
α|zj |
8|zj |2 = α

8|zj | , for ξ ∈ Bj. As a result, we

see that ∫

III

=ξ + t

|ξ + it|2dµ(ξ) ≥
∑

j:t≤|zj |/2

∫

Bj

=ξ + t

|ξ + it|2dµ(ξ) ≥
∑

j:t≤|zj |/2
µ(Bj)

α

8|zj|
.

But µ(Bj) ≥ c0α|zj |
2

, and so the previous integral over III has size at least c0α2

16
.card{j : t ≤

|zj|/2}. However, if t is sufficiently small, then this quantity may be made larger than ∆.
Since this is not possible, the lemma must be true.
Proof (of lemma 6) We use tangent measures (see [3]) and the previous lemma to show that
the measure cannot have any support in a direction that makes an obtuse angle with e.
Proof (of proposition 3) Using lemma 6, we have that for each z /∈ supp(µ), there is a half
space with z on its boundary which does not intersect supp(µ). Now suppose there are three
points z, ξ, ζ ∈ supp(µ), which are not collinear. Then they form a triangle. Since µ is nice,
there is a point ω in the interior of this triangle outside the support of µ. But, again by
lemma 6, there is a half space, with ω on its boundary, which is disjoint from supp(µ). This
half space must contain at least one of the points z, ξ or ζ. But this is not possible. Thus,
the proposition is proved.
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ALMOST-ADDITIVITY OF ANALYTIC CAPACITY AND CAUCHY
INDEPENDENT MEASURES

VLADIMIR EIDERMAN, ALEXANDER REZNIKOV, AND ALEXANDER VOLBERG

presented by Fangye Shi

Abstract. In this paper, it is shown that given a family of separated discs centered at
a chord-arc curve, the analytic capacity of a union of arbitrary subsets of these discs is
comparable with the sum of their analytic capacities. As an application, a necessary and
sufficient condition is given for a certain family of Cauchy operator measures to be Cauchy
independent.

1. Introduction and Main Results Presented

Given a compact set F ⊆ C,the analytic capacity is defined by

γ(F ) := sup |f ′(∞)|
where the supremum is taken over all analytic functions f : C\F → C with |f | ≤ 1 and
f ′(∞) := limz→∞ z(f(z)− f(∞)). For arbitrary set F ,

γ(F ) := sup{γ(K) : Kcompact,K ⊆ F}
In the celebrated paper [1] Tolsa established the countable semiadditivity of the analytic
capacity,

γ(∪Fi) ≤ C
∑

γ(Fi)

where C is an absolute constant. However, the reverse inequality does not hold in general
(even if the sets involved are pairwise disjoint). To see this, consider the n-th generation
En = ∪4nk=1En,k of the corner 1/4-Cantor set in the plane. We know that γ(En) � 1/

√
n [2]

while
∑4n

k=1 γ(En,k) � 4n · 4−n = 1.
Thus a natural question is raised: for what family of sets,the almost-additivity of analytic
capacity holds?
We call Γ a chord-arc curve if

|t− s| ≤ A|z(t)− z(s)|
where t 7→ z(t) is an arc-length parametrization of Γ.
The main result of this paper is the following theorem:

Theorem 1 (Almost Additivity of Analytic Capacity). Let Dj be discs with centers on a
chord-arc curve Γ such that λDj are pairwise disjoint for some λ > 1. Let Ej ⊆ Dj be
arbitrary compact sets. Then there exists a constant c = c(λ,A), such that

γ(∪Ej) ≥ c
∑

γ(Ej).
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The strict separation condition λ > 1 is needed in the proof for some technical reasons. It
is not known whether the theorem is true or not when λ = 1.
Let µ be a finite Borel measure with compact support in the complex plane. We say µ is a
Cauchy operator measure if the Cauchy operator Cµ is bounded on L2(µ) with norm at most
1.Here we define L2 − L2 norm of Cµ to be ||Cµ||µ := supε ||Cε

