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Overview of the Workshop
This workshop was part of the Internet Analysis Seminar that is the education component

of the National Science Foundation – DMS # 0955432 held by Brett D. Wick. The Internet
Analysis Seminar consists of three phases that run over the course of a standard academic
year. Each year, a topic in complex analysis, function theory, harmonic analysis, or operator
theory is chosen and an internet seminar will be developed with corresponding lectures. The
course will introduce advanced graduate students and post-doctoral researchers to various
topics in those areas and, in particular, their interaction.

This was a workshop that focused on multiparameter harmonic analysis. Each of the
participants was assigned one of the following papers to read:

[1] Carlos Cabrelli, Michael T. Lacey, Ursula Molter, and Jill C. Pipher, Variations on the theme of Journé’s
lemma, Houston J. Math. 32 (2006), no. 3, 833–861.

[2] Sun-Yung A. Chang and Robert Fefferman, The Calderón-Zygmund decomposition on product domains,
Amer. J. Math. 104 (1982), no. 3, 455–468.

[3] , A continuous version of duality of H1 with BMO on the bidisc, Ann. of Math. (2) 112 (1980),
no. 1, 179–201.

[4] Yongsheng Han, Ji Li, and Guozhen Lu, Duality of multiparameter Hardy spaces Hp on spaces of homo-
geneous type, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), no. 4, 645–685.

[5] Michael Lacey and Jason Metcalfe, Paraproducts in one and several parameters, Forum Math. 19 (2007),
no. 2, 325–351.

[6] Michael T. Lacey, Stefanie Petermichl, Jill C. Pipher, and Brett D. Wick, Multiparameter Riesz commu-
tators, Amer. J. Math. 131 (2009), no. 3, 731–769.

[7] Henri Martikainen, Representation of Bi-Parameter Singular Integrals by Dyadic Operators, preprint
(2011), available at http://arxiv.org/abs/1110.1890.

[8] Sandra Pott and Paco Villarroya, A T (1) theorem on product spaces, preprint (2011), available at http:
//arxiv.org/abs/1105.2516.

[9] Sergei Treil, H1 and dyadic H1, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2, vol. 226,
Amer. Math. Soc., Providence, RI, 2009, pp. 179–193.

They were then responsible to prepare two one-hour lectures based on the paper and an
extended abstract based on the paper. This proceeding is the collection of the extended
abstract prepared by each participant. The following people participated in the workshop:

Gagik Amirkhanyan Georgia Institute of Technolgoy
Theresa C. Andersson Brown University
Kelly Bickel Washington University - St. Louis
Amalia Culiuc Brown University
Tim Feguson Vanderbilt University
Jingguo Lai Brown University
Mishko Mitkovski Georgia Institute of Technology
Eyvindur Palsson University of Rochestor
Zachary J. Smith University of Tennessee, Knoxville
Brett D. Wick Georgia Institute of Technology

http://internetanalysisseminar.gatech.edu/
http://arxiv.org/abs/1110.1890
http://arxiv.org/abs/1105.2516
http://arxiv.org/abs/1105.2516


VARIATIONS ON THE THEME OF JOURNÉ’S LEMMA

CARLOS CABRELLI, MICHAEL LACEY, URSULA MOLTER, JILL PIPHER

presented by Amalia Culiuc

Abstract. Journé’s lemma, proved in 1987 [3], is an important tool in the product BMO
theory and the control of Carleson measures. Previous work by Carberry and Seeger [1],
Fefferman and Pipher [2], Muscalu, Pipher, Tao, and Thiele [4][5], Pipher [6], and others
has provided various extensions and applications of the lemma, although its precise role in
the product theory is still not well defined. The following results provide an overview of
what is known about Journé’s lemma and its possible refinements.

1. Overview of Results

We begin by defining the concepts present in the lemma. Let I be a collection of intervals
in R. I is said to be a grid if any two intervals in this collection are either nested or disjoint,
and any collection of intervals in R with this property is said to have the grid property. Note
that in particular D, the set of dyadic intervals in R, defined by

D = {[j2k, (j + 1)2k) : j, k ∈ Z},
has the grid property, since if I, I ′ ∈ D, then I ∩ I ′ ∈ {I, I ′, ∅}.

Based on the definition of dyadic intervals, in d dimensions we can define the collection of
dyadic rectangles :

Dd =

{
R =

d∏
j=1

Rj : Rj ∈ D
}
.

Now let U be a subset of Dd. The shadow of U is the set

sh(U) =
⋃
R∈U

R.

Journé’s lemma also uses the concept of embeddedness of dyadic rectangles R ∈ U into
sh(U). Intuitively, the embeddedness is a measure of how “close” to the boundary of sh(U)
a rectangle is. To give a more precise definition, we introduce the notion of dilations.

In one dimension, for an interval R and λ > 0, the dilation of R by λ, denoted by λR, is
the interval with the same center as R, but length equal to λ|R|. In d dimensions, for any

R ∈ Dd and
−→
λ = (λ1, λ2, ..., λd), the dilation of R by

−→
λ is the rectangle

Dil−→
λ
R = ⊗dj=1λjRj.

For any collection of dyadic rectangles U such that sh(U) has finite measure, we also define
Enl(U), the enlarged set of U by

Enl(U =

{
M1sh(U) >

1

2

}
,
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Here M represents the strong maximal function,

Mf(x) = sup
x∈R

1

|R|
∫
R

‖f(y)‖dy.

Finally, we define two parameter embeddedness : if U is a set of two dimensional rectangles
R = R1 ×R2, then for any R, its embeddedness in U is

emb(R;U) = sup
{
µ > 1 : (µR1)×R2 ⊂ Enl(U)

}
.

Having introduced the necessary concepts, we are now ready to state Journé’s lemma in
its original formulation:

Lemma 1. Let ε > 0 be fixed and let U ′ ⊂ U be any subcollection of pairwise incomparable
dyadic rectangles in U . Then the following inequality holds:∑

R∈U ′
emb(R,U)−ε|R| . |sh(U ′)|,

where the implied constant depends only upon ε.

As an application of this lemma, for any map α : Dd → R+, define

‖α‖CM = sup
U
|sh(U)|−1

∑
R∈U

α(R).

Although it is not immediately obvious, CM stands for ”Carleson measure”. The standard
definition of a Carleson measure µα on Rd × Rd

+ is

µα =
∑
R∈Dd

α(R)δR×‖R‖,

where ‖R‖ = (|R1|, |R2|, ..., |Rd|). If for any set U ⊂ Rd we define the tent over U , Tent(U) ⊂
Rd × Rd

+ by

Tent(U) =
⋃
R∈Dd
R⊂U

R× [0, |R1|]× ...× [0, |Rd|],

then we can state the following inequality for all sets of finite measures U ⊂ Rd:

µα(Tent(U)) ≤ ‖α‖CM |U |.
Furthermore, we can state a discrete form of the Carleson Embedding Theorem.
For a map α : Dd → [0,∞), consider the operator

Tαf =
∑
I∈Dd

α(R)1R

∫
R

f(y)dy.

Theorem 2. For all 1 < p <∞,

‖Tα‖p ' ‖α‖CM .
This explains the relationship between the definition above and Carleson measures.
Notice now that in the expression for ‖α‖CM , the supremum is taken over general subsets

U ⊂ Rd that have finite measure. In one dimension, by an additional argument, it is possible
to restrict the supremum to intervals. In higher dimensions, one would expect to be able
to restrict the definition to the supremum over rectangles. However, this is not the case.
Denote the supremum over rectangles by ‖α‖CM(rec). In 2 or more dimensions, it is, for
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instance, possible to define α such that ‖α‖CM = 1, but ‖α‖CM(rec) < ε. The importance of
Journé’s lemma in this setting is that in two dimensions, its application leads to a relation
between the CM norm and the rectangular norm, thus providing a way to control ‖α‖CM .

The following is a corollary of Lemma 1:

Corollary 3. Let ε > 0 and µ > 1 be fixed, and let U be any collection of rectangles in the
plane whose shadow has finite area. Let Uµ ⊂ U be a collection of rectangles such that for
all R ∈ Uµ, emb(R,U) ' µ. Then

‖α|Uµ‖CM . µε‖α‖CM(rec).

In dimension 3 and above, a similar result would require a generalization of Journé’s
lemma. In fact, the lemma admits multiple types of refinement. In what follows we describe
these possible refinements and state some related results.

To begin with, we can obtain a variant of the lemma by redefining emb(R,U), the measure
of embeddedness used in the original form. Consider, for instance, the notion of embededness
obtained by expanding all sides of a rectangle simultaneously.

Define the enlarged sets inductively by

Enl2(U) =

{
M1sh(U) >

1

16

}
Enlj+1(U) = {Enl2(Enlj(U)) for j > 2}

Then for a dyadic rectangle R ∈ U , the embeddedness is given by

emb(R,Enlj(U)) = sup{µ ≥ 1 : µR ⊂ Enlj(U)}, j ≥ 2.

Note that this new measure of embeddedness is essentially smaller than the original. This
case leads to the following version of Journé’s lemma:

Lemma 4. Let ε > 0 be fixed and let U be a collection of rectangles whose shadow has finite
measure in the plane. Then for all subcollections U ′ ⊂ U ,∑

R∈U ′
emb(R,Enl2(U))−ε|R| . |sh(U ′)|,

and the implied constant depends only on ε.

An even more general version of the statement is obtained by allowing the dilation of both
sides of a rectangle by different constants. For a vector (µ1, µ2), set

emb(R,U) = sup{µ1µ2 : Dil(µ1,µ2)R ⊂ Enl2(U), µ1, µ2 ≥ 1}.
Then we have:

Lemma 5. Let ε > 0 be fixed and let U be a collection of rectangles in the plane whose
shadow has finite measure. Then for all collections U ′ ⊂ U of rectangles which are maximal
(with respect to inclusion), ∑

R∈U ′
emb(R,U ′)−ε|R| . |sh(U ′)|,

where the implied constant depends only on ε.

6



A second type of refinement of Journé’s lemma relies on redefining the enlarged set, Enl(U).
Notice that in the original statement we have |Enl(U)| ≤ K|sh(U)|, where K is a constant
with K > 1. It is possible, however, to redefine Enl(U) for any arbitrary δ > 0 such that,
with this new definition, |Enl(U)| ≤ (1 + δ)|sh(U)|. The case of interest is, of course, δ > 0
being arbitrarily small. For a set V , take

emb(R, V ) = sup{µ ≥ 1 : µR ⊂ V }, R ∈ U .
With this definition, we have the following result:

Lemma 6. For any 0 < δ, ε < 1, there exists a constant Kδ,ε such that for all collections of
two dimensional rectangles U whose shadow has finite measure, there exists a set V ⊂ sh(U)
such that |V | < (1 + δ)|sh(U)|, and for any subcollection U ′ ⊂ U ,∑

R∈U ′
emb(R, V )−ε|R| . |sh(U ′)|,

Finally, a third possible refinement is the extension to three or more parameters. The ad-
vantage of the two parameter case is the simplicity of the relation between two intersecting
rectangles: if R and R′ are distinct two dimensional rectangles that intersect and are not
comparable, then the two sides of the rectangles must be in reverse order with respect to
inclusion. In three or more dimensions, the intersection of rectangles implies more compli-
cated relations. There are, however, methods to pass to higher numbers parameters and also
to replace rectangles by other sets in those constructions. These extensions are particularly
important, as they apply to the construction of the three parameter BMO space from the
two parameter BMO space.

To introduce a variant of Journé’s lemma in three or more parameters, we can measure the
embeddedness by considering dilations in only one coordinate, as in the original statement.
However, in this case, it is necessary to form sums over more general sets than rectangles.
Define U to be a subset of Rd and let U be a set of maximal dyadic rectangles contained in
U . Then define

Enl(U) = {M1sh(U) > 1/2}
emb(R,U) = sup{µ ≥ 1 : Dil(µ,1,...,1)R ⊂ Enl(U)}.

Also, for a subcollection U ′ ⊂ U , a fixed j ∈ N, and a dyadic interval I ∈ D, let

F (I, j,U ′) =
⋃
{I ×R′ : I ×R′ ∈ U ′, 2j−1 ≤ emb(I ×R′,U) < 2j}.

Then we can state the following lemma:

Lemma 7. Let ε > 0 be fixed. Then for all collections of rectangles U whose shadow has
finite measure and all subcollections U ′ ⊂ U ,

∞∑
j=1

∑
I∈D

2−εj|F (I, j,U ′)| . |sh(U ′)|.

Furthermore, for any integer n > 1 and 1 < p <∞,

‖
∞∑
j=1

∑
I∈D

2−εj(M1F (I,j,U ′))
n‖p . |sh(U ′)|1/p.
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It is also possible to state a version of the lemma with summation over rectangles by
introducing a different notation. In d dimensions, let

Enl(U) = {M1sh(U) > 1/2d}.
Then for any integer 1 ≤ j ≤ d, set

emb(j, R) = sup{µ ≥ 1 : R1 × ...× µRj × ...×Rd ⊂ Enl(U)}.
With this notation, we have a version of the lemma, that restricts to rectangles and weighs
each |R| by the largest embeddedness. The advantage of such a formulation is that rectangles
are simpler objects to work it. Nevertheles, in this case, the expression for embeddedness
becomes more complicated than before, since it is now defined as a product. This result can
be stated as follows:

Lemma 8. For any d ≥ 3, any 0 < ε < 1, all collections U of pairwise incomparable dyadic
rectangles R in Rd, and all subcollections U ′ ⊂ U , we have∑

R∈U ′
|R|

d−1∏
j=1

emb(j, R)−ε . |sh(U ′)|.
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THE CALDERON-ZYGMUND DECOMPOSITION ON PRODUCT
DOMAINS

S.-Y. A. CHANG AND R. FEFFERMAN

presented by Gagik Amirkhanyan

Abstract. In section 1 the atomic decomposition of H1 of the product of upper half space is
studied. In section 2 the atomic decomposition is used to get the Calderon-Zygmund decom-
position of H1, in section 3 it is demonstrated how the result of section 1 can be modified to
give Hp-atomic decomposition for all 0 < p ≤ 1.

1. Atomic decomposition of H1

In what follows we work exclusively with the domain R2
+×R2

+ with its boundary R2 A point
in R2

+ ×R2
+ will be denoted (t, y) where t = (t1, t2) ∈ R2 and y = (y1, y2), yi ≥ 0. We will use

the following notations:
ψ(t) ∈ C1(R) is an even function supported on [−1, 1] and

∫ 1

−1
ψ(t)dt = 0

ψy(t) = (1/y)ψ(t/y) for y > 0
ψy(t) = ψy1(t1)ψy2(t2) for t = (t1, t2) ∈ R2 and y = (y1, y2), yi ≥ 0.
If f is a function defined on R2 then f(t, y) will, by definition, mean

f(t, y) = f ∗ ψy(t).

Further, if x = (x1, x2) ∈ R2, Γ(x) will denote the product cone Γ(x) = Γ(x1)× Γ(x2) where

Γ(xi) = {(ti, yi) ∈ R2
+ : |xi − ti| < yi}, i = 1, 2

Given a function f on R2 we define its double S-function by

S2(f)(x) =

∫ ∫
Γ(x)

|f(t, y)|2dtdy
y2

1y
2
2

.

For 1 < p <∞ it’s know that
‖S(f)‖p ≤ cp‖f‖p

We define functions in Hp(R2
+ ×R2

+), 0 < p < ∞ as those functions f with S(f) ∈ Lp(R2)
and we set

‖f‖Hp = ‖S(f)‖p.
This definition of Hp spaces is equivalent to the one defined via boundary values of functions
of bi-holomorphic functions on R2

+ ×R2
+.

Definition (on R) An atom is a function a(x) supported on an interval I such that∫
I

a(x)dx = 0 and ‖a(x)‖∞ ≤ 1

|I|

Theorem (R. Coifman) f ∈ H1(R) if and only if f can be written as f =
∑
λkak where ak

are atoms and λk ≥ 0 satisfy
∑ |λk| ≤ A‖f‖H1 .