µ||µ where Cε
µ is ε-truncations

of the Cauchy operator defined by:

Cε
µf(z) :=

∫

ε<|ξ−z|<ε−1

f(ξ)

ξ − zdµ(ξ)

Let Σ be the class of nonnegative Borel measures of linear growth (i.e. nonnegative Borel
measures µ satisfies µ(D(x, r)) ≤ r for every disc D(x, r)). In connection to the analytic
capacity,we have the following important fact [3]:

γ(F ) � sup {||µ|| : supp(µ) ⊆ F, µ ∈ Σ, ||Cµ||µ ≤ 1}

We call a colletion {µj} of positive measures Cauchy independent measures if µj is a Cauchy
operator measure for each j and ||Cµ||µ <∞ for µ :=

∑
µj.

It is known that a finite family of Cauchy operator measures is always Cauchy indepen-
dent, see [4]. Thus, the main interest is in the situations when infinite families are Cauchy
independent.As an application of the main result above, the following theorem is proved:

Theorem 2. Suppose λ > 1 and measures µj are supported on compact sets Ej lying in
discs Dj such that λDj are pairwise disjoint. Assume ||Cµj ||µj ≤ 1 and ||µj|| � γ(Ej) with
absolute constants. Let µ :=

∑
µj and E := ∪Ej. Then this family is Cauchy independent

if and only if for any disc B,

µ(B) ≤ Cγ(B ∩ E).

And a direct corollary of Theorem 2 is the following:

Theorem 3. Suppose λ > 1 and measures µj are supported on compact sets Ej lying in discs
Dj such that λDj are pairwise disjoint. Assume ||Cµj ||µj ≤ 1 and c1||µj|| ≤ γ(Ej) ≤ c2||µj||
Let µ :=

∑
µj and E := ∪Ej. Suppose for any disc B,

∑
γ(B ∩ Ej) ≤ C1γ(B ∩ E),

then ||Cµ||µ ≤ C <∞, here C = C(c1, c2, C1)

Note that Theorem 2, Theorem 3 do not have any assumptions on the location of discs Dj.
However, under the assumption of Theorem 3, the discs involved must have a very special
geometric structure.Recall that a curve Γ in the plane is called Ahlfors regular if for any disc
B, we have

H1(Γ ∩B) ≤ Cdiam(B)

for some absolute constant C. Then we have the following:

Theorem 4. Under the assumption of Theorem 3, there exists an Ahlfors regular curve Γ
such that all discs intersect Γ.Moreover, the Ahlfors constant of Γ depends only on λ and C1

as in Theorem 3.
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2. Main Tool: The Melnikov-Menger Curvature

A useful tool for proving Theorem 1 is the Melnikov-Menger curvature of a positive Borel
measure µ in C defined as

c2(µ) :=

∫ ∫ ∫
1

R2(x, y, z)
dµ(x)dµ(y)dµ(z),

where R(x, y, z) is the radius of the circle passing through x, y, z, with R(x, y, z) = ∞ if
x, y, z lie on a straight line.

Lemma 5 (Main Lemma). Let Dj := D(xj, rj) be discs with centers on a chord-arc curve
Γ, with λDj pairwise disjoint for some λ > 1. Let µj be positive measures supported in Dj

such that ||µj|| ≤ rj. Then for µ :=
∑
µj, we have c2(µ) ≤∑ c2(µj) + C||µ||, C = C(λ,A)

where A is the constant of Γ.

Theorem 1 is a direct consequence of Lemma 5 and the fact [3] that for any compact set F ,

γ(F ) � sup {µ(F ) : supp(µ) ⊆ F, µ ∈ Σ, c2(µ) ≤ µ(F )}
In proving the main lemma, c2(µ) is compared to c2(σ) where σ is (part of) the arc-length
measure supported on Γ. The following facts are used along the way: (a) The boundedness of
the Cauchy operator on chord-arc curves, see [5]. (b) The connection between the curvature
of a ’good’ measure and the norm of the Cauchy operator associated to that measure:

||Cε
µ1||2L2(µ) =

1

6
c2ε(µ) +O(||µ||)

uniformly in ε for any measure µ ∈ Σ, see [6] . Here we take the truncated version of the
curvature c2ε(µ), defined in the same way as c2(µ), but the integral is taken over the set
{(x, y, z) ∈ C3 : |x− y|, |y − z|, |x− z| > ε}.

3. The Necessary and Sufficient Condition in Theorem 2

The necessity is an easy consequence of the fact that boundedness of Cµ implies that αµ ∈ Σ
for some α depending only on ||Cµ||µ. Note that the extra structure of the support of the
measure is not needed.
To prove the sufficiency,the following theorem from [4] will be used several times to compare
different measures:

Theorem 6. Suppose that {Dj} are discs on the plane and the dilated discs λDj are pairwise
disjoint for some λ > 1. Let ν, σ be two positive measures supported in ∪Dj such that
σ(Dj) � ν(Dj). Suppose Cν|Dj

are uniformly bounded. Suppose Cσ is bounded on L2(σ),
then Cν is bounded on L2(ν).

The idea is to compare µ with a new measure σ such that Cσ is known to be bounded.Below
is the construction of the measure σ.
By a cross, we mean two perpendicular line segments of equal length intersecting in their
centers, one of them being horizontal. Note that it is very easy to compare ’length’ and
analytic capacity of the cross. Indeed, we have

γ(cross ∩B) � H1(cross ∩B)
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for any disc B with absolute constants of comparison.
Let λ > 1. Let λ′ := 1+λ

2
. For a disc D with radius r, we place a cross of length less

than r/1000 in the center of D and N disjoint copies of crosses that touch ∂(λ′D) on the
inside and on equal distance from each other. We choose N to be the minimal integer such
that if a disc B intersects D and C\(λD), then at least one cross lies inside B. Note that
N � 1+λ

λ−1π depends only on λ. Let Lj denote the union of crosses constructed as above

that are associated to Dj with size H1(Lj) := N+1
1000

γ(Ej). Let L be the union of Lj. Let
σ := H1|L.

Lemma 7. For any disc B,

γ(B ∩ Lj) � σ(B ∩ Lj)
And if we further assume

µ(B) ≤ Cγ(B ∩ E).

for every disc B as in Theorem 2, then we have almost additivity

γ(B ∩ L) ≥ C
∑

γ(B ∩ Lj),
for some absolute constant C.

The proof of first part of Lemma 7 is straight forward. The second part requires an applica-
tion of Theorem 1 and Theorem 6.
The following theorem from [7] and Lemma 7 thus implies that Cσ is bounded:

Theorem 8. Let L ⊆ C be a compact set of positive and finite length. Let σ := H1|L. Then
Cσ is bounded if and only if there exists a finite constant C such that σ(B ∩L) ≤ Cγ(B ∩L)
for any disc B.

Finally, the boundedness of Cσ and Theorem 6 conclude the proof of Theorem 2.

4. ’Sharpness’ of Theorem 2

It is pointed out that the condition

µ(B) ≤ Cγ(B ∩ E)(1)

for every disc B alone is not enough to guarantee the boundedness of Cµ. Indeed, it is proved
that:

Theorem 9. There exists a family of measures {µj}∞j=0 with the following properties: (a)
||Cµj ||µj ≤ 1; (b) ||µj|| � γ(Ej), where Ej = supp(µj); (c) {2Ej}j≥1 are pairwise disjoint;
(d) Let µ :=

∑∞
j=0 µj, then µ(B) ≤ Cγ(B ∩ E) for each disc B ; (e) ||Cµ||µ =∞.