Definition (on R2
+ × R2

+) An atom is a function a(x1, x2) defined on R2 whose support is
contained in some open set Ω of finite measure such that

(1) ‖a‖2 ≤ 1
|Ω|1/2
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(2) a can be further decomposed into elementary particles aR as follows:
(i) aR =

∑
R aR where aR is supported in the triple of distinct dyadic rectangles R ⊂ Ω

(say R = I × J)
(ii)

∫
I
a(x1, x

′
2)dx1 =

∫
J
a(x′1, x2)dx2 = 0 for each x′1 ∈ I, x′2 ∈ J

(iii) aR is C1 with ‖aR‖∞ ≤ dR,∥∥∥∥∂aR

∂x1

∥∥∥∥
∞
≤ dR

|I| ,
∥∥∥∥∂aR

∂x2

∥∥∥∥
∞
≤ dR

|J |
with

∑
d2

R|R| ≤ A/|Ω|.

Theorem 1. f ∈ H1(R2
+ ×R2

+) if and only if f can be written as f =
∑
λkak where ak are

atoms and λk ≥ 0 satisfy
∑
λk ≤ A‖f‖H1 .

2. Calderon-Zygmund Decomposition

First we formulate the classical Calderon-Zygund Decomposition for L1(Rn) functions.
Theorem (Calderon-Zygmund Decomposition). f ∈ L1(Rn) and α > 0 then there exists a
disjoint collection of dyadic cubes {Qi : i = 1, 2, ...} such that

α <
1

|Qi|
∫

Qi

|f(x)|dx ≤ 2nα, i = 1, 2, ...,

and
f(x) ≤ α for a.e. x ∈ Rn \ ∪∞i=1Qi.

Given f as above, we can write f as the sum of a ”good” function g and a ”bad” function b,
f = g + b, where g ≤ 2nα and b is supported on ∪∞i=1Qi with∫

Qi

|b(x)|dx ≤ 2nα|Qi| and

∫
Qi

b(x)dx = 0.

Next we show Calderon-Zygmund Decomposition on product domains.

Calderon-Zygmund Lemma. Let α > 0 be given and f ∈ Lp(R2), 1 < p < ∞. Then we
may write f = g + b where g ∈ L2(R2) and b ∈ H1(R2

+ ×R2
+) with

‖g‖2
2 ≤ α2−p‖f‖pp and ‖b‖H1 ≤ cα1−p‖f‖pp,

where c is a universal constant.

Remark It is shown that there exist constants λk and atoms bk with
∑ |λk| ≤ α1−p‖f‖pp and

f = g +
∑
λkbk. Theorem 1 implies that b =

∑
λkbk is in H1.

Using the Calderon-Zygund decomposition, we obtain the following:

Theorem 2. Let T be a linear operator which is bounded from H1(R2
+ ×R2

+) to L1(R2) and
bounded on L2(R2). Then T is bounded on Lp(R2) for all 1 < p < 2.

Proof. Let f ∈ Lp(R2) and α > 0. According to the Calderon-Zygmund Lemma, we may
write f = g + b where

‖g‖2
2 ≤ α2−p‖f‖pp and ‖b‖H1 ≤ cα1−p‖f‖pp
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m{|Tf | > α} ≤ m{|Tg| > α/2}+m{|Tb| > α/2}

≤ c

(
1

α2
‖Tg‖2

2 +
1

α
‖Tb‖1

)

≤ c

(
1

α2
‖g‖2

2 +
1

α
‖b‖H1

)

≤ c
1

αp
‖f‖pp.

T is therefore weak-type (p, p) for 1 < p < 2 and according to the Marcinkiewicz Theorem
T is bounded on Lp in the same range of p.

3. Atomic Decomposition on Hp(R), 0 < p < 1

We extend the same method to give the atomic decomposition for Hp(R), 0 < p < 1. Note
that for the same reasons as in the classical upper half plane, we need some higher orders
vanishing property of a p-atom for Hp-decomposition. First we recall the classical case.

Definition (on R) An p-atom is a function a(x) supported on an interval I such that

‖a(x)‖∞ ≤ 1

|I|1/p
and

∫
I

a(x)xkdx = 0

for all 0 ≤ k ≤ 1
p
− 1.

Theorem (R. Coifman) f ∈ Hp(R) if and only if f can be written as f =
∑
λkak where ak

are p-atoms and λk ≥ 0 satisfy

A‖f‖pHp ≤
∑
|λk|p ≤ B‖f‖pHp .

In the case of the product domain we have the following definition.
Definition (on R2

+ ×R2
+) An p-atom is a function a(x1, x2) defined on R2 whose support is

contained in some open set Ω of finite measure such that

(1) ‖a‖2
2 ≤ |Ω|1−2/p

(2) a can be further decomposed into elementary particles aR as follows:
(i) aR =

∑
R aR where aR is supported in the triple of distinct dyadic rectangles R ⊂ Ω

(say R = I × J)
(ii)

∫
I
a(x1, x

′
2)xk

1dx1 =
∫

J
a(x′1, x2)xk

2dx2 = 0 for each x′1 ∈ I, x′2 ∈ J and 0 ≤ k ≤ k(p),
where k(p) = 2/p− 3/2

(iii) aR is Cm with ‖aR‖∞ ≤ dR,∥∥∥∥∂maR

∂xm
1

∥∥∥∥
∞
≤ dR

|I|m ,
∥∥∥∥∂maR

∂xm
2

∥∥∥∥
∞
≤ dR

|J |m , 0 < m ≤ k(p) + 1

with
∑
d2

R|R| ≤ A|Ω|1−2/p.
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With this definition of p-atoms, we can state the parallel result of Theorem 1 for Hp atomic
decomposition.

Theorem 3. f ∈ Hp(R2
+ × R2

+) then we may write f =
∑
λkak where ak are p-atoms and

λk ≥ 0 satisfy
∑
λp

k ≤ cp‖f‖pHp .
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A CONTINUOUS VERSION OF THE H1-BMO DUALITY

S.-Y. A. CHANG AND R. FEFFERMAN

presented by Zachary J. Smith

1. Introduction and 1-dimensional Background

The question of duality is a natural one: what are the linear functionals acting on a
space. For certain spaces, namely topological vector spaces, one can ask a related question
that takes advantage of the further structure given by a topology. This is, what are the
continuous linear functionals?

The question of the dual of the real Hardy space H1(R) is well-known to be the space of
functions of bounded mean oscillation, BMO.

Theorem 1. The space BMO is the dual space of the Hardy space H1(R). The pairing is

what you expect: 〈f, g〉 =
∞∫
−∞

f(x)g(x)dx, defined for g ∈ BMO and f ∈ C∞, a dense subset

of H1.

The natural question that follows is does this result carry over into higher dimensional
spaces, for example what is the dual of H1(D2)? The answer was given by Chang and
Fefferman in 1980. Their theorem is as follows: the dual space of H1(R2

+ ×R2
+) is the space

product BMO.
We note that product BMO does not have the mean oscillation property you would naively

expect. We will detail below precisely what ”product” BMO means.
In the following, we will consider the obvious questions:

1: What do we mean by H1, and what is the proper analogy on the bidisc?
2: What is BMO, and what its higher-dimensional analog?
3: Does this theorem lift to the bidisc?

Note in everything we work on the upper half-space rather than the bidiisc. This allows
the arguments, which are mostly geometric in nature, to carry through naturally and easily.

2. Hardy Space and BMO Preliminaries

Definition 1. The Hardy space H1(R) is defined to be the boundary values of H1(R2
+). This

latter space is defined as functions f ∈ Hol(R2
+) that satisfy supy>0

∫
f(x+ iy)dx <∞.

In extending to higher dimensions, the definition is a bit more complicated. Note that a
function is biharmonic if it is harmonic in each variable separately.

Definition 2. The space H1(R2
+ × R2

+) to be defined to be biharmonic functions u having
their nontangential maximal functions N(u) in L1(R2).

We note that this is one of several equivalent definitons of this space; a good reference for
this is Gundy and Stein.
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To work in higher dimensions we will first need a few preliminaries. Let ψ ∈ C1(R) be an
even function supported on [−1, 1] with mean 0. Then for x = (x1, x2) in R2 and y = (y1, y2)
in (R+)2, define

ψy(x) =
1

y1y2

ψ

(
x1

y1

)
ψ

(
x2

y2

)

The function ψ will be fixed, and normalized so that

∞∫
0

∣∣∣ψ̂(ξ)
∣∣∣2 dξ
ξ

= 1. We define the

extension of a function f defined on the boundary to be f(x, y) = f ∗ψy. We hence have for
f ∈ H1

f(x, y) =

∫∫
(t,y)∈R2

+×R2
+

f(t, y)ψy(x− t)dtdy
y1y2

In one dimension the sweep (or balayage) of a measure is useful: the sweep of a the absolute
value of a measure is in BMO if the measure itself in Carleson. In higher dimensions we
will have the following important analogue, which Chang and Fefferman call the ”double-S”
function.

S2(f)(x1, x2) =

∫∫
(t,y)∈Γ(x1)×Γ(x2)

|f(t, y)|2 dtdy
y2

1y
2
2

Here Γ(xi) is the usual nontangential approach region. This function will play a vital role in
our computations.

The last preliminary we shall need is the ’rectangle’ function. For f ∈ H1 and R a rec-
tangle , define

fR(x, y) =

∫∫
(t,y)∈R+

f(t, y)ψy(x− t)dtdy
y1y2

The region R+ is part of a Carleson box. This function will be key in writing down an atomic
decomposition.

3. Atomic Decompositions

One useful property of H1(R) used in the proof is that it has an atomic decomposition,
as follows:

Definition 3. An H1 atom is a function a(x) that satisfies:

• The support of a lies in a bounded interval I
• ∫

I
a(x)dx = 0

• ||a||∞ ≤ 1
|I|

Given this definition, the useful fact is that for f ∈ H1 we have f =
∑
λkak(x). Moreover∑ |λk| ≤ C||f ||H1 .

As we have named the higher dimensional space H1, we ask if some of the properties
carries over. It takes some work, but given the right definition of atom, we shall have this
result again.
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Definition 4. An atom on R2 is a function a(x1, x2) satisfying:

• The support of a is contained in an open set Ω
• ∫

I
a(x1, x2)dx1 = 0 where I is any component interval of any x1 cross-section of Ω.

• ∫
J
a(x1, x2)dx2 = 0 where J is any component interval of any x2 cross-section of Ω.

• a=
∑

R aR, where each aR is supported on a rectangle R ⊂ Ω.

Technical details left for the talk: The rectangles are a collection of maximal dyadic rectangles,
and the functions aR also have some smoothness requirements.

With this in place, we get the following:

Theorem 2. (Chang-Fefferman): Let f ∈ H1. Then f can be written as f =
∑
λkak where

the ak are atoms and λk ≥ 0 satisfy
∑
λk ≤ C||f ||H1.

Sketch of Proof: The proof of this theorem contains much of the geometric content used
in the larger duality theorem. The key ingredient is finding a collection of maximal dyadic
rectangles, and using the ’rectangle’ function as defined above to be the atom.

4. Candidates for the dual: Product BMO

We again begin in 1 dimension. For a function φ ∈ L1
loc(R), we say φ is of bounded mean

oscillation (BMO) if

sup
I

1

|I|
∫
I

|φ− φI |2dx = ||φ||2∗ <∞

. Here the supremum is taken over all finite intervals I, and φI is the average value of φ over
such an interval.

By replacing intervals with rectangles, one would hope to get an analogy for BMO. Un-
fortunately such functions in ”rectangular” BMO may not act continuously on H1 of the
bidisc, as was shown by Carleson. It was the work of Chang and Fefferman to find the right
analogous space.

Following Chang and Fefferman, we define a few candidates for the dual of H1. Note we
will continue to use the name BMO (commonly called product BMO), though it no longer
has the mean oscillation property one would naively expect.

There are a few approaches to coming up with candidates to the dual space. The first is
not surprising: we know we can characterize 1-dimensional BMO in terms of some Carleson-
type condition. We shall see that the following extends this idea to the bidisk.

Definition 5. The space BMO(a) is the space of locally integrable functions φ such that

sup
Ω

1

|Ω| ||
∑
R⊂Ω

φR = ||φ||2∗ <∞

Here the supremum ranges over all open sets of finite measure, and the rectangles form a
maximal dyadic decomposition of Ω.

The second approach to finding a dual space comes from studying the atomic decomposi-
tion; by coming up with a pairing for each atom one can determine the entire dual space.
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Definition 6. The space BMO(b) is the space of locally integrable functions φ such that

given any open set Ω ⊂ R2 there exists a function φ̃Ω satisfying the following:

1

|Ω|
∫

Ω

|φ(t)− φ̃Ω(t)|2dt ≤M

for some constant M independent of Ω.
Furthermore, φ̃Ω satisfies regularity conditions similar to those asked of the H1 atoms.

5. The Theorem

Theorem 3. (Chang, Fefferman ’80):
Let φ ∈ L2(R2) satisfy∫
φ(x1, x2)dx1 =

∫
φ(x1, x2)dx2 = 0 for all (x1, x2) ∈ R2.

Then the following are equivalent:

(i) φ ∈ BMO(a)

(ii) φ ∈ BMO(b)

(iii)
1

|Ω|
∑
R⊂Ω

S2
R(φ) < ∞, where the supremum ranges over all the finite open sets Ω,

and for each dyadic rectangle R

S2
R(φ) =

∫∫
R+
|φ(t, y)|2 dtdy

y1y2

This is in some sense the double-S function of the Carleson region.
(iv) φ is in the (continuous) dual of H1

Note the third condition is equivalent to the Carleson condition
Sketch of Proof: From our definitions and remarks above, it seems that proving (i)⇔ (iii)

and (ii) ⇔ (iv) will be straightforward. The easiest is perhaps showing (ii) ⇒ (iv), as one
can check this on atoms. The flavor of the rest of these proofs is highly geometric, again
relying on the dyadic rectangle decomposition.
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DUALITY OF MULTIPARAMETER HARDY SPACES Hp ON SPACES
OF HOMOGENEOUS TYPE

Y. HAN, J. LI, AND G. LU

presented by Tim Ferguson

Abstract. Let X be a space of homogeneous type. Let p0 = 2
2+θ , where θ, to be defined

later, is a parameter appearing in the definition of spaces of homogeneous type. Let Hp(X ×
X ) be the two parameter Hardy space for p0 < p ≤ 1. Let CMOp(X×X ) denote the Carleson
measure space with exponent p, which is defined in this paper. The authors show that the
dual space of Hp(X × X ) is CMOp(X × X ), at least for p0 < p ≤ 1.

A quasi-metric ρ on a set X is a function from X × X to [0,∞) such that the following
three conditions hold:

(1) ρ(x, y) = 0 if and only if x = y.
(2) ρ(x, y) = ρ(y, x) for all x, y ∈ X
(3) There exists a constant A ≥ 1 such that for all x, y, z ∈ X , we have

ρ(x, y) ≤ A[ρ(x, z) + ρ(z, y)].

Thus, a quasi-metric is like a metric, except that the normal triangle inequality is replaced
by a “triangle inequality” that holds up to a multiplicative constant.

Now we define spaces of homogeneous type. Let 0 < θ ≤ 1. A space of homogeneous type
is a collection (X , ρ, µ)θ, where X is a set, ρ is a quasi-metric on X , and µ is a nonnegative
Borel regular measure on X . We require that for all r such that 0 < r < diam(X ), we have
that µ(B(x, r)) ∼ r, where B(x, r) is the ball of radius r centered at x ∈ X . Lastly, we
require that there is a constant C0 > 0 such that for all x, x′, y ∈ X , we have

|ρ(x, y)− ρ(x′, y)| ≤ C0ρ(x, x′)θ[ρ(x, y) + ρ(x′, y)]1−θ.