The idea is to use again a variant of the corner 1/4-Cantor set. The family {µj}∞j=1 con-
structed above satisfies all the assumptions of Theorem 2 except (1). Adding µ0 changes the
structure of µ and fails the separation assumption of theorem 2.
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THE RIESZ TRANSFORM, RECTIFIABILITY, AND REMOVABILITY
FOR LIPSCHITZ HARMONIC FUNCTIONS

FEDOR NAZAROV, XAVIER TOLSA, AND ALEXANDER VOLBERG

presented by Prabath Silva

Abstract. In this note we will discuss the results from [4]: given a set E ⊂ Rn+1 with
finite Hausdorff measure Hn, if the n-dimentional Riesz transform

RHnbEf(x) =

∫

E

x− y

|x− y|n+1
f(y)dHn(y),

is bounded on L2(HbE), then E is n-rectifiable. As a corollary of this result we get that
a compact set E ⊂ Rn+1 with Hn(E) is removable for Lipschitz harmonic functions if and
only if it is purely n-unrectifiable.

1. Introduction and Main Results Presented

A set E ⊂ Rn+1 is called a n-rectifiable if it is contained in a countable union of C1 manifolds
up to a set of zero Hn measure. If E does not have any n-rectifiable subsets with positive
n-Hausdorff measure then E is called purely unrectifiable.
Next we consider singular integral operators related to measure. Given a Borel measure ν
in Rn+1 such that ∫

Rn+1

d|ν|(x)

(1 + |x|)n <∞,
the n-dimensional Riesz transform is defined by

Rν(x) =

∫

Rn+1

x− y
|x− y|n+1

dν(y)

when the integral makes sense.
The main theorem of this work is the following, which relates the geometric notion of recti-
fiability with the boundedness for the Riesz transform. The proof of this theorem uses deep
results from [1], [4] and [2].

Theorem 1. Let E be a set such that Hn(E) <∞. If RHnbE is bounded on L2(HnbE), then
E is n-rectifiable.

A subset E ⊂ Rn+1 is removable for Lipschitz functions if, for every open set Ω ⊂ Rn+1,
every Lipschitz function f : Ω→ R that is harmonic in Ω \ E is harmonic in Ω.
It is known from [3] that if a compact set E ⊂ Rn+1 with Hn(E) < ∞ is removable for
Lipschitz harmonic functions, then it must be purely n-unrectifiable. Also, from Theorem
2.2 [7], if E is not removable for Lipschitz harmonic functions, then there exists some measure
µ supported on E such that Rµ is bounded in L2(µ). Then one can use Theorem 1 to show
that E is not purely n-unrectifiable. So we have the following corollary to Theorem 1.

Theorem 2. Let E ⊂ Rn+1 be a compact set such that Hn(E) < ∞. Then E is removable
for Lipschitz harmonic functions in Rn+1 if and only if E is purely n-unrectifiable.
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2. Proof of Theorem 1

Definition 3. A d-dimensional set E in Rn is called d-AD regular if with some 0 < c <
C <∞,

crd ≤ Hd(E ∩B(x, r)) ≤ Crd,∀x ∈ E,∀r ∈ (0, diamE).

A Borel measure µ in Rd has growth of degree n if there exists c > 0 such that

µ(B(x, r)) ≤ crn

for all x ∈ Rd, r > 0. The upper and lower n-dimensional densities of a measure µ are defined
by

θn,∗(x, µ) = lim sup
r→0

r−nµ(B(x, r)) and θn∗ (x, µ) = lim inf
r→0

r−nµ(B(x, r)),

respectively.
By using the main theorem from [2] we can assume that θn∗ (x, µ) > 0 for µ-a.e. x ∈ Rn+1.

Lemma 4 (Main Lemma.). Let µ be a compactly supported finite Borel measure in Rd with
growth degree n such that θn∗ (x, µ) > 0 for µ-a.e x ∈ Rd. Suppose that Rµ is bounded in
L2(µ). Then there are finite Borel measures µk, k ≥ 1, such that

(1) µ ≤∑k≥1 µk,
(2) µk is AD-regular for each k ≥ 1, with the AD regularity constant depend on k,
(3) for each k ≥ 1, Rµk is bounded on L2(µk).

Using this lemma with HnbE together with the results from [1] and [4] we get that for each
k, suppµk is n-rectifiable.

3. Proof idea of the main lemma

This is the main technical part of the paper. A sequence of measures satisfying conditions
(1) and (2) were already obtained in [6], but in this lemma we have to make sure that the
Riesz transform is bounded on L2(µk) .
Let F ⊂ suppµ such that θn∗ (x, µ) > 0 for all x ∈ F and µ(Rd \ F ) = 0. Next consider the
sets

Fp = {x ∈ F : for 0 < r ≤ D,µ(B(x, r)) ≥ 1

p
rn},

Fp,s = {x ∈ Fp : for 0 < r ≤ D,µ(Fp ∩B(x, r)) ≥ 1

ps
rn},

where D = diam(suppµ). Note that we have F =
⋃
p≥1 Fp and µ(Fp \

⋃
s≥1 Fp,s) = 0.

The measures µp,s are obtained by adding carefully choosen measures σp,s to µbFp,s. The
measures σp,s are obtained by first obtaining an at most countable covering of the set Fp\Fp,s
from collection of balls {B(x, d(x)) : x ∈ Fp \ Fp,s, d(x) = diet(x, Fp,s)}, using Besicovitch’s
covering theorem, and then putting n-dimensional Hausdorff measures on n-dimensional
hyperplanes in each ball from the covering. This construction gives us AD regularity of µp,s.
Next we show that the Riesz transform is bounded on L2(µp,s). First, using a result from
[5], we note that it is enough to show that Riesz transform is bounded on L2(σp,s). This
is obtained by approximating the Riesz transform on L2(σp,s) with the Riesz transform on
L2(ν), where ν is an appropriately normalized version of measure µ defined on the balls.
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PAINLEVÉ’S PROBLEM AND THE SEMIADDITIVITY OF ANALYTIC
CAPACITY

XAVIER TOLSA

presented by Raghavendra Venkatraman

1. Introduction and Main Results Presented

Let Ω ⊂ C be an open set, and let H∞(Ω) denote the algebra of bounded analytic functions
in Ω. Set E = S2\Ω, we may assume E is a compact plane set. We begin by recalling a
classical result [1] to set stage for the kind of problems under discussion.

Theorem 1 (Painlevé). Assume that for every ε > 0, the set E can be covered by discs the
sum of whose radii does not exceed ε. Then H∞(Ω) consists only of constants.

Theorem 2. If E has positive area, then H∞(Ω) has non-constant functions.

Observe that the hypothesis of these theorems is measure theoretic, while the conclusion
deals with the capacity of Ω to support nontrivial bounded analytic functions. Furthermore,
the proof of both these theorems involves convolving the singular kernel 1

z
with some Borel

measure. Ahlfors made this observation precise by proving that the set E is removable
for bounded analytic functions if and only if its analytic capacity γ(E) = 0; the relevant
definitions are as follows- A compact set E ⊂ C is said to be removable for bounded analytic
functions if for any open set Ω containing E, every bounded analytic function on Ω\E has
an analytic extension to Ω. Let as before E be a plane compact set and Ω its complement,
then

(1) γ(E) := sup
A
|f ′(∞)|, A = {f : Ω→ C, f ∈ H∞(Ω), ‖f‖∞ ≤ 1}.

Here, f ′(∞) := limz→∞ z(f(z) − f(∞)). For an arbitrary set A ⊂ C, one defines γ(A) =
sup{γ(E), E ⊂ A is compact }.
Painlevé’s problem consists of characterizing removable sets for bounded analytic functions in
terms of metric/geometric properties of these sets. By Ahlfors’ theorem above, this amounts
to characterizing the foregoing purely analytic definition of analytic capacity in geometric
terms. Vitushkin in the 50’s raised the question of semi-additivity of analytic capacity,
namely, does there exist a universal constant C > 0 such that

γ(E ∪ F ) ≤ C(γ(E) + γ(F )).