Note that if C0 = 1 and θ = 1, this last condition is just the triangle inequality.
Instead of assuming that µ(B(x, r)) ∼ r, we could have assumed that µ(B(x, r)) ∼ rd,

where d > 0. However, in [4], Macias and Segovia proved that for d > 0, one can always find
a quasi-metric ρ giving the same topology as ρ such that µ(B(x, r)) ∼ r, so throughout the
paper the authors assume that d = 1.

From the definition, it is clear that R is a space of homogeneous type. By the result of
[4], it is clear that Rd is a space of homogeneous type for any natural number d.

The main difficulty of working on spaces of homogeneous type is that there are no transla-
tions or dilations, and no Fourier transform. Thus, the challenge is to find methods to prove
results without using these basic tools. The paper in question relies heavily on Littlewood-
Paley theory and a discrete Calderón reproducing formula for spaces of homogeneous type.

To understand the methods of the paper, we first need to define a dyadic decomposition
on a space of homogeneous type. In [1] and [5], constructions are given which provide an
analogue of the dyadic decomposition on Euclidean space. The statement used by the paper
is the following:

17



Lemma (2.2). There exists a collection {Qk
a ⊂ X : k ∈ Z, a ∈ Ik} of open subsets, called

“cubes”, where Ik is some index set, as well as constants C1, C2 > 0 such that

(1) For each fixed k, we have µ(X \ ∪aQk
a) = 0, and Qk

a ∩Qk
b = ∅ if a 6= b,

(2) For any a, b, k, l with l ≥ k, either Ql
b ⊂ Qk

a or Ql
b and Qk

a are disjoint,
(3) For each pair of k and a, there is a unique b such that Qk

a ⊂ Ql
b,

(4) diam(Qk
a) ≤ C1(1/2)k

(5) each Qk
a contains some ball of radius C2(1/2)k.

Fix some large positive integer J . Let k ∈ Z and τ ∈ Ik. We denote by N(k, τ) the
number of cubes Qk+J

α that are contained in Qk
τ , and we denote such a cube by Qk,v

τ , where
1 ≤ v ≤ N(k, τ).

In order to discuss Littlewood-Paley theory, we first need to define an approximation to
the identity on spaces of homogeneous type.

Definition (2.3). A sequence {Sk}k∈Z is said to be an approximation to the identity of order
ε, where 0 < ε ≤ θ, if there is some constant C such that the kernel Sk(x, y) of Sk satisfies

(1)

|Sk(x, y)| ≤ C
2−kε

(2−k + ρ(x, y))1+ε
,

(2) For ρ(x, x′) ≤ (1/2A)(2−k + ρ(x, y)), we have

|Sk(x, y)− Sk(x′, y)| ≤ C

(
ρ(x, x′)

2−k + ρ(x, y)

)ε
2−kε

(2−k + ρ(x, y))1+ε

(3) For ρ(y, y′) ≤ (1/2A)(2−k + ρ(x, y)), we have

|Sk(x, y)− Sk(x, y′)| ≤ C

(
ρ(y, y′)

2−k + ρ(x, y)

)ε
2−kε

(2−k + ρ(x, y))1+ε

(4) For ρ(x, x′), ρ(y, y′) ≤ (1/2A)(2−k + ρ(x, y)) we have

|Sk(x, y)− Sk(x, y′)− Sk(x′, y) + Sk(x
′, y′)| ≤

C

(
ρ(x, x′)

2−k + ρ(x, y)

)ε(
ρ(y, y′)

2−k + ρ(x, y)

)ε
2−kε

(2−k + ρ(x, y))1+ε

(5) ∫
X
Sk(x, y) dµ(y) =

∫
X
Sk(x, y) dµ(x) = 1

As k increases, the kernels Sk(x, y) become more concentrated around the diagonal x = y.
The approximation to the identity Sk(x, y) is analogous to the Poisson kernel P2−k(x− y) on
the upper half plane.

We now need to introduce the space of test functions on X ×X . They can be thought of
as analogues of functions in the Schwartz class. Just as Hp is traditionally defined to be a
subspace of the tempered distributions, we will define Hp to be a subspace of the dual space
of the test functions.

First we define the space of test functions on X .

Definition (2.4). Fix β, γ, r > 0. A function f defined on X is said to be a test function of
type (β, γ) centered at x0 ∈ X with width r if there is a constant C > 0 such that f satisfies
the following conditions:
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(1)

|f(x)| ≤ C
rγ

(r + ρ(x, x0))1+γ

(2) If ρ(x, x′) ≤ 1
2A

(r + ρ(x, x0)) then

|f(x)− f(x′)| ≤ C

(
ρ(x, x′)

r + ρ(x, x0)

)β
rγ

(r + ρ(x, x0))1+γ

(3) ∫
X
f(x) dµ(x) = 0.

If f is such a test function, we say f ∈ G(x0, r, β, γ) and we define its norm to be the
infimum over the set of all C for which conditions 1 and 2 hold.

Definition (2.5). For i = 1, 2, fix γi, βi, ri > 0 and let (x0, y0) ∈ X × X . We say that a
function f defined on X ×X is a test function of type (β1, β2, γ1, γ2) centered at (x0, y0) and
with widths (r1, r2) if there is a constant C > 0 such that

(1)

‖f(·, y)‖G(x0,r1,β1,γ1) ≤ C
rγ22

(r2 + ρ(y, y0))1+γ2
,

(2) For ρ(y, y′) ≤ 1
2A

(r2 + ρ(y, y0)) we have

‖f(·, y)− f(·, y′)‖G(x0,r1,β1,γ1) ≤ C

(
ρ(y, y′)

r2 + ρ(y, y0)

)β2 rγ22

(r2 + ρ(y, y0))1+γ2
,

(3) Condition 1 should hold with the roles of x and y reversed.
(4) Condition 2 should hold with the roles of x and y reversed.

We denote this space of test functions by G(x0, y0; r1, r2; β1, β2; γ1, γ2) and define the norm
in this space to be the smallest C such that the above definition holds.

It is not difficult to see that no matter which x0 and y0 we choose, we get the same space
of functions with equivalent norm. We choose some fixed (x0, y0) and let G(β1, β2; γ1, γ2) =

G(x0, y0; 1, 1; β1, β2; γ1, γ2). If 0 < β1, β2, γ1, γ2 < θ, we define the space
◦
G(β1, β2; γ1, γ2) to

be the completion of G(θ, θ; θ, θ) in G(β1, β2; γ1, γ2). Note that
◦
G(β1, β2; γ1, γ2) is a Banach

space.
We define the Littlewood-Paley operators Dk as Sk − Sk−1, where S is an approximation

of the identity. We can now define the Littlewood-Paley-Stein square function by

g(f)(x1, x2) =

[ ∞∑
j=−∞

∞∑
k=−∞

|DjDk(f)(x1, x2)|2
]1/2

.

It can be show that, for f ∈ Lp for 1 < p <∞, we have ‖g(f)‖p ≈ ‖f‖p.
We now define the space Hp(X × X ) for certain values of p < 1. In what follows, we let

Y ′ denote the dual space of Y .
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Definition (2.6). Let {Sk} be an approximation to the identity of order θ. Suppose that
1

1+θ
< p ≤ 1 and 1

p
− 1 < βi, γi < θ. Then we define the Hardy space Hp(X × X ) to be the

set of all f ∈
( ◦
G(β1, β2, γ1, γ2)

)′
such that ‖g(f)‖Lp(X×X ) <∞. We define

‖f‖Hp(X×X ) = ‖g(f)‖Lp(X×X )

An extremely important lemma is the following, which the authors call the Min-Max
comparison principle.

Lemma (2.8). Let all notation be the same as in definition 2.6. Let {Pk} be another ap-
proximation to the identity of order θ, and let Ek denote the corresponding Littlewood-Paley
operators. Suppose that 1

1+θ
< p ≤ 1 and 1

p
− 1 < βi, γi < θ. Then there is a constant C > 0

such that for all f ∈
( ◦
G(β1, β2, γ1, γ2)

)′
, we have∥∥∥∥∥

( ∞∑
k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
v1=1

N(k2,τ2)∑
v2=1

sup
z∈Qk1,v1τ1

,w∈Qk2,v2τ2

|Dk1Dk2(f)(z, w)|2

× χ
Q
k1,v1
τ1

(x)χ
Q
k2,v2
τ2

(y)

)1/2∥∥∥∥∥
Lp

≤ C

∥∥∥∥∥
( ∞∑

k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N(k1,τ1)∑
v1=1

N(k2,τ2)∑
v2=1

inf
z∈Qk1,v1τ1

,w∈Qk2,v2τ2

|Ek1Ek2(f)(z, w)|2

× χ
Q
k1,v1
τ1

(x)χ
Q
k2,v2
τ2

(y)

)1/2∥∥∥∥∥
Lp

where the integration for the Lp norm is respect to dµ(x)dµ(y).

For the proof of this lemma, the authors reference [3]. This lemma is very useful for several
reasons. First, it lets one show that the definition of Hp given does not depend on the choice
of approximation to the identity. To see this, note that the left hand side is greater than
the Hp norm with operators Dk, and the right side is less than C times the Hp norm with
operators Ek.

Also, the lemma in question allows one to approximate the integration defining the Lp

norm of the g function by a sort of “Riemann sum”. The lemma states that it does not
matter whether we take the smallest or largest possible “Riemann sum”, we still get an
equivalent norm. Of course, the sums in the lemma are infinite. As the coefficient k gets
larger, we need to sum over smaller and smaller dyadic boxes Qk,v

τ . This lemma allows us to
relate Hardy space functions to sequences, which is crucial in proving duality.

We now can finally define the Calderon measure spaces, which we will see are dual to Hp.

Definition (3.1). Let βi, γi, etc. be as before. The Carleson measure space CMOp(X × X )

is the set of all f ∈ (
◦
G(β1, β2, γ1, γ2))′ such that

sup
Ω

 1

µ(Ω)
2
p
−1

∫
Ω

∑
Q
k1,v1
τ1

×Qk2,v2τ2
⊂Ω

|Dk1Dk2(f)(x, y)|2χ
Q
k1,v1
τ1

(x)χ
Q
k2,v2
τ2

(y) dµ(x)dµ(y)


1/2
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is finite. The above expression defines the norm in CMOp.

The above definition can be though of as analogous to the single parameter case on R,
where φ ∈ BMO if and only if |∇u|2ydx dy is a Carleson measure, where u is the harmonic
extension of φ to the upper half plane.

A very important theorem is the Min-Max comparison principle for CMOp. For ease of
notation, let R denote an arbitrary dyadic rectangle Qk1,v1

τ1
×Qk2,v2

τ2
.

Theorem (3.2). If 2/(2 + θ) < p ≤ 1, then there is some constant C > 0 such that

sup
Ω

(
1

µ(Ω)
2
p
−1

∑
R⊂Ω

µ(R) sup
(x,y)∈R

|Dk1Dk2(f)(x, y)|2
)1/2

≤C sup
Ω

(
1

µ(Ω)
2
p
−1

∑
R⊂Ω

µ(R) inf
(x,y)∈R

|Dk1Dk2(f)(x, y)|2
)1/2

In fact, one can use different approximations to the identity on the left and right side of the
inequality, which allows us to see that the CMO spaces are well defined. As before, another
reason this theorem is important is because it allows us to consider a sort of “Riemann sum”
instead of integration in the definition of CMO. This allows us to relate the CMO spaces to
sequences, which again is key to proving the duality.

To prove this formula, the authors use the following discreet Calderon reproducing formula.
Again, we let R denote an arbitrary dyadic rectangle of the form Qk1,v1

τ1
×Qk2,v2

τ2
.

Lemma (2.8). Let the notation be the same as above. For each R, choose a point (x′, y′) ∈ R.

Then there are families of linear operators {D̃k} and {Dk} such that

f(x, y) =
∑
R

µ(R)D̃k1D̃k2(x, y, x
′, y′)Dk1Dk2(f)(x′, y′)

=
∑
R

µ(R)Dk1Dk2(x, y, x
′, y′)Dk1Dk2(f)(x′, y′),

By applying this lemma toDk1Dk2f and choosing (x′, y′) to be the point where |Dk1Dk2(f)(x, y)|
is minimized in R, we obtain an expression that can be used to relate the left side of the
inequality in Theorem 3.2 to something resembling the right side. Then by changing the
order of summation and a careful consideration of various geometric quantities involved, we
can prove Theorem 3.2.

The authors also introduce two spaces of sequences. The first is called sp, and is defined
to be the space of all complex valued sequences {λ

Q
k1,v1
τ1

×Qk2,v2τ2

} such that

‖λ‖sp =

∥∥∥∥∥∥
[∑

R

(|λR|χ̃R(·))2

]1/2
∥∥∥∥∥∥
Lp

<∞.

Here χ̃R = µ(R)−1/2χR.
Similarly, we define the space cp of sequences to be all sequences {t

Q
k1,v1
τ1

×Qk2,v2τ2

} such that

‖t‖cp = sup
Ω

(∫
Ω

∑
R⊂Ω

(|tR|χ̂(x, y))2 dµ(x)dµ(y)

)1/2

<∞.
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The authors show these two sequence spaces are dual to each other. To do this, they
use inequalities involving the Hardy-Littlewood maximal function and also use the duality
properties of certain weighted `2 spaces related to both sp and cp.

Now using the Min-Max inequalities, and methods very similar to those used in the proofs
of the Min-Max inequalities, the authors relate the space sp to Hp and cp to CMOp. They
then show that Hp has CMOp as its dual space for the case where 2

2+θ
= p0 < p ≤ 1.
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PARAPRODUCTS IN ONE AND SEVERAL VARIABLES

J. METCALFE AND M. LACEY

presented by Kelly Bickel

Abstract. This paper presents a leisurely proof of the discrete Coifman-Meyer Theorem
in both the one and multi-parameter settings.

1. Introduction

Let us first consider the general single and bi-parameter Coifman-Meyer Theorems, which
we combine into one statement below.

For the one parameter case, let m be a bounded function on R2, smooth away from the
origin and satisfying

(1) |∂αm(ζ)| . 1

|ζ||α| ,

for sufficiently many multi-indices α and define the bilinear operator T
(1)
m by

T (1)
m (f, g) =

∫
R2

m(ζ)f̂(ζ1)ĝ(ζ2)e2πix(ζ1+ζ2)dζ,

for Schwartz functions f, g ∈ S(R). We can generalize this by allowing m to be defined on
R2n and f, g ∈ S(Rn). For the bi-parameter case, let m(ζ, η) be a bounded function on R4,
smooth away from {(ζ1, η1) = 0} ∪ {(ζ2, η2) = 0} and satisfying the estimate

(2) |∂αζ ∂βηm(ζ, η)| . 1

|(ζ1, η1)|α1+β1

1

|(ζ2, η2)|α2+β2
,

for sufficiently many multi-indices α and β. Then we can define the bilinear operator T
(2)
m as

follows:

T (2)
m (f, g) =

∫
R4

m(ζ, η)f̂(ζ)ĝ(η)e2πix(ζ+η)dζdη,

where f, g ∈ S(R2). The Coifman-Meyer Theorem [4] states

Theorem 1. If m is a symbol satisfying the above estimates, then the bilinear operator T
(j)
m

maps Lp × Lq → Lr whenever 1 < p, q ≤ ∞, 1/r = 1/p+ 1/q, and 0 < r <∞.
There is a deep connection between such operators Tm and single or bi-parameter paraprod-
ucts. Indeed, for particular symbols m, Tm is a paraproduct, and the proof of Theorem 1
can be reduced to the case of considering certain model paraproducts. See [4] for the bi-
parameter reduction argument. Lacey and Metcalfe concern themselves only with the model
paraproduct (discrete) case of Theorem 1, which we will soon discuss in detail.
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Before discussing the particulars, it is worth noting the importance of Theorem 1, and specif-
ically, that the theorem is a key step in deriving fractional Leibniz inequalities, as detailed
in [4]. For simplicity, we discuss the one parameter result first. Let f, g ∈ S(R2) and for

α > 0, define the fractional derivative Dα by D̂αf(ζ) = |ζ|αf̂(ζ).