X. Tolsa [2] proved that the answer to Vitushkin’s question is in the affirmative, and in the
process provided a solution to Painlevé’s problem. These accomplishments of Tolsa are the
subject of this short note. More precisely, the theorems proven in [2] are

Date: August 3, 2014.

49



Theorem 3 (Semiadditivity of Analytic Capacity). Let E ⊂ C be compact. Let Ei, i ≥ 1 be
Borel sets such that E = ∪∞i=1Ei. Then,

γ(E) ≤ C
∞∑

i=1

γ(Ei),

where C is an absolute constant.

Theorem 4 (Painlevé’s Problem). A compact set E ⊂ C is non-removable for bounded
analytic functions if and only if it supports a positive Radon measure with linear growth and
finite curvature.

See below for definitions of curvature of measures and its geometric implications. This
note is organized as follows. This section, providing some background borrows heavily from
X.Tolsa’s recent delightful book [3] on the subject. Part two makes some noises on the proof
of the main theorems.

A. Analytic Capacity. Recall that for a compact set E, we define

γ(E) = sup
A
|f ′(∞)|.

If u ∈ A, we say that u is admissible for E. For example, the capacity of a point is zero since
any bounded analytic function on the punctured plane is a constant. On the other hand, if E
is a closed disc centered at the origin and radius r > 0, the function u(z) := r/z is admissible
for E, and so γ(E) > 0. Furthermore, by a normal families argument, it follows that the
supremum in (1) is achieved. In fact, it is not hard to see that the admissible function
satisfying f ′(∞) = γ(E) is unique; this is called the Ahlfors function of E. Moreover, any
function u that achieves this supremum in fact satisfies u(∞) = 0. For such a function,
limz→∞ zu(az + b) = au′(∞), so that γ(aE + b) = |a|γ(E) for any pair of complex numbers
a, b.
It is not hard to see that the analytic capacity is a set monotone function, i.e. if E ⊂ F, then
γ(E) ≤ γ(F ), and γ(E) = γ(∂oE), where ∂oE is the boundary of the unbounded component
of S2\E. When E ⊂ C is a compact connected set different from a single point, and f is a
conformal map between the unbounded connected component of S2\E to the disc vanishing
at ∞, then γ(E) = |f ′(∞)|. This provides us a recipe to compute the analytic capacity of
some sets, for instance, the analytic capacity of a closed disc B(0, r) is r, while that of a closed
line segment of length ` is `/4. In fact, from the Koebe-Beiberbach 1/4 theorem, it follows
that diam(E)/4 ≤ γ(E) ≤ diam(E) for any compact connected set E ⊂ C. Consequently, if
γ(E) = 0, then E is totally disconnected.
Concerning the relationship between analytic capacity and rectifiability, we only make a few
comments. If dimH(E) > 1, then γ(E) > 0. Moreover if dimH(E) < 1 then γ(E) = 0.
However, it is not true that γ(E) > 0 if and only if H1(E) > 0. The counter example of a set
with positive length and vanishing analytic capacity is given by the corner quarters Cantor
set. Finally, in connection with Painlevé problem and Vitushkin’s conjecture, David proved
that E ⊂ C satisfies γ(E) = 0 if and only if E is purely unrectifiable.

B. The Cauchy Transform and Vitushkin’s Localization Operator. The Cauchy
transform of a complex finite measure ν on C is defined by

(2) Cν(z) =

∫
1

ξ − z dν(ξ).
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By Fubini’s theorem, taking into account the fact that z 7→ 1
|z| is locally integrable with

respect to planar Lebesgue measure, the integral is absolutely convergent for (Lebesgue) a.e.
z ∈ C.
The primordial role of the Cauchy transform in analysis arises from the fact that z 7→ 1

πz
is the

fundamental solution to the Cauchy Riemann operator. In the context of analytic capacity,
if ν is any compactly supported distribution, then Cν is analytic outside the support of the
distribution ν, and verifies Cν(∞) = 0 and (Cν)′(∞) = −〈ν, 1〉 = −ν(C).
Given f ∈ L1

loc(C) and φ ∈ C∞ is compactly supported, we define the Vitushkin localization
operator associated to φ by

(3) Vφf = φf +
1

π
C(f∂f).