Then, one can define paraproducts Πj for j = 0, . . . , 3 such that the Coifman-Meyer Theorem
applies to each Πj and

fg =
3∑
j=0

Πj(f, g).

Using the structure of these paraproducts, one can find Coifman-Meyer paraproducts Π′1
and Π′2 with

Dα(Π1(f, g)
)

= Π′1(f,Dαg) and Dα(Π2(f, g)
)

= Π′2(Dαf, g),

and similar Π′0 and Π′3 paraproducts. Then, using the Coifman-Meyer Theorem, we can
derive the following Leibniz rule (called the Kato-Ponce inequality [2]) as follows:

||Dα(f, g)‖r ≤
3∑
j=0

‖Dα(Πj(f, g))‖r

. ‖Dαf‖p‖g‖q + ‖f‖p‖Dαg‖q,
for 1 < p, q ≤ ∞, 1/r = 1/p+ 1/q, and 0 < r <∞. Now, for f, g ∈ S(R2) and for α, β > 0,

define the partial differential operator Dα1Dβ2 by D̂α1Dβ2 f(ζ) = |ζ1|α|ζ2|β f̂(ζ). Then, using the
bi-parameter Coifman-Meyer Theorem and analogous manipulations of paraproducts, one
can deduce

‖Dα1Dβ2 (fg)‖r . ‖Dα1Dβ2 f‖p‖g‖q + ‖f‖p‖Dα1Dβ2 g‖q + ‖Dα1 f‖p‖Dβ2 g‖q + ‖Dβ2 f‖p‖Dα1 g‖q,
for 1 < p, q ≤ ∞, 1/r = 1/p+ 1/q, and 0 < r <∞.

2. One-Parameter Paraproducts

Lacey and Metcalfe first provide a detailed discussion of the one-parameter discrete Coifman-
Meyer Theorem and its proof, thus motivating much of the proof of the multi-parameter case.

Let I be an interval. Then φI is a bump function adapted to I iff ‖φI‖2 = 1 and

|DnφI(x)| . |I|−n−1/2

(
1 +
|x− c(I)|
|I|

)−N
, n = 1, 2,

where c(I) is the center of I and N is sufficiently large. Let D be the set of dyadic intervals.
Then the model paraproducts are bilinear operators of the form:

B(f1, f2) =
∑
I∈D

|I|−1/2φ3,I

2∏
j=1

〈fj, φj,I〉,

where, for each I, each φj,I is adapted to I and two of the φj,I have integral zero. The precise
theorem proven by Lacey and Metcalfe is:

Theorem 2. The bilinear operator B maps Lp1 × Lp2 → Lr whenever 1 < p1, p2 ≤ ∞,
1/r = 1/p1 + 1/p2, and 0 < r <∞.
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The arguments generalize immediately to multi-linear model paraproducts as well. Also, we
can assume without loss of generality that, for each I, the φI,2 and φI,3 have integral zero.
In the proof, Lacey and Metcalfe make use of variations of the maximal function and square
function, defined as follows:

MBg := sup
I∈D

1I
|〈g, φ1,I〉|√|I|

Sjg :=

[∑
I∈D

|〈g, φj,I〉|2
|I| 1I

]1/2

,

for j = 2, 3. They also use the following well-known estimates:

MB(g)(x) ≤ M(g)(x)

‖Sjg‖p . ‖g‖p,
where M denotes the typical maximal function, 1 < p <∞, and j = 2, 3.

The proof of Theorem 2 now splits into two cases. Lacey and Metcalfe first consider the cases
when 1 < r <∞ because for these ranges, one can use a duality argument. Specifically, let
r′ be dual to r, fix f3 ∈ Lr′ with ‖f3‖r′ = 1, and calculate:

〈B(f1, f2), f3〉 ≤
∫ ∑

I∈D

|I|−3/2

3∏
j=1

|〈fj, φj,I〉|1I

≤
∫

(Mf1)(S2f2)(S3f3)

≤ ‖Mf1‖p1‖S2f2‖p2‖S3f3‖r′
. ‖f1‖p1‖f2‖p2 ,

where Hölder’s inequality is used twice, once for sums and once for integrals. For situations
where 1/2 < r < 1, one must first consider the multi-linear form

Λ(f1, f2, f3) :=
∑
I∈D

|I|−1/2

3∏
j=1

〈fj, φj,I〉,

and show that Λ is (almost) of generalized restricted type (p1, p2, p3), where 1/p3 = 1− 1/r
and hence, can be negative. Specifically, for each f1, f2, and set E, one must find a set
E ′ ⊆ E with |E ′| ≥ 1/2|E| such that

Λ(f1, f2, f3) . |E|1/p3‖f1‖p1‖f2‖p2 ,(3)

for all f3 supported in E ′ and bounded by 1. By multi-linearity, we can assume ‖f1‖p1 =
‖f2‖p2 = 1. As the class of the multi-linear forms Λ is invariant under dilations by powers
of two, we can assume |E| = 1.

It then follows easily (for instance, using Lemma 5.4 in [1]) that B satisfies

λ|{B(f1, f2) > λ}|1/r . ‖f1‖p1‖f2‖p2 ,
and multi-linear Marcinkiewicz interpolation will yield the desired strong estimates.
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Then the problem is reduced to finding, for each pair (f1, f2, E), a subset E ′ such that
(3) holds. Metcalfe and Lacey do not consider this general problem for one-parameter
paraproducts. Rather, they only examine the Haar paraproduct defined by

B(f1, f2) =
∑
I∈D

|I|−1/2hI〈f1, |hI |〉〈f2, hI〉,

where the Haar functions hI are defined as hI = |I|−1/2(1Il − 1Ir). Using the structure of
the Haar functions, they obtain the weak estimates directly and do not explicitly prove (3).
Nevertheless, the proof is similar to the general proof, insofar as they remove exceptional
sets where the f1, f2 are large. Specifically, they disregard the set F defined by

E :=
2⋃
j=1

{Mfj > 1}, F := {M1E >
1
2
}.

It should be noted that there are also endpoint results. As numerous methods are used to
procure the endpoint results, we omit them as to maintain a coherent flow of ideas.

3. Multi-Parameter Paraproducts

Many definitions and results in the multi-parameter case generalize nicely from the one-
parameter case. In this summary, we restrict to the bi-parameter, two-dimensional case for
simplicity.

Let R denote the set of dyadic rectangles in R2. A function φR is adapted to the rectangle
R, where R = R1×R2, if φR(x) = φR1(x1)φR2(x2), where φRk

is adapted to Rk. We consider
model paraproducts of the form:

B(f1, f2) =
∑
R∈R

|R|−1/2φ3,R

2∏
j=1

〈fj, φj,R〉,

where for each coordinate xk, k = 1, 2, there are two positions in j = 1, 2, 3 such that∫
R
φj,R(x1, x2)dxk = 0 for all xi 6= xk and all R ∈ R.

Then we say B has xk zeros in the jth position (or {φj,R} has xk zeros.) Notice that
this condition is a clear generalization of the condition in one parameter that, for two of
j = 1, 2, 3, φj,I has integral zero for each I. Under those conditions, Lacey and Metcalfe
prove the following result:

Theorem 3. The bilinear operator B maps Lp1 × Lp2 → Lr whenever 1 < p1, p2 ≤ ∞,
1/r = 1/p1 + 1/p2, and 0 < r <∞.
Again, they utilize variants of square and maximal functions, adapted to the specific bump
functions appearing in the given paraproduct. Specifically, they use the following iterates of
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one-variable square and maximal functions:

MM(f) := sup
R∈R

|〈f, φR〉|√|R| 1R

S1M2(f) :=

[∑
R1∈D

sup
R2∈D

|〈f, φR1×R2〉|2
|R| 1R

]1/2

, R = R1 ×R2

SS(f) :=

[∑
R∈R

|〈f, φR〉|2
|R| 1R

]1/2

,

where we can similarly define S2M1, M1S2, and M2S1. As it can be show that MiSj ≤ SjMi

point-wise, we only consider iterates where the maximal function is applied first. Also, if
a square function is applied to the set {φR} in the xk coordinate, we require the functions
{φR} to have xk zeros.

As before, these operators are bounded from Lp to Lp for 1 < p < ∞. (However, the
arguments are more extensive, particularly for the S1M2 and S2M1 operators.) Metcalfe and
Lacey then use the flexibility in the definition of adapted functions to prove a refinement of
the L2 bound. In particular, if O is a family of dyadic rectangles, f is a function, and µ > 1
is a constant such that

supp(f) ∩ µR = ∅ ∀ R ∈ O then ‖TO‖2 . µ−N
′‖f‖2,(4)

where N ′ only depends on the value N in the definition of adapted and TO is an iterated
operator T restricted to a sum and/or suprema over the class O.

As in the one-parameter proof, the theorem breaks into two cases. Metcalfe and Lacey first
consider 1 < r < ∞, where one can use a duality argument. To illustrate the ideas in the
proof, assume B has x1 zeros in the j = 1, 2 positions and x2 zeros in the j = 1, 3 positions.
Let f3 ∈ Lr′ with ‖f3‖r′ = 1 and r′ dual to r. Then we can calculate:

〈B(f1, f2), f3〉 ≤
∫ ∑

R∈R

|R|−3/2

3∏
j=1

|〈fj, φj,R〉|1R

≤
∫

(SSf1)(S1M2f2)(S2M1f3)(5)

≤ ‖SSf1‖p1‖S1M2f2‖p2‖S2M1f3‖r′
. ‖f1‖p1‖f2‖p2 ,

where Hölder’s inequality is again used twice, once for sums and once for integrals. The case
for 1/2 < r < 1 also proceeds as in the one -parameter case. Define

Λ(f1, f2, f3) =
∑
R∈R

|R|−1/2

3∏
j=1

|〈fj, φj,R〉| =
∑
R∈R

|R|
3∏
j=1

|〈fj, φj,R〉|√|R| .(6)

As before, it suffices to find, for each tuple (f1, f2, E) with ‖f1‖p1 = ‖f2‖p2 = 1 and |E| = 1,
a set E ′ ⊂ E with |E ′| ≥ 1

2
|E| such that for all f3 supported in E ′ and bounded by 1,

Λ(f1, f2, f3) . 1.(7)
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4. The Set E ′

In this section, we discuss the technicalities of establishing (7) for a soon-to-be defined E ′.
The summary becomes a bit detailed here, but the arguments in this part are particularly
important, as this is where the Lacey/Metcalfe paper differs some from related papers such
as [4].

One can assume f1 and f2 are smooth and compactly supported. Observe, in analogy with
(5), that

〈B(f1, f2), f3〉 ≤
∫

(T1f1)(T2f2)(T3f3),

for some Tj, where each is an iterated square and/or maximal operator. Define 4ν =
min(p1, p2) and let T0 be the strong maximal function (in two parameters). Define

Ωj,l :=
{
Tjfj > C2l

}
, l ∈ Z, j = 1, 2,

Ωl :=
2⋃
j=1

Ωj,l,

Ω :=
⋃
l∈N

{
T01Ωl

>
1

100
2−νl

}
,

Ω̃ :=
{
T01Ω >

1

2

}
.

Then one can choose C such that |Ω̃| < 1/2 and define E ′ = E ∩ Ω̃c. At this point, Metcalfe
and Lacey decompose the sum (6) into sums over several classes of rectangles, defined based
on where Tj’s are sufficiently small/large. For such a class O, define the restricted sum:

Sum(O) :=
∑
R∈O

|R|
3∏
j=1

|〈fj, φj,R〉|√|R| .

We split the rectangles into classes as follows: R is in class Oj,l iff l is the greatest integer so
that

|R ∩ Ωj,l| = |R ∩ {Tjfj > C2l}| ≥ 1

100
|R|.

As the Tjfj are bounded, every rectangle R is in precisely one Oj,l for each j and so we can

associate to R a tuple ~l = (l1, l2, l3) of integers. This characterization is important because
Lacey and Metcalfe establish the following technical lemma:

Lemma 4. Let c1, c2, c3 be positive constants, and let O be a collection of rectangles. Then
if

|R ∩ {Tjfj > cj}| ≤ 1

100
|R|, ∀ R ∈ O

holds for j = 1, 2, 3, we have

Sum(O) . |sh(O)|
3∏
j=1

cj,

and if it hold for j = 1, 2 we have

Sum(O) . c1c2|sh(O)|1/2‖T3,O‖2,
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where sh(O) is the shadow of O, and T3,O is the operator T3 restricted to a sum and/or
suprema over the class O.

Returning to the proof of (7), first consider ~l with l1, l2, l3 ≤ 0 and for each such ~l, define

O~l =
3⋂
j=1

Oj,lj .

Using the technical lemma and weak Lp bounds for Tj, one can show

Sum(O~l) . 2l1+l2+l3|sh(O~l)| . 2l1+l2+l32−θ1p1l1−θ2p2l2−θ3p3l3 ,

where θ1 + θ2 + θ3 = 1 and p3 > 1. Then∑
l1,l2,l3≤0

Sum(O~l) .
∑

l1,l2,l3≤0

2l1(1−p1θ1)+l2(1−p2θ2)+l3(1−p3θ3),

which sums to a constant as long as the θj’s and p3 are chosen so that each 1− pjθj > 0. A

similar argument works for ~l with l1, l2 ≤ 0 and l3 > 0. Now consider R where at least one

of l1, l2 > 0. For ~l with l1 or l2 > 0, define

P~l =
2⋂
j=1

Oj,lj .

For simplicity, assume l1 > 0. Then T1f1 is large on each R in P~l and it can be shown that

2νl1/2R ∩ E ′ = ∅.
Applying the second half of the technical lemma and (4) gives:

Sum(P~l) . 2l1+l2 min(2−10l1 , 2−10l2),(8)

where N ′ was chosen to be sufficiently large. As (8) is clearly summable over all such ~l, this
establishes the main result. It should be noted that there are various endpoint results that
are not discussed in this summary.
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MULTPARAMETER RIESZ COMMUTATORS

S. PETERMICHL, J. PIPHER, M. LACEY AND B. WICK

presented by Mishko Mitkovski

Abstract. We discuss the result of M. Lacey, S. Petermichel, J. Phipher and B. Wick
which characterizes the multiparameter BMO of S. Y. A. Chang and R. Fefferman, by
the multiparameter commutators of Riesz transforms. Their result generalizes the one-
parameter result of R. Coifman, R. Rochberg, and G. Weiss, and at the same time extends
the work of M. Lacey and S. Ferguson and M. Lacey and E. Terwilleger, on multiparameter
commutators with Hilbert transforms.

1. Introduction

The result of this paper is a generalization of the classical one-parameter result of R.
Coifman, R. Rochberg, and G. Weiss which characterizes the real variable H1 (which we will
denote by H2

Re) in terms of certain commutators. This is a final step in a series of extensions
obtained previously by M. Lacey, S. Ferguson and E. Terwilleger.

The main motivation and application of all these results is the extension of certain well
known factorization theorems from the classical Hardy spaces to the Hardy spaces in several
variables. These factorization theorems are important because they play a crucial role in the
proof of Nehari-type results for various multidimensional Hardy spaces. The possibility to
prove factorization theorems using real-variable methods are consequence of the close and
interesting interplay between the following three results: The weak factorization theorem
in H1, the H1

Re − BMO duality, and the L2 boundedness of the commutator [Mb, H] =
MbH −HMb, where Mb is a multiplication operator and H is the Hilbert transform.

1.1. One-parameter case. To make things more clear we first consider the classical one-
parameter case. The strong factorization theorem in the classical (one-dimensional) case
says:

Theorem 1.1. Every F ∈ H1(R) = H1(C+) can be factored as F = GH with G,H ∈ H2(R).
Moreover, ‖F‖1 = inf ‖G‖2 ‖H‖2, where the infimum is taken over all factorizations F = GH
with ‖G‖2 = ‖H‖2 = 1.

This result can be very easily proved using techniques from complex analysis. It is well
known however that this beautiful factorization property is false for Hardy spaces in several
dimensions. Still a weaker factorization property continues to hold.

Theorem 1.2. Every F ∈ H1(Rn) can be represented as F =
∑
GiHi with Gi, Hi ∈ H2(Rn).

Moreover, ‖F‖1 = inf
∑ ‖Gi‖2 ‖Hi‖2, where the infimum is taken over all representations

F =
∑
GiHi with

∑
i ‖Gi‖2 ‖Hi‖2 ≤ 1.
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Even though the factorization property was extremely easy to prove (even in the strong
form) still its generalization to several variables showed to be very difficult. As of now, there
is no proof which uses complex analytic techniques and the only proof available is based on
real variable techniques.

The second result is the famous C. Fefferman duality theorem. It says that the real variable
Hardy space H1

Re(R) is dual to the space BMO(R).

Theorem 1.3. Let b ∈ BMO(Rn). Then

|
∫

Rn
b(x)f(x)dx| = ‖b‖BMO,

where the supremum is taken over all f ∈ H1
Re(Rn) of norm no greater than 1.

Using the factorization result it easy to see that we can rewrite the previous equality in
the following form

sup |
∫

Rn
b(x)(g1(x)g̃2(x) + g̃1(x)g2(x))dx| = ‖b‖BMO

where the supremum is taken over all g1, g2 ∈ L2(Rn) of norm no greater than 1. Using some
basic properties of the Hilbert transform is is easy to see that the last result is equivalent to
the L2 boundedness of the commutator operator [B,H] := BH − HB, where Mbf = bf is

the multiplication operator and Hf = f̃ is the usual Hilbert transform. This is actually the
third important result.

Theorem 1.4. Let b ∈ BMO. Then the commutator operator [Mb, H] is bounded on L2(R)
with norm equal to ‖b‖BMO.

The multidimensional version of this result is given by the following theorem. As usual,
Ri denotes the i-th Riesz transform.

Theorem 1.5. If b ∈ BMO then each of the commutator operators [Mb, Ri] is bounded on
L2(Rn) and

sup
i
‖[Mb, Ri]‖ = ‖b‖BMO.

Conversely, if all these commutators are bounded then b ∈ BMO.

As seen above the factorization result combined with the C. Fefferman duality theorem
easily imply the commutator result. It is not hard to see that if we replace the strong
factorization with the weak factorization property any two of these three results easily imply
the remaining one. This simple observation turns out to be crucial because it allows the use
of real-variable techniques to prove the desired weak factorization. Namely, one can use real
variable techniques to prove both the Fefferman duality theorem and the boundedness of the
commutator not just in several variables but also in the multi parameter setting. As a result
one can prove a weak factorization and consequently Nehari-type theorems both for a wide
variety of Hardy spaces including the Hardy space on the unit ball Bn and on the polydics
Tn.
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1.2. Multi-parameter case. The same line of ideas continues to hold in the multi-parameter
setting. Namely, if there is an H1

Re − BMO-type duality result and a commutator result
available one can combine them as before and obtain weak factorization results for the multi-
parameter H1 space. As a consequence, one in particular obtains a Nehari theorem for the
polydisc. This is especially striking since the polydisc is not a pseudo-convex domain and
hence the classical techniques are very limited in this case.

The H1
Re − BMO-type duality results are supplied by the product theory of A. Chang

and R. Fefferman. The commutator theorem in its full generality on the other hand is the
main result of the paper that we are discussing. It was obtained in several steps. It was first
proved for by S. Ferguson and M. Lacey for commutators on L2(R⊗ R) and then extended
to by M. Lacey and E. Terwilleger to L2(R⊗ · · · ⊗ R). As a consequence, Nehari theorems
for the bidisc and the polydisc were obtained. The general version that we state below does
not seem to have immediate application to Nehari-type results, but represents a natural
extension of the previously mentioned results.

The main theorem is concerned with commutators acting on a product space R~d := Rd1 ⊗
Rd2 ⊗ . . .Rdt , where ~d = (d1, d2, . . . , dt) ∈ Nt. For f, b ∈ S the family of commutators is
defined by

C~j(b, f) := [[. . . [[Mb, R1,j1 ], R2,j2 ] . . . ], Rt,jt ]f,

indexed by ~j = (j1, j2, . . . , jt) ∈ Nt, with 1 ≤ jk ≤ dk. Here Rk,dk denotes the kth Riesz
transform acting on Rdk .

Theorem 1.6. The following estimate holds

sup
~j

C~j(b, f) ' ‖b‖BMO ,

where the last norm is taken in the Chung-Fefferman multi parameter BMO.

2. Tools and Notation

2.1. Wavelet basis. The wavelet basis for L2(R~d) which is used in the proof is defined in

the following usual way. Let D~d := ⊗tk=1Ddk be the dyadic grid on the tensor product R~d,
where

Ddk := {j + [0, 2s)dk : j ∈ Zdk , s ∈ Z}
is the standard dk-dimensional dyadic grid. Starting with a scaling function w0 or a father
wavelet w1, for each ε ∈ Sig~d := {~ε = (ε1, ε2, . . . , εt) : εk ∈ {0, 1}dk − {~1}}. and R =
Q1 ×Q2 . . . Qt ∈ D~d define

wεR(x1, x2, . . . , xt) :=
t∏

k=1

Trc(Qk)Dil|Qk|w
εk(xk).

Here the standard translation Traf(x) = f(x − a) and dilation Daf(x) = a−d/2f(x/a)
operators on L2(Rd) are used, and as usual c(Q) denotes the center of Q and |Q| denotes
the Lebesque measure of Q. The collection

{wεR : ε ∈ Sig~d, R ∈ D~d}
forms a wavelet orthonormal basis for L2(R~d). The usual choices for the scaling function
and the father wavelet are w0 = −1[0,1/2] + 1[1/2,1], w

1 = 1[0, 1]. They give a rise to the Haar
wavelet basis. Since some smoothness and localization properties of the basis are needed in
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their proof the authors use the wavelet basis generated by the Meyer wavelet. This wavelet,
found by Y. Meyer, arises from a Schwartz function w1, whose Fourier transform is supported
on 1/3 ≤ |ξ| ≤ 8/3. Furthermore, the Fourier transform of w1 is identically equal to 1 on
the intervals 1 ≤ |ξ| ≤ 2. One of the reasons this is such a useful wavelet basis is the
following fact which is exploited several times in the proof. If 8|I| < |I ′| then the Fourier
transform of w1

Iw
1
I′ is supported on (4|I|)−1 < |ξ| < 3|I|−1. From the Meyer father wavelet

w1 there is a standard way to define a scaling function w0 and then the whole wavelet basis
WaveM := {wεR : ε ∈ Sig~d, R ∈ D~d} is obtained as described above. From now on we will
exclusively use this wavelet basis.

2.2. BMO and BMO−1 spaces. It is well known that the wavelet basis WaveM can be

used to characterize the multi parameter Chang-Fefferman BMO(R~d). Namely,

‖b‖2

BMO(R~d)
= sup

U⊂R~d

1

|U |
∑
R⊂U

∑
~ε∈Sig~d

∣∣〈b, w~εR〉∣∣2 .
Here the supremeum is taken over all open sets in R~d of finite measure. This definition is
quite difficult to work with since the supremum that appears is taken over a very large class
of sets.

The following version of the BMO norm turns out to be crucial in the proof of the main
result.

‖b‖2
BMO−1

= sup
U

1

|∪{R : R ∈ U}|
∑
R∈U

∑
~ε∈Sig~d

∣∣〈b, w~εR〉∣∣2 ,
where the supremum is taken over all collections U ⊂ D~d with the property that there exists
a coordinate s such that any two rectangles in U have the same s-th coordinate (which
is some cube of course). L. Carlesson produced examples of functions with BMO norm 1
and arbitrary small BMO−1. Still, Journes Lemma permits us, with certain restrictions, to
dominate the BMO norm by the BMO−1 norm. This lemma is crucial ingredient in the
proof of the main result.

Lemma 2.1. Let U be a collection of rectangles such that ∪{R : R ∈ U} has finite measure.
For any η > 0, we can construct V ⊃ ∪{R : R ∈ U} with |V | < (1 + η) |∪{R : R ∈ U}| and
a function Emb : U → [1,∞) so that

• Emb(R)R ⊂ V for all R ∈ U
• ∥∥∥∥∥∥

∑
~ε∈Sig~d

∑
R∈U

Emb(R)−C
〈
f, w~εR

〉
w~εR

∥∥∥∥∥∥
BMO

≤ Kη ‖f‖BMO−1
.

The constant C appearing in the lemma can be quite big. Still, the Carlesson example
shows that the term involving Emb(R) must appear.

2.3. Paraproducts. The paraproducts that arise in the proof are of a somewhat general
nature, and the authors had to make some definitions which will permit a reasonably general
definition of a paraproduct.

For j = 1, 2, 3 let {ϕj,R(x) : R ∈ D~d} be three families of functions with the property that

|Dmϕj,R(x)| . |Q|−m/d [Trc(Q)Dil|Q|(1 + |x|2)−1]N ,
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where N is arbitrary integer and m ≤ d+ 1. Define a bilinear operator B by

B(f, g) :=
∑
R∈D~d

〈f, ϕ1,R〉√|R| 〈g, ϕ2,R〉ϕ3,R.

Such bilinear operators are known as paraproducts. A well known result of Journe says
that if all the functions ϕ1,R have mean zero in all the coordinates and in addition for
each coordinate s all the elements in one of the families ϕ2,R, ϕ3,R have mean zero in the
s-th coordinate then the bilinear operator B(f, g) must be bounded as an operator from
BMO × Lp into Lp. Particularly relevant for us is the reformulation of this theorem which
says that the tensor product of two bounded paraproducts must be a bounded operator.

2.4. Cone transforms. For a cone in C ⊂ Rd we fix a CalderonZygmund kernel KC which
satisfies the usual size and smoothness conditions, and in addition,

1C ≤ K̂C ≤ 1(1+κ)C .

Such operators are called cone transforms. It is useful to define a norm using the cone
transforms in the place of the Riesz transforms. Namely. define

‖b‖Cone := sup ‖[[. . . [[Mb, TC1 ], TC2 ] . . . ], TCt ]‖ ,
where the supremum is taken over all cone transform with a fixe cone aperture. As a
byproduct of the proof of the main theorem one obtains that the cone norm is also equivalent
to the BMO norm of b.

3. Proof of the main result

3.1. Proof of the upper bound. The authors prove a more general statement for the
upper bound. Namely, they show that one can replace the Riesz projections by more gen-
eral Calderon-Zigmund operators. The main idea is to obtain a decomposition of an one
parameter commutator into a sum of paraproducts. Each of these paraproducts is bounded.
Therefore, to obtain the multiparameter statement one only need to show the tensor prod-
uct of the elements in the decomposition are themselves bounded operators. Note that
one of the essential difficulties in the multiparameter setting is that the tensor product of
bounded operators need not be bounded. So, this statement is not obvious. However, a
well known result of Journe says exactly that the tensor product of two bounded paraprod-
ucts is bounded. Therefore, the upper bound would be proved if one can show that the
one-parameter commutator is decomposable into a sum of paraproducts.

To accomplish this they consider the wavelet projections

Fj :=
∑
ε∈Sigd

∑
|Q|≥2jd

wεQ ⊗ wεQ,

and

∆Fj :=
∑
ε∈Sigd

∑
|Q|=2jd

wεQ ⊗ wεQ,

and expand the commutator in these wavelet projections.

[TK ,Mb]f =
∑
j,j′

[TK ,M∆Fjb]∆Fj′f.
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Then they split the last sum in two parts. The principal contribution comes from the part of
the sum where the indices satisfy j < j′+3 (this is the part of the sum with no cancellations
expected). It is not hard to show that this part of the sum can be written as a sum of two
paraproducts that can be estimated using the general results for paraproducts mentioned
above.

The authors also prove a multi parameter version of this result that they later use in
the proof of the lower bound. The strategy of the proof is very similar but the details are
expectedly more involved. In this case one considers more general wavelet projections

F~l,J :=
∑
~ε∈Sig~d

∑
|Qs|=2ks

w~εR ⊗ w~εR,

and
∆F~k :=

∑
~ε∈Sig~d

∑
|Qs|≥2ks ,s/∈J

w~εR ⊗ w~εR.

The second sum in the expression for F~l,J is taken over all R = Q! ⊗ · · · ⊗ Qt ∈ D~d such

that |Qs| ≥ 2ls for all s /∈ J . The following notation is also used in the result below. Write
R′ .J R if |Q′s| ≤ |Qs| for s /∈ J and |Q′s| = |Qs| otherwise.

Theorem 3.1. Let TK be a product Calderon-Zygmund operator on L2(R~d). For all J ⊂
{1, . . . , t} and ~k ∈ Zt with ks ∈ [3, 8] for s ∈ J and ks ∈ [−8, 8] for s /∈ J we have∥∥∥∥∥∥

∑
~l∈Zt

(∆F~lb)TKF~l+~k,Jf

∥∥∥∥∥∥
2

. ‖b‖BMO ‖f‖2 .

Moreover, for a fixed integer A suppose that whenever
〈
b, w

~ε′
R′

〉
6= 0 and

〈
f, w~εR

〉 6= 0 with

R′ . R this always implies that AR ∩R′ = ∅. Then we also have the following more precise
estimate ∥∥∥∥∥∥

∑
~l∈Zt

(∆F~lb)TKF~l+~k,Jf

∥∥∥∥∥∥
2

. A−100t‖b‖BMO ‖f‖2 .

Let us return to the proof of the upper bound. The remaining part of the sum (when the
indices satisfy j ≥ j′ + 3) consists of considerably smaller terms due to cancellation. The
principal point in estimating this part lies in showing the inequality∣∣∣[TK ,MwεQ

]wε
′
Q′(x)

∣∣∣ . ∣∣∣∣QQ′
∣∣∣∣1+1/2d

(
1 +

dist(Q,Q′)

|Q|1/d
)−N

|Q|−1/2 χQ′(x)N ,

where χQ′(x) := Trc(Q′)Dil|Q′|(1 + x2)−1 is the Poisson kernel adapted to the cube Q′.
Very recently the same group of authors found a simpler proof of the upper bound. There,

they use the classical Haar basis in the place of the Meyer wavelets,

3.2. Proof of the lower bound. This is the most difficult part of the proof. The proof
uses induction on the number of parameters. The base case is t = 1. As mentioned in
the beginning Coifman, Rochberg and Weiss gave a concise proof of this result. However,
for the induction proof to work it turns out to be necessary to prove the base step for the
cone transforms as well. Luckily, this is a consequence of a deep line of investigation begun
by Uchiyama, who extended both directions of the Coifman, Rochberg, and Weiss result to
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more general Calderon–Zygmund operators. In particular, a result of Song-Ying Li gives as
a Corollary to his Theorem, this essential result, which also covers the base case t = 1.

In the inductive stage of the proof, the authors use the induction hypothesis to derive a
lower bound on the commutator norms in terms of the BMO−1-norm. Here they use the
induction hypothesis in its equivalent weak factorization form. They only give a proof of
this part for commutators involving Riesz transforms, but the proof for cone transforms is
similar.

The next step in the proof is to bootstrap from this weaker inequality to the full inequality.
This is by far the most intricate part.

At this stage it is essential to first prove the result for cone transforms. Elements of this
proof in this case are essential to address the Riesz norm case.