It is not hard to see that we have

(4) Vφ(f) = − 1

π
C(φ∂f).

This in turn implies that when f = Cν, where ν is a compactly supported measure or
distribution, it verifies

Vφ(Cν) = C(πν).

This identity justifies the name for this operator: indeed, the Vitushkin operator Vφ(Cν) is
analytic in the larger set C\supp(φν). Hence the singularities are now localized to supp(φ)∩
supp(ν). The Vitushkin localization operator posses many nice regularity properties, see [3]
for details. More over, it can be used to prove the following special case of the semi-additivity
problem.

Theorem 5. For a compact set E ⊂ C and a closed disc or square D ⊂ C we have

γ(E ∪D) ≤ c(γ(E) + γ(D)).

This result also holds with E,D replaced by closed rectangles R and S in the complex plane
(without the assumption that their sides are required to be parallel to the axes).

C. Menger Curvature and curvature of a measure. Given three points x, y, z ∈ C their
Menger curvature is c(x, y, z) = 1

R(x,y,z)
, where R(x, y, z) is the radius of the circumcircle of

triangle x, y, z. In the degenrate cases that the three points are collinear or that two of them
coincide, we set c(x, y, z) = 0. The law of sines provides a useful identities for the Menger
curvature of three given points in C in terms of the side lengths of ∆xyz and for instance its
area. From these identities, it is not hard to prove what has come to be known as Melnikov’s
miracle:

Proposition 6. Let z1, z2, z3 ∈ C be pairwise different. Then

c(z1, z2, z3)
2 =

∑

σ∈S3

1

(zσ1 − zσ2)(zσ3 − zσ4)
.

For a positive Radon measure µ, we write

c2µ(x) =

∫ ∫
c(x, y, z)2 dµ(y) dµ(z),

and the curvature of the measure µ as

c2(µ) =

∫
c2µ(x) dµ(x).
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For example, it is not hard to see that the curvature of the arc length measure on a circle
of radius r is 8π3r. The deep David-Leger theorem justifies why the curvature of a measure
is indeed a geometric quantity: it states that for a set E of finite length and µ = H1bE,
finiteness of c2(µ) implies that E is rectifiable. By integrating thrice the identity in the last
proposition, one obtains the following elementary yet deep connection between the Cauchy
transform of a measure and its curvature. The theorem we are talking about is the following.

Theorem 7. Let µ be a finite Radon measure on C with c0 linear growth. We have,

‖Cεµ‖2L2(µ) =
1

6
c2ε(µ) +O(µ(C)),

with
|O(µ(C))| ≤ cc20µ(C),

where c is some absolute constant.

D. The Capacity γ+. The capacity γ+ of a compact set E ⊂ C is defined by

γ+(E) := sup{µ(E) : supp(µ) ⊂ E, ‖Cµ‖L∞(C) ≤ 1}.
The capacity γ+ has a definition similar to that of γ, except we now require f = Cν be the
Cauchy transform of some Radon measure (indeed, (Cµ)′(∞) = −µ(E)). The importance of
this capacity lies in the fact that semi-additivity of γ+ follows from its characterization in
terms of its curvature. It is trivial that γ+(E) ≤ γ(E) for any set E. Consequently, the crux
of the matter in proving 3 is the following theorem asserting the comparability of γ and γ+.

Theorem 8. There exists an absolute constant A such that

γ(E) ≤ Aγ+(E),

for any compact set E.

The characterization of γ+ in terms of curvature is contained in the following theorem. Let
Σ(E) be the set of Radon measures supported on E that have 1− linear growth.