First, fix a symbol b with BMO norm one, but with small BMO−1 norm. With such
b fixed, choose an open set U for which the supremum is achieved in the definition of the
BMO norm of b. Let U be the collection of R ∈ D~d such that R ⊂ U . Define β := PUb,
where

PUb :=
∑
~ε∈Sig~d

∑
R∈U

〈
b, w~εR

〉
w~εR.

This function β is used to build a test function to demonstrate a lower bound on the Cone
norm. Choose an open set V which satisfies all the conditions in Journe’s lemma, and form
the collection V of R ∈ D~d such that R ⊂ V but which are not elements ofU . Finally, define
W as the collection of all remaining dyadic rectangles. The final and the most difficult
step is to construct two sequences of cones Cs and Ds such that the test function γ :=
TD1TD2 . . . TDtβ satisfies ‖γ‖ ≥ 4−t (is bounded away from zero) and the iterated commutator
formed by Mb and TC1 , TC2 . . . TCt applied to this γ has a norm bounded from below. This
last requirement is accomplished by showing that the iterated commutators formed by MPVb
(or MPWb) and TC1 , TC2 . . . TCt applied to γ have arbitrary small norm, and the one involving
MPU b has a norm bounded away from zero. This finishes the prove of the lower bound.
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REPRESENTATION OF BI-PARAMETER SINGULAR INTEGRALS BY
DYADIC OPERATORS

H. MARTIKAINEN

presented by Theresa C. Anderson

Abstract. To extend a singular integral operator to the multiparameter case, we indeed
look to define 〈Tf, g〉. Until recently, there were bascially two “extremes” to how to define
this: using tensor products or Journe’s operator-valued kernels. In this note we give the
highlights of the new representation theorem for the desired 〈Tf, g〉 in terms of simplier shift
operators. We note that this represtntation is for the biparameter case.

1. Introduction

In multiparameter harmonic analysis, the dichotomy between multiple variables and mul-
tiple parameters becomes glowingly apparent. Most every result in harmonic analysis has
a clean statement for Rn that is essentially the same as for R; at its essence there is no
fundamental difference between a cube in R as a cube in Rn. A cube is measured by one
parameter, a side length. However, in Rn, n ≥ 1, we have a choice. Cubes are no longer
the sole ubiquitous objects, we can also look at all the fun objects such as the maximal
function with respect to rectangles which have two parameters. Starting with the theme of
the maximal function, we can see how the strong maximal function defined with respect to
rectangles is different from the usual Hardy-Littlewood maximal function.

The standard example of a singular integral operator is the Hilbert transform. We can
create the biparameter version with respect to rectangles, which is much more complicated.
Though we can write it as the tensor product H1H2 = ∗ 1

x1x2
, the singularity now encompasses

the coordinate axes instead of a single point.
The underlying geometry of R versus Rn, n > 1 lies at the heart of this difficulty. Every

open set in R can be decomposed as a disjoint union of open intervals. This aids us immensely
in decomposition, and we do not have a comparable way of decomposing open sets for n > 1.

To extend a singular integral operator to the multiparameter case, we indeed look to
define 〈Tf, g〉. Until recently, there were bascially two “extremes” to how to define this:
using tensor products or Journe’s operator-valued kernels.

What this paper does is prove a new representation theorem for the desired 〈Tf, g〉 in
terms of simplier shift operators. We note that this represtntation is for the biparameter
case. Many times, generalizing even farther is much more difficult since underlying the
biparameter case is the fact that ”slices” are one-parameter, and hence we can use the open
set decomposition in R. The interesting part is how this representation is achieved: through
a new characterization of Calderon-Zygmund operators, inspired by [3], without resorting to
vector valued techniques or a priori boundedness estimates. This representation allows us
to get our hands on how T operates on different spaces. The main theorem of this paper is
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Theorem 1.1. We have

(1.2) 〈Tf, g〉 = CTEwnEwm
∑
i,j∈Z

2−max(i1,i2)δ/22−max(j1,j2)δ/2〈Si,jf, g〉

where the shifts S are taken with respect to the pair of dyadic grdis (Dn,Dm) and wn ∈
{{0, 1}n}Z corresponds to a random shift.

A recent application of the importance of this representation is the famous A2 conjecture,
proved by Hytonen and Lerner, though with contributions by many, many others [4],[1]. Both
the techniques leading to the proof of 1.1 and the applications of the result are fascinating!
The type of representation in 1.1 and the lemmas used to prove it are in the flavor of
[4]. And there are many other open questions that can possibly be attacked using such a
representation, as it translates singular intergral operator questions to dyadic questions.

2. assumptions and notations

We begin by introducing this new Calderon-Zygmund structure of our operators.

Definition 2.1. We have the representation

(2.2) 〈Tf, g〉 =

∫
Rn+m

∫
Rn+m

K(x, y)f(y)g(x)dxdy

Some notations and assumptions include: f = f1f2 = f1 ⊗ f2 to indicate the splitting of f
into the two parameters, suppf1∩g1 = ∅ and similarily for f2, g2. We stress that x, y ∈ Rn+m

whereas we use subscripts for each parameter: x1 ∈ Rn, x2 ∈ Rm.

And here are the kernel assumptions. Notice how they differ from the one-parameter case.

Definition 2.3. The many assumptions include the single decay condition:

|K(x, y)| ≤ C
1

|x1 − y1|n
1

|x2 − y2|m ,
the Holder smoothness in x and y – notice that for these the numerators change to include

the 22 choices (eiterh x1 or y1 for the first estimate and similarity for the second).

|K(x, y)−K(x, (y1, y
′
2))−K(x, (y′1, y2)) +K(x, y′)| ≤ C

|y1 − y′1|δ
|x1 − y1|n+δ

|y2 − y′2|δ
|x2 − y2|m+δ

whenever |y1 − y′1| ≤ |x1 − y1|/2 and |y2 − y′2| ≤ |x2 − y2|/2,

|K(x, y)−K((x1, x
′
2), y)−K((x′1, x2), y) +K(x′, y)| ≤ C

|x1 − x′1|δ
|x1 − y1|n+δ

|x2 − x′2|δ
|x2 − y2|m+δ

whenever |x1 − x′1| ≤ |x1 − y1|/2 and |x2 − x′2| ≤ |x2 − y2|/2,
the mixed smoothness

|K(x, y)−K((x1, x
′
2), y)−K(x, (y′1, y2)) +K((x′1, x2), (y′1, y2))| ≤ C

|y1 − y′1|δ
|x1 − y1|n+δ

|x2 − x′2|δ
|x2 − y2|m+δ

whenever |y1 − y′1| ≤ |x1 − y1|/2 and |x2 − x′2| ≤ |x2 − y2|/2,

|K(x, y)−K(x, (y1, y
′
2))−K((x′1, x2), y) +K((x1, x2), (y1, y

′
2))| ≤ C

|x1 − x′1|δ
|x1 − y1|n+δ

|y2 − y′2|δ
|x2 − y2|m+δ

whenever |x1 − x′1| ≤ |x1 − y1|/2 and |y2 − y′2| ≤ |x2 − y2|/2.
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Also, we have the combined decay/smoothness discussion – conditions provided to account
for decay in one variable and Holder in the other variable (four additional conditions).

We assume the Calderon-Zygmund structure in each parameter, where we enforce the
”sliced” kernel representation:

〈Tf, g〉 =

∫
Rn

∫
Rn
Kf1,g1(x1, y1)f1(y1)g1(x1)dx1dy1

with decay

|K1(x1, y1)| ≤ C(f2, g2)
1

|x1 − y1|n
and smoothness in x and y

|K1(x1, y1)−K(x′1, y1)| ≤ C(f2, g2)
|x1 − x′1|δ
|x1 − y1|n+δ

|K(x1, y1)−K(x1, y
′
1)| ≤ C(f2, g2)

|y1 − y′1|δ
|x1 − y1|n+δ

when |x1 − x′1| << |x1 − y1|/2 and |y1 − y′1| < |x1 − y1|/2. Here C(f, g) is a constant with
small control over the diagonal: C(χv, χv) + C(χv, uv) + C(uv, χv) ≤ C|V |, where uv is V
adapted with zero mean, that is supp(uv) ⊂ V, |uv| ≤ 1 and

∫
uv = 0. We also require the

corresponding conditions for a K2 representation.

Note that besides the constants’ dependence, these are the same as for the single parameter
case. These sliced conditions are what you would expect for a tensor product generalization
of singular integrals – that the kernel estimates are required for each variable separately.
Here, however, we see that these are just some of the requirements, as boundedness is much
more complex. This corresponds to the size of singularities and our earlier discussion.

Journe dealt with multiparameter operators using vector valued inequalities. He thought
of the kernel as an operator in one parameter, with the other parameter fixed. This allowed
him the much simpler definition statement of a Calderon-Zygmund kernel, however, this
definition encodes much complexity. Additionally, we have a priori boundedness assumptions
mentnioned earlier.

Definition 2.4. Let B is a Banach space and 0 < δ < 1. Journe’s vector valued kernerl is
a continous function K : R2/∆→ B such that:

‖K(x, t)‖B ≤ C
1

|x− t|δ
and

‖K(x, t)−K(x′, t′)‖B ≤ C
(|x− x′|+ |t− t′|)δ

|x− t|1+δ

when (|x− x′|+ |t− t′| < |x− t|)/2.

An essential point to make is that a Calderon-Zygmund operator is one with a Calderon-
Zygmund kernel but is additionally bounded on L2. Once we have this, we get many other
boundedness conditions, such as boundedness on Lp, for free; hence showing the original
L2 bound for an operator with Calderson-Zygmund kernel is quite important. The orig-
inal celebrated T (1) theorem of David and Journe gave us simple criteria to ensure a L2

bound using only the boundedness of T (1), T ∗(1) and the easily satisfied weak boundedness
property (WBP). To get the L2 bound here, we have a T (1) type theorem assumptions:
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T (1), T ∗(1), T1(1), T ∗1 (1) ∈ BMOp and a WBP: |〈T (χK ⊗ χV ), χK ⊗ χV 〉| ≤ C|K|V | for all
cubes K ∈ Rn and V ∈ Rm where T1 is the partial adjoint.

The BMOp is the product BMO space, which is not so easy to generalize in more than
one parameter. There are several canddidate spaces, but the right one should ensure the
boundedness of T : L∞ → BMO for operators T = T1T2. In this paper, we use the dual
H1 via boundedness of a square funtion to define BMOp, but here is the direct definition in
the dyadic setting (using the Haar basis). We stick with the dyadic case, since it is simpler
to state and still illustrates what this ”correct” BMOp space is. For the continuous version
using continuous wavelet basis, see [2].

Definition 2.5. We say f ∈ BMOp if

sup
Ω

∑
I×J∈Ω

〈f, hI ⊗ hJ〉2 ≤ C

where Ω is any open set. The {hI} are Haar functions hI = |I|−1/2(χl − χr), where χl is the
characteristic function of the left half of a dyadic interval, and χr is the right half. The hI
form a basis of L2 as well as many other Banach spaces, as long as we add the noncancellative
constant function 1.

The Haar functions form a localized basis, which naturally fit with the dyadic structure
of a space. We can then define the sqaure function via Haar:

Definition 2.6. The square function is

Sq(f) = [
∑
K∈Dn

∑
V ∈Dm

|〈f, hK ⊗ uV 〉|2χK ⊗ χV|K||V | ]1/2

Then f is in the product Hardy space H1 if and only if ‖Sq(f)‖L1 <∞.

We also need a few ”diagonal” BMO conditions (using characteristic functions and some
adapted functions).

3. Main results

A key concept to the proof of 1.1 is the use of random dyadic grids. A basic averag-
ing property with regards to these grids will be proved, allowing us to rewrite the desired
decomposition.

Definition 3.1. Let Dn be the standard dyadic grid and wn is as defined before. Then we
define the shifted dyadic grid Dn + w = {I + w : I ∈ Dn} where, w =

∑
2−i<l(I) 2−1win.

Now we define the fundamental notions of good and bad cubes.

Definition 3.2. We call a dyadic cube I ∈ Rn bad if there is another cube J such that both
l(I) ≥ 2rl(J) and d(I, ∂(J) ≤ 2l(I)γl(J)1−γ where γ = δ/(2n + 2δ) (so since δ is a small
parameter, γ is about δ/2, also small and r is a fixed parameter set to make the probability
of having a good situation positive. We stress that this is always possible by lemma 2.3 of
[4].

Note that there is a more general definition of bad cubes, from [4], where one defines a

radially decreasing function, φ, with certain properties, and requiring d(I, ∂(J) ≤ φ( l(I)
l(J

)l(J).

Martikainen’s choice corresponds to the classical φ(t) = tγ.
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There are a few key facts to note about good and bad cubes. First of all, intuitively, the
definition of badness indicates that there is a much bigger cube very close to our given cube
I. Second, the position I + w is independent to the badness (since this involves relative
position to the larger cubes J + w, hence only dependent on wj for 2−j ≥ l(I)).

We now define the objects needed to represent 〈Tf, g〉 that are easy to bound and analyze
– the biparameter shifts – which are always tied to a dyadic grid Da ⊗Db on Rn × Rm.

Definition 3.3. Given nonnegative integers (i1, i2), (j1, j2) ∈ Z2, define

(3.4) S(i,j)f =
∑
K∈Da

∑
V ∈Db

AKV f

where
AKV f =

∑
I1,I2⊆K

∑
J1,J2⊆V

aI,K,J,K〈f, hI1 ⊗ uJ1〉hI2 ⊗ uJ2

and l(I1) = 2−i1l(K) and similarity for i2, j1 and j2. Moreover, we have that a ≤ |I1||I2||J1||J2|
|K||V | .

and the subshifts (where K ∈ A, V ∈ B) are L2 bounded with a maximum norm of 1.

Note that we can rewrite the shift S in the handy kernel representation:
(3.5)

Sf(x) =
∑
K,V

AKV f(x) =
∑
K,V

1

|K × V |
∫
K×V

KAV (x, y)f(y)dy =

∫
Rn+m

KS(x, y)f(y)dy

where K is constant on dyadic rectangles smaller than those in the summands of 3.4, has
norm ≤ 1 and bounded support in (K × V ) × (K × V ). As an example, we can consider
shifts where i1 = i2 = j1 = j2 = 1, which give rise to kernels constant on quarters of ”Haar
rectangles”.

The following lemma allows us to decompose using only good cubes. This is one of the
most important observations and this is the only time where the probabilistic structure of
random dyadic grids is used. The original is from [4].

Lemma 3.6. We have

〈Tf, g〉 = CEwnEwm

∑
I1,I2∈Dn

∑
J1,J2∈Dm

χgood(smaller(I))χgood(smaller(J)〈T (hI1⊗uJ1), hI2⊗uJ2〉〈f, hI1⊗uJ1〉〈g, hI2⊗uJ2〉

where C = 1/(πngoodπ
m
good) and the summation over all the 2n− 1 or 2m− 1 cancellative Haar

functions is suppressed.

Thanks to 3.6, to prove 1.1 we now separate the sums over good cubes only. First we fix
the random variables, which fixes the dyadic grids (hence, we do not need the probability
any more)! We need to examine∑

l(I1)≤l(I2)

∑
l(J1)≤l(J2)

〈T (hI1 ⊗ uJ1 , hI2 ⊗ uJ2〉〈f, hI1 ⊗ uJ1〉〈g, hI2 ⊗ uJ2〉

and divide the sum that appears as follows∑
l(I1)≤l(I2)

=
∑

d(I1,I2)>l(I1)γ l(I2)1−γ
+
∑
I1⊆I2

+
∑
I1=I2

+
∑

d(I1,I2)≤l(I1)γ l(I2)1−γ ,I1∩I2=∅

where the four sums are denoted separate, in, equal, and near. We must do this for when
l(I1) ≤ l(I2) and l(J1) ≤ l(J2) resulting the mixed types (ie: separate for Rn and near for
Rm, etc., a total of 4+3+2+1 cases). We also consider the symmetric case l(I1) ≥ l(I2)
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and l(J1) ≥ l(J2), along with some partial symmetric cases that are handled differently:
l(I1) ≤ l(I2) and l(J1) > l(J2) or l(J1) ≤ l(J2) and l(I1) > l(I2). Remeber that we have
suppressed the critical fact that all cubes are good!