Theorem 9. For any compact set E ⊂ C, we have

γ+(E) ≈ sup{µ(E) : µ ∈ σ(E), ‖Cεµ‖L∞(µ) ≤ 1∀ε > 0},
sup{µ(E) : µ ∈ σ(E), ‖Cεµ‖2L2(µ) ≤ µ(E)∀ε > 0},
sup{µ(E) : µ ∈ σ(E), c2(µ) ≤ µ(E)},
sup{µ(E) : µ ∈ σ(E), ‖Cµ‖L2(µ)→L2(µ) ≤ 1}.

(5)

Since the last term in the train of approximate equalities is semi-additive, the semi-additivity
of γ+ follows.

2. Ideas involved in proofs of theorems 3 and 4

A. A Tb theorem of Nazarov, Treil and Volberg. Let D0 be the lattice of dyadic
squares from C, and denote by D(w) = w +D0. Then the following Tb theorem was proved
in [4] (see also ([3],chapter 5)).

Theorem 10. Let µ be a finite measure supported on a compact set F ⊂ C. Suppose that
there exist a complex measure ν and for each w ∈ C two subsets HD(w), TD(w) ⊂ C made up
of dyadic squares from D(w) such that

(1) Every ball Br of radius r such that µ(Br) > c0r is contained in ∩w∈CHD(w).
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(2) ν = bµ where b is some function such that ‖b‖∞ ≤ cb.
(3)

∫
C\HD(w)

C∗ν dµ ≤ c∗µ(F ) for all w ∈ C.
(4) If Q ∈ D(w) is such that Q 6⊂ TD(w) then µ(Q) ≤ cacc|ν(Q)| (i.e. Q is an accretive

square).
(5) µ(HD(w) ∪ TD(w)) ≤ δ0µ(F ) for all w ∈ C and some δ0 < 1.

Then, there exists a subset G ⊂ F\ ∩w∈C (HD(w) ∪ TD(w)) such that
(i) µ satisfies µ(G) ≥ c−11 µ(F ),
(ii) µbG has c0− linear growth.
(iii) the Cauchy transform is bounded in L2(µbG). The constant c1 and the bound for the
L2(µbG) norm depend only on c0, cb, c∗, cacc and δ0.

Condition (1) in the theorem implies that µbC\∩w∈CHD(w) has linear growth, while condition
(3) ensures that C∗ν is not too big in C\HD(w). The statement (4) is an accrevity condition
for ν, while the last condition (5) asserts that the bad sets HD(w) and TD(w) are not too big.
While the theorem has been stated for the Cauchy transform, it is true for singular integral
operators that are more general. Consequently, the proof in [4], [3] do not exploit the
connection between the Cauchy transform and the curvature.

Comparability of γ+ and γ.. An immediate consequence of the Tb theorem of Nazarov,
Treil and Volberg is the following (easier) statement regarding the comparability of the
capacities γ and γ+. This result is due to David.

Theorem 11. Let E ⊂ C be compact with H1(E) <∞ and γ(E) > 0. Then γ+(E) > 0.

A direct application of the Tb theorem turns out to be insufficient to prove theorem 8. The
steps involved first include construction of a measure ν, we begin by approximating E at
a certain intermediate scale (call this approximation F ) with disjoint finitely many cubes
Qi, construct suitable measures νi supported on these squares Qi and consider the measure
ν =

∑
i νi. The hope is that if the squares are constructed sufficiently largely, the variation

|ν| will be sufficiently small; there is a competition to win: if the squares are too big, then we
might lose γ+(F ) ≤ cγ+(E). The result of this construction is a complex measure ν supported
on F satisfying |ν(F )| ≈ |ν|(F ) = γ(E). Taking a suitable measure µ with µ(F ) ≈ γ(E) and
supp(µ) ⊃ supp(ν), prepares us well for an application of the T (b) theorem of [4]. The Tb
theorem in turn implies that γ+(F ) ≥ c−1µ(E), and we will be done. An induction argument
on the size of a rectangle R is used to show that γ(E ∩R) ≈ γ+(E ∩R).
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