The proof of 1.1 is a case by case analysis of each scenario mentioned above. By extimation,
each piece can be estimated by a sum of the simple shifts with good decay factors, allowing
us the representation 1.2 and hence the following corollary.

Corollary 3.7. The singular integral operator defined in 1.2 is L2 bounded.
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A T (1) THEOREM ON PRODUCT SPACES

S. POTT AND P. VILLARROYA

presented by Eyvindur Ari Palsson

Abstract. Only a year after publishing his celebrated classical T (1) theorem with G.
David [2], J. L. Journé established an extension to product spaces [3]. The conditions in
his extension require that operator bounds be established, in stark contrast to the classical
theorem. In their paper [5], S. Pott and P. Villarroya, establish a new T (1) theorem for
product spaces which not only is more in the spirit of the classical one, but also applies to
operators that do not fall under the scope of Journé’s theorem.

1. The classical T (1) theorem

Calderón-Zygmund theory is concerned with the study of singular integral operators that
roughly speaking are of the type

T (f)(x) =

∫
K(x, y)f(y) dy.

The main interest is in establishing Lp estimates for such operators. In order to hope for
such estimates conditions need to be imposed on the kernel K(x, y). A classical choice are
Lipschitz type regularity conditions. A kernel is said to be a standard Calderón-Zygmund
kernel if there exist δ > 0, C < ∞ such that for x, y ∈ Rn and all z ∈ Rn such that

|x− z| < |x−y|
2

we have:

(i) |K(x, y)| ≤ C|x− y|−n

(ii) |K(x, y)−K(z, y)| ≤ C

( |x− z|
|x− y|

)δ
|x− y|−n

(iii) |K(y, x)−K(y, z)| ≤ C

( |x− z|
|x− y|

)δ
|x− y|−n

To be more precise with the definition of singular integral operators then we say that an
operator T is associated to a standard Calderón-Zygmund kernel K if, whenever f, g ∈ C∞0
have disjoint supports,

〈T (f), g〉 =

∫∫
K(x, y)f(y)g(x)dydx.

Further one can associate a bilinear form Λ to a standard Calderón-Zygmund kernel K if,
whenever f, g ∈ C∞0 have disjoint supports,

Λ(f, g) =

∫∫
K(x, y)f(y)g(x)dydx.

The dual operator, T ∗, of T is then defined by

〈f, T ∗(g)〉 = 〈T (f), g〉 = Λ(f, g).

In order to state the classical T (1) theorem we first need a couple of definitions.
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Definition 1. A Schwartz function φ : Rm → C is said to be an Lp-normalized bump
function adapted of order N to a box I := I1× . . .× Im if there exists a constant C such that

|∂αφ(x)| ≤ C
m∏
k=1

|Ik|−
1
p
−αkχNI (x)

for each 0 ≤ |α| ≤ N , where

χI(x) =

(
1 + ‖

(
x1 − c(I1)
|I1| , . . . ,

xm − c(Im)

|Im|
)
‖2
)−1/2

where c(Ij) denotes the center of the interval Ij.

Definition 2. A singular integral operator T is said to be weakly bounded if there exist
N,C <∞ such that for any box I and any L2-adapted bump functions φI , ψI of order N we
have

|〈T (φI), ψI〉| ≤ C

Note that L2 boundedness of the operator T implies weak boundedness.

Definition 3. BMOrect is the set of equivalence classes of locally integrable functions f
modulo additive constants for which the following supremum, taken over all cubes Q in Rn

with sides parallel to the coordinate axes, is finite

sup
Q
|Q|−1

∫
Q

|f − fQ| = ‖f‖BMOrect .

where fQ = |Q|−1

∫
Q

f .

We are now ready to state the classical T (1) theorem.

Theorem 4. [2] Suppose T is a singular integral operator. Then T : L2 → L2 if and only if

• T is weakly bounded
• T (1) ∈ BMOrect

• T ∗(1) ∈ BMOrect

Note that T (1) and T ∗(1) both have to be defined through distribution theory.

2. Journé’s extension to product spaces

Journé was interested in obtaining a similar T (1) theorem for multiparameter singular
integral operators. These are operators whose class of kernels is homogeneous with respect
to non-isotropic dilations of the form ρδ1,...,δn(x1, . . . , xn) = (δ1x1, . . . , δnxn) for xi ∈ Rdi and
δi > 0, where the number of the parameters of the problem coincides with the quantity
of independent dilations. A simple example of such an operator is the multiple Hilbert
transform, defined in Rn by

H1 · · ·Hn(f) = p.v. f ∗ 1

x1 · · ·xn .
We see that the kernel is not a standard Calderón-Zygmund kernel so the classical T (1)
theorem does not apply. Of course a direct application of Fubini’s theorem shows that the
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operator is bounded on Lp(Rn) for all 1 < p <∞, however the situation is in general not so
simple.

One immediate observation is that the kernels for multiparameter singular integral opera-
tors can be far more singular than standard Calderón-Zygmund kernels. As a consequence,
these operators do not generally map L1(Rn) into L1,∞(Rn) and the strong maximal opera-
tor does not control their boundedness properties. Hence many of the standard techniques
are not available in the multiparameter setting. To overcome this difficulty Journé chose
to use vector valued Calderón-Zygmund theory, which thus requires us to go through some
definitions.

Definition 5. Let ∆ be the diagonal in R2 and B be a Banach space. A continuous function
K : R2 \ ∆ → B is called a vector valued standard Calderón-Zygmund kernel, if for some
0 < δ ≤ 1 and some constant C > 0 we have

‖K(x, t)‖B ≤ C|x− t|−1

‖K(x, t)−K(x′, t′)‖B ≤ C(|x− x′|+ |t− t′|)δ|x− t|−1−δ

whenever |x− x′|+ |t− t′| ≤ |x− t|/2. In this context |K| usually denotes the best constant
in both inequalities.

Definition 6. A continuous linear mapping T from C∞0 (R)⊗C∞0 (R) into its algebraic dual
is called a singular integral operator if there are K1, K2 : R2 \∆ → L(L2(R), L2(R)) vector
valued Calderón-Zygmund kernels such that for f1, f2, g1, g2 ∈ C∞0 (R) we have

〈T (f1 ⊗ f2), g1 ⊗ g2〉
∫∫
R2

f1(t1)g1(x1)〈K1(x1, t1)f2, g2〉dt1dx1

whenever supp f1 ∩ supp g1 = ∅ and symmetrically for K2.

Observe that K1 being a vector valued Calderón-Zygmund kernel implies that K1(x1, t1)
is a Calderón-Zygmund operator bounded on L2(R2) and that its Calderón-Zygmund norm,
defined by ‖K1(x1, t1)‖CZ := ‖K1(x1, t1)‖L2(R2)→L2(R2) + |K1| satisfies the bounds from defi-
nition 5. Similar for K2. Thus we have already encountered operator norms in contrast to
the classical T (1) theorem.

Definition 7. We define restricted operators T i, i = 1, 2, in the following way. Given
fi, gi ∈ C∞0 (R) for i = 1, 2, let 〈T 1(f2), g2〉, 〈T 2(f1), g1〉 : C∞0 (R)→ C∞0 (R)′ be defined by

〈〈T 1(f2), g2〉f1, g1〉 = 〈〈T 2(f1), g1〉f2, g2〉 = 〈T (f1 ⊗ f2), g1 ⊗ g2〉
Notice that the kernel of T 1 for example is precisely 〈K1(x1, t1)f2, g2〉.

Definition 8. A singular integral operator T is said to satisfy the weak boundedness property
if for any bounded subset A of C∞0 (R) there is a constant C > 0, that may depend on A,
such that for any f, g ∈ A we have that

‖〈T i(fx,R), gx,R〉‖CZ := ‖〈T i(fx,R), gx,R〉‖L2(R2)→L2(R2) + |Ki| ≤ C

where fx,R = R−1/2f(R−1(y − x)) and the same for gx,R.

Observe that here we have encountered more operator norms.
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Definition 9. Associated to a singular integral operator T we can define its partial adjoints
T1 and T2 by

〈T1(f1 ⊗ f2), g1 ⊗ g2〉 = 〈T (g1 ⊗ f2), f1 ⊗ g2〉
and similarly for T2.

Notice that T2 = T ∗1 .

Definition 10. Define BMOprod(Rn) to be the dual of the Hardy space H1(Rn).

Note that BMOrect(R) coincides with BMOprod(R). However for n ≥ 2 then BMOrect(Rn) (
BMOprod(Rn) as shown in an example by Carleson. Thus one can say that BMOprod(Rn) is
more complicated in general than BMOrect(Rn) from the classical T (1) theorem.

We are now ready to state Journé’s theorem.

Theorem 11. [3] Let T be a singular integral operator as described in definition 6 satisfying
the weak boundedness property and T (1), T ∗(1), T1(1), T ∗1 (1) ∈ BMOprod(R2). Then T extends
boundedly on L2(R2).

3. Main theorem

The use of vector valued Calderón-Zygmund theory was also adopted by other authors,
such as R. Fefferman, in later developments of singular integral operators in product spaces.
S. Pott and P. Villarroya wanted to get rid of any hypothesis that required a priori bounded-
ness of operators and wanted a theorem more in the spirit of the classical T (1) theorem. This
meant dropping the vector valued Calderón-Zygmund theory. Thus we need to go through
a new set of definitions before we can state the main theorem.

Definition 12. Let ∆ be the diagonal in R2. A function K : (R2 \ ∆) × (R2 \ ∆) → R is
called a product Calerón-Zygmund kernel, if for some 0 < δ ≤ 1 and some constant C > 0
we have

|K(x, t)| ≤ C
∏
i=1,2

1

|xi − ti|

|K(x, t)−K((x1, x
′
2), (t1, t

′
2))−K((x′1, x2), (t

′
1, t2))+K(x′, t′)| ≤ C

∏
i=1,2

(|xi − x′i|+ |ti − t′i|)δ
|xi − ti|1+δ

whenever 2(|xi − x′i|+ |ti − t′i|) ≤ |xi − ti|.
Instead of now focusing on an operator associated to such a kernel we focus rather on a

bilinear form associated to it. We start with a couple of definitions.

Definition 13. Given a bilinear form Λ, we define linear operators T , T ∗ through duality:

〈T (f), g〉 = 〈f, T ∗(g)〉 = Λ(f, g).

Definition 14. We define the restricted bilinear forms by

〈Λ1(f2, g2)f1, g1〉 = 〈Λ2(f1, g1)f2, g2〉 = Λ(f1 ⊗ f2, g1 ⊗ g2)

We will call restricted operators T i to the linear operators associated with the restricted
bilinear form Λi through duality Λi(fj, gj) = 〈T i(fj), gj〉.

Notice that the kernels of the forms Λi depend on the variables of the functions fj, gj and
so we will often write Λi

tj ,xj
.
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Definition 15. A bilinear form Λ : S(R2)×S(R2)→ C is said to be associated with a product
Calderón-Zygmund kernel K if it satisfies the following three integral representations:

(1) for all Schwartz functions f, g ∈ S(R2) such that f(·, t2), g(·, x2) and f(t1, ·), g(x1, ·)
have respectively disjoint supports, we have

Λ(f, g) =

∫
R2

∫
R2

f(t)g(x)K(x, t)dxdt

(2) for all Schwartz functions f1, f2, g1, g2 ∈ S(R) such that f1 and g1 have disjoint
supports, we have

Λ(f, g) =

∫
R

∫
R
f1(t1)g1(x1)Λ

1(f2, g2)dx1dt1

(3) analogous representation for Λ2.

If the form is continuous on S(R2)×S(R2) then it will be called a bilinear Calderón-Zygmund
form.

We define the weak boundedness condition the same way as in definition 2. One of the
novelties from S. Pott and P. Villarroya is the following new condition we need.

Definition 16. We say that a bilinear form Λ satisfies the mixed weak boundedness Calderón-
Zygmund condition, if there exist N,C <∞ such that for any interval I and any L2-adapted
bump functions φI , ψI of order N we have

|Λi
tj ,xj

(φI , ψI)| ≤ C|tj − xj|−1

|(Λi
tj ,xj
− Λi

t′j ,x
′
j
)(φI , ψI)| ≤ C(|xj − x′j|+ |tj − t′j|)δ|tj − xj|−(1+δ)

whenever 2(|xj − x′j|+ |tj − t′j|) < |tj − xj| for all i, j ∈ {1, 2}.
Definition 17. We define the adjoint bilinear forms Λi such that for f = f1⊗f2, g = g1⊗g2

functions of tensor product type, we have

Λ1(f, g) = Λ(g1 ⊗ f2, f1 ⊗ g2), Λ2(f, g) = Λ(f1 ⊗ g2, g1 ⊗ f2)

and then extended by linearity and continuity. We will also denote Λ0 = Λ.
These new bilinear forms are also associated with linear operators T1, T2 via duality

〈Ti(f), g〉 = 〈f, T ∗i (g)〉 = Λi(f, g).

Note that in the case of tensor products f = f1 ⊗ f2, g = g1 ⊗ g2 then

〈T1(f1 ⊗ f2), g1 ⊗ g2〉 = Λ1(f, g) = Λ(g1 ⊗ f2, f1 ⊗ g2) = 〈T (g1 ⊗ f2), f1 ⊗ g2〉
which matches with the adjoint bilinear forms in definition 9.

We are now finally ready to state the bi-parameter T (1) theorem by S. Pott and P.
Villarroya.

Theorem 18. [5] Let Λ be a bilinear Calderón-Zygmund form satisfying the mixed weak
boundedness Calderón-Zygmund condition. Then the following are equivalent:

(1) Λi are bounded bilinear forms on L2(R2) for all i = 0, 1, 2. (Recall Λ0 = Λ.)
(2) Λ satisfies the weak boundedness condition and the special cancellation conditions:

(a) T (1), T ∗(1), T1(1), T ∗1 (1) ∈ BMOprod(R2)
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(b) 〈T (φI ⊗ 1), ψI ⊗ ·〉, 〈T (1 ⊗ φI), · ⊗ ψI〉, 〈T ∗(φI ⊗ 1), ψI ⊗ ·〉, 〈T ∗(1 ⊗ φI), · ⊗
ψI〉 ∈ BMO(R) for all φI , ψI bump functions adapted to I with norms uniformly
bounded in I.

As with the classical theory then care has to be taken in defining all the objects in the
theorem carefully through distribution theory. We also note that the authors state a general
multiparameter version of the above theorem.

A weak point of the result, that is in common with Journé’s result, is that the stated
sufficient conditions are not necessary. The conditions imply not only boundedness of T but
also of T1. Journé constructed a counterexample for which T is bounded but not T1.

The proof of the theorem follows the same general ideas as the proof of the classical T (1)
theorem. First one shows that the theorem holds true for bilinear forms Λ that fulfill a
certain special cancellation property. Then one shows that the special cancellation property
can always be obtained by subtracting certain paraproducts from a general bilinear form.
The proof is of course much more complex than in the classical case and the authors bump
among other things into new bi-parameter modified square functions.
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H1 AND DYADIC H1

S. TREIL

presented by Jingguo Lai

Abstract. We summarize a simple proof of the fact that the average over all dyadic lattices
of the dyadic H1-norm of a function gives an equivalent H1-norm. This proof works for
both one-parameter and multi-parameter Hardy spaces.

1. Introduction

It has long been considered that:

How can we relate H1 to dyadic H1 and BMO to dyadic BMO?

A first result of such type on H1 for the one-parameter case is proved in [2]. By duality,
such result is equivalent to the statement on BMO for the one-parameter case in [3]. Also,
we have result on BMO for the two-parameter case in [4]. In this note, we will summarize a
proof given by S. Treil on H1 in [1] which works for both one-parameter and milti-parameter
cases. Most recently, J. Phiper and her coauthors in [5] have even characterized H1 and
BMO by using only finitely many well-chosen dyadic lattices.

2. Preliminaries

We first introduce some improtant notations and terminologies:

2.1. Cubes and dyadic lattices.

Definition 2.1. A cube in RN is an object obtained from the standard cube [0, 1)N by dilations
and shifts.
We use l(Q) to denote the side-length of cube Q. Given a cube Q, one can split it by dividing
each side in halves into 2N cubes Qk of side-length l(Q)/2: Qk are called the children of Q.

Definition 2.2. The standard dyadic lattice D0 on RN is

D0 := {([0, 1)N + j) · 2k : j ∈ ZN , k ∈ Z}.
A dyadic lattice D is a shift of the standard dyadic lattice D0.

2.2. Random dyadic lattice. Our random lattice will contain the dyadic cubes of standard
size 2k (k ∈ Z), but will be ”randomly shifted” with respect to the standard dyadic lattice
D0.

First construct a random lattice of dyadic intervals on the real line R:
Let (Ω,P) be some probability space and let x(ω) be a radom variable uniformly distributed

over the interval [0,1).
Let ξj(ω) be random variables satisfying P{ξj = +1} = P{ξj = −1} = 1/2. Assume also

that x(ω), ξj(ω), j ∈ N are independent. Define the random lattice D(ω) as follows:
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(i) We require that I0(ω) := [x(ω)− 1, x(ω)] ∈ D(ω); this gives us all intervals in D(ω)
of length 2k, k < 0.

(ii) To determine the rest of the intervals, it is enough to know dyadic intervals Ik(ω) ⊃
I0(ω), of length 2k, k ≥ 0. The intervals Ik(ω) are determind inductively: if Ik−1(ω)
is already known (and thus all intervals of length 2k−1 in D(ω)), then
• Ik(ω) is the union of Ik−1(ω) and its right neighbour if ξk(ω) = +1, and
• Ik(ω) is the union of Ik−1(ω) and its right neighbour if ξk(ω) = −1.

To get a random dyadic lattice in RN we just take N independent random dyadic lattices
D1,D2, ...,DN in R and consider all cubes Q = I1 × I2 × ...× IN , Ik ∈ Dk.

3. Statement of the Main Theorems

3.1. One-parameter case. Let H1 = H1(RN) be the usual real variable Hardy space on
RN , and let H1

D be its dyadic counterpart, defined as follows.
Consider a dyadic lattice D in RN . Let Ek = EDk be the averaging operator over cubes

Q ∈ D of size 2k, Ekf(x) := |Q|−1
∫
Q
f , where Q ∈ D is the cube in of size 2k containing x.

Define the difference operator by ∆k = ∆Dk := EDk−1 − EDk , and define the dyadic square
function S = SD by

(SDf)(x) :=

(∑
k∈Z
|∆Dk f(x)|2

)1/2

.

Definition 3.1. A function f ∈ L1
loc is in the dyadic Hardy space H1

D (with respect to the
dyadic lattice D) if ||f ||H1

D
:= ||SDf ||1 <∞.

Now let D(ω), ω ∈ Ω be the random dyadic lattice, as described above, and let E = Eω

denotes the expectation with respect to ω, we have

Theorem 3.2. A function f ∈ L1
loc(RN) belongs to H1 if and only if∫

RN

[E(|SD(ω)f(x)|2)]1/2dx <∞.

Moreover, the latter quality gives an equivalent norm on H1.

3.2. Multi-parameter case. The above results can be generalized to the case of multi-
parameter Hardy spaces. Let H1(X1 × X2 × ... × Xn), where Xk = RNk , for k = 1, 2, ..., n
be the n-parameter real variable Hardy space, see Section 4.2.1 for the precise definition.

Define its dyadic counterpart as follows. Let Dk be a dyadic lattice on Xk, k = 1, 2, ..., n
and let D = D1×D× ...×Dn be the product dyadic lattice on X = X1×X2× ...×Xn; the
elements on D are the ”rectangles” R = Q1 ×Q2 × ...×Qn, Qk ∈ Dk.

For a multi-index k = (k1, k2, ..., kn) define on X = X1 × X2 × ... × Xn the averaging
operator Ek := E1

k1
E2
k2
...En

kn
and the difference operator ∆k := ∆1

k1
∆2
k2
...∆n

kn
, where Ej

kj
and

∆j
kj

are the ”one variable” averages and differences described as above.

Define the multi-parameter dyadic square function S = SD by

(SDf)(x) :=

(∑
k∈Zn

|∆Dk f(x)|2
)1/2

.
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Definition 3.3. LetD = D1×D×...×Dn be a product dyadic lattice on X = X1×X2×...×Xn.
We say that a function f ∈ L1

loc(X) belongs to the dyadic Hardy space H1
D(X) if ||f ||HD1 :=

||SDf ||1 <∞.

Now let D(ω) = D1(ω)×D(ω)× ...×Dn(ω) be the multi-parameter random dyadic lattice,
we have

Theorem 3.4. A function f ∈ L1
loc(X) belongs to H1(X) if and only if∫

X

[E(|SD(ω)f(x)|2)]1/2dx <∞.

Moreover, the latter quality gives an equivalent norm on H1.

4. Outline of the proof

4.1. One-parameter case. The sufficiency follows easily from the well known H1-BMO
duality ((H1)∗=BMO, (H1

D)∗=BMOD) and the trivial inclusion BMO⊂ BMOD, which imply
the H1

D ⊂ H1, and so ||f ||H1 ≤ C||SDf ||1 = C
∫

RN |SDf |dx, hence by Tonelli theorem and
Hölder inequality we have

||f ||H1 ≤ CE
(∫

RN

|SD(ω)f |dx
)
≤ C

∫
RN

[E(|SD(ω)f(x)|2)]1/2dx <∞.
The proof of the necessity is a little bit more involved. We start with a general definition

and then introduce an elegant idea which allows us to employ all the Calderón-Zygmund
operator theory to prove the necessity.

Definition 4.1. Given two Hilbert spaces H and K, consider first their tensor product H⊗K
as vector spaces, and then introduce an inner product by

〈φ1 ⊗ ψ1, φ2 ⊗ ψ2〉H⊗K := 〈φ1, φ2〉H〈ψ1, ψ2〉K for all φ1, φ2 ∈ H and ψ1, ψ2 ∈ K,
finally, take the completion under this inner product. The resulting Hilbert space is the
tensor product of H and K.

If one of the spaces is a function space, for example if H = L2, then H ⊗ K can be
intepreted as L2 with values in K.

4.1.1. ”Vectorization” of the dyadic square function. There is a standard way of making the
nonlinear operator SD into a linear one by treating SDf as a vector-valued function.

Define the vector-valued square function SDf by

SDf(k, x) := ∆Dk f(x), k ∈ Z, x ∈ RN .

We will treat SDf as a function of the argument x ∈ RN with values in l2 = l2(Z).
Clearly, ||SDf(·, x)||l2 = SDf(x), so f ∈ H1

D if and only if SDf ∈ L1(l2). Moreover,
||SDf ||L1(l2) = ||SDf ||1 = ||f ||H1

D
.

Now let D(ω) be the random dyadic lattice, and let (Ω,P) be the corresponding probability
space. Consider the space L = L1(l2 ⊗ L2(Ω,P)), which is an L1 space with values in the
Hilbert space l2 ⊗ L2(Ω,P).

Define the vector-valued square function S with values in l2 ⊗ L2(Ω,P) by

Sf(k, ω, x) := SD(ω)f(k, x), k ∈ Z, ω ∈ Ω, x ∈ RN .

Here and below we will use notation Sf(x) := Sf(·, ·, x) ∈ l2 ⊗ L2(Ω,P).
Clearly, ||Sf(x)||l2⊗L2(Ω,P) = [E(|SD(ω)f(x)|2)]1/2, so ||Sf ||L =

∫
RN [E(|SD(ω)f(x)|2)]1/2dx.
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4.1.2. Vector-valued Calderón-Zygmund operators. Let us recall the vector-valued Carderón-
Zygmund operator theory.

Definition 4.2. Given two Banach spaces X and Y , an operator-valued Calderón-Zygmund
kernel on RN is the functional K(·, ·) : RN × RN \ {(x, x) : x ∈ RN} → B(X ,Y) satisfying

(i) ||K(x, y)||X→Y ≤ C|x− y|−N
(ii) There exists δ > 0 such that

||K(x, y)−K(x0, y)||X→Y + ||K(y, x)−K(y, x0)||X→Y ≤ C
|x− x0|δ
|y − x0|N+δ

whenever |y − x0| ≥ 2|x− x0|.
Definition 4.3. An operator-valued Carlderón-Zygmund operator with Calderón-Zygmund
kernel K is a bounded operator T : L2(RN ,X )→ L2(RN ,Y) such that for all f ∈ L2(RN ,X )
and g ∈ L2(RN ,Y), with supp(f) ∩ supp(g) = φ

〈Tf, g〉L2(RN ,Y)×L2(RN ,Y∗) =

∫∫
RN×RN

〈K(x, y) ◦ f(y), g(x)〉Y×Y∗dydx.

Theorem 4.4. If T is an operator-valued Carlderón-Zygmund operator defind as above, and
assume that both spaces X and Y are Hilbert spaces, then T is bounded

(i) T : Lp(RN ,X )→ Lp(RN ,Y) for all 1 < p <∞
(ii) T : H1(RN ,X )→ L1(RN ,Y)

(iii) T : L∞(RN ,X ) → BMO(RN,Y), see Section 4.2.2 for the precise definition of
BMO(RN,Y)

4.1.3. Outline of the proof of necessity. In our case, X = C, Y = l2 ⊗ L2(Ω,P), and the
verctorization Sf has the kernel

K(x, y) = Sδy(x) =
{

∆
D(ω)
k δy(x)

}
k∈Z,ω∈Ω

∈ l2 ⊗ L2(Ω,P).

Direct computation, see [1] for details, shows that S is exactly a Carlderón-Zygmund oper-
ator, so apply the Calderón-Zygmund operator theory we have∫

RN

[E(|SD(ω)f(x)|2)]1/2 = ||Sf ||L1(RN ,l2⊗L2(Ω,P)) ≤ C||f ||H1 .

4.2. Multi-parameter case. Proof for the multi-parameter case is just an ”iteration” of
the one-parameter case once we understand the definition of multi-parameter H1-spaces.

4.2.1. Multi-parameter H1-spaces. Recall that for one-parameter Hardy space H1(RN) the
norm ||SLf ||1 gives an equivalent H1-norm, where SL is the Lusin square function

SLf(x) :=

∫
Γx

|∇f(y, t)|2t1−Ndydt,

here Γx := {(y, t) : y ∈ RN , t > 0, |y − x| < t}, and f(y, t) is the harmonic extension of f
from RN to RN+1

+ = RN × R+.
One can consider the vecterization SL of SL as follows. Let Γ = Γ0 and define

SLf(x, y, t) = ∇f(x+ y, t)t(1−N)/2, x ∈ RN , (y, t) ∈ Γ.

By construction SL(x, ·, ·) ∈ L2(Γ)⊗ CN+1 and ||SLf(x, ·, ·)||L2(Γ)⊗CN+1 = SLf(x), therefore

||SLf ||L1(L2(Γ)⊗CN+1) = ||SLf ||1.
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For multi-parameter case, one can define SL by

SLf(x1, x2, ..., xn) :=[∫
Γx1×Γx2×...×Γxn

|∇1∇2...∇nf(y1, t1, y2, t2, ..., yn, tn)|2

×t1−N1
1 t1−N2

2 ...t1−Nn
n dy1dt1dy2dt2...dyndtn

]1/2
.

here f(y1, t1, y2, t2, ..., yn, tn) is the harmonic in each variable (yk, tk), yk ∈ RNk , tk ∈ R+

extension of f from RN1 × RN2 × ... × RNn to RN1+1
+ × RN2+1

+ × ... × RNn+1
+ and ∇k is the

gradient in the variable (yk, tk).

Definition 4.5. Following the notation in Section 3.2, we say that f ∈ H1(X) = H1(X1 ⊗
X2 ⊗ ... ⊗Xn) if SLf ∈ L1(X) and ||SLf ||1 defines one of the possible equivalent norms in
H1(X).

One can also define the vectorization SL of SL as SLf(x) = SL1 ⊗SL2 ⊗ ...⊗SLnf(x) ∈ H =
H1 ⊗H2 ⊗ ... ⊗Hn, where SLk is one-parameter Lusin square function defined above taken
in the variable xk, Hk = L2(Γk)⊗ CNk+1 and Γk is the cone in RNk+1

+ with the vertex at 0.
Again, by construction ||SLf(x)||H = SLf(x), so ||SLf ||L1(X,H) gives the norm in H1(X).

4.2.2. Outline of the proof of sufficiency. Let us first recall the Hilbert-space-valued BMO
space.

Definition 4.6. A function on RN with values in a Hilbert space H belongs to the space
BMO=BMO(X,H) if

||f ||BMO := sup
Q

1

|Q|
∫
Q

||f(x)− fQ||Hdx <∞,

here fQ := |Q|−1
∫
Q
f(x)dx and the supremum is taken over all cubes Q ⊂ RN .

If we fix a dyadic lattice D and take the supremum only over dyadic cubes Q ∈ D, we get
the dyadic BMOD space associated to this lattice.

As in the scaler-valued case, H1-BMO duality holds, which areH1(RN ,H)∗ = BMO(RN,H)
and H1

D(RN ,H)∗ = BMOD(RN,H).
Let SLk , SDk

be the Lusin and dyadic square functions as above, taken in the variable xk,
and let Hk := L2(Γk)⊗ CNk+1 and H′k := l2 be the corresponding target spaces. Moreover,

denote S̃k to be either one-parameter SLk or one-parameter SDk
, H̃k to be either Hk or H′k,

and let H̃1 := H̃2 ⊗ ...⊗ H̃n.
By the H1-BMO duality, one can show, see [1] for details

Lemma 4.7.∫
X

||SL1 ⊗ S̃2 ⊗ ...⊗ S̃nf(x)||H1⊗fH1dx ≤ C

∫
X

||SD1 ⊗ S̃2 ⊗ ...⊗ S̃nf(x)||H′1⊗fH1dx.

Applying this Lemma successively to each factor, we get∫
X

||SL1 ⊗ SL2 ⊗ ...⊗ SLnf(x)||Hdx ≤ C

∫
X

||SD1 ⊗ SD2 ⊗ ...⊗ SDnf(x)||H′dx,
which by definition yields the sufficiency part.
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4.2.3. Outline of the proof of necessity. Similarly as in the proof of sufficiency, but let now
SLk , Sk be the Lusin and random square functions, taken in the variable xk, and let Hk :=
L2(Γk) ⊗ CNk+1 and H′k := l2 ⊗ L2(Ωk,Pk) be the corresponding target spaces. Moreover,

denote S̃k to be either one-parameter SLk or one-parameter Sk, H̃k to be either Hk or H′k,
and let H̃1 := H̃2 ⊗ ...⊗ H̃n.

By the Calderón-Zygmund operator theory, one can show, see again [1] for details

Lemma 4.8.∫
X

||S1 ⊗ S̃2 ⊗ ...⊗ S̃nf(x)||H′1⊗fH1dx ≤ C

∫
X

||SL1 ⊗ S̃2 ⊗ ...⊗ S̃nf(x)||H1⊗fH1dx.

Applying this Lemma successively to each factor, we get∫
X

||S1 ⊗ S2 ⊗ ...⊗ Snf(x)||H′dx ≤ C

∫
X

||SL1 ⊗ SL2 ⊗ ...⊗ SLnf(x)||Hdx,
which by definition is exactly what we need for the necessity part.
